A Hardware-Software Cooperative Approach for
Application Energy Profiling

Jie Chen, Guru Venkataramani
The George Washington University, Washington, DC

Abstract—Energy consumption by software applications is a critical issue that determines the future of multicore software development.
In this article, we propose a hardware-software cooperative approach that uses hardware support to efficiently gather the energy-related
hardware counters during program execution, and utilizes parameter estimation models in software to compute the energy consumption
by instructions at a finer grain level (say basic block). We design mechanisms to minimize collinearity in profiler data, and present results

to validate our energy estimation methodology.

Index Terms—Energy Profiling, Energy Estimation, Energy Debugging

1 INTRODUCTION

Innovations in computer architecture and semiconduc-
tor technologies have increased the computational per-
formance of systems exponentially. At the same time,
energy costs incurred by software have grown rapidly
resulting in the need to educate programmers on appli-
cation energy consumption.

Conventionally, execution time (performance) of ap-
plications is a commonly adopted proxy measure for
software developers to identify energy bottlenecks in
their program code. Recent studies by Hao et al [2]
have shown that the execution time and energy con-
sumption do not have strong correlation because of
several factors such as (1) multiple power states- at two
different frequencies fi and fy, even if the execution
times are the same, the energy drawn will be different,
(2) asynchronous design of system and API calls- when
the application sends data over the network, the data is
handled by the OS which results in the corresponding
data-sending application not being charged for the data
transmission time. Also, application energy profile and
optimizations are often specific to the processor architec-
ture and hardware configurations. Such factors result in
the need to invest into energy profiling.

In this article, we present a hardware software co-
operative approach to understand energy consumption
by applications, and relate them back to the application
code. In doing so, we enable the participation of pro-
grammers and software tools (such as compilers and
runtime) in energy-aware software development with-
out having to rely on expensive runtime energy saving
strategies.

The contributions of this article are as follows:

o We motivate the need for energy profiling in appli-

Manuscript submitted: 23-Dec-2013. Manuscript accepted: 18-Apr-2014.
Final manuscript received: 23-Apr-2014.

cations, and propose a hardware-software cooperative
framework to analyze application energy consumption.

o We explore fine-grain energy estimation methodolo-
gies, and study mechanisms to minimize the effects of
collinearity in data gathering.

o« We evaluate our proposed mechanisms using
Splash-2 [14] and PARSEC-1.0 [1] benchmarks, and val-
idate the effectiveness of our solutions.

2 MOTIVATION

With increasingly complex interactions between instruc-
tion execution and the associated timing in functional
units (due to parallelism and pipelining), it is often
difficult to equate performance with energy. To illustrate
this effect, we conduct experiments on several real-
world applications from Splash-2 [14] and PARSEC-
1.0 [1] benchmark suites, where the energy consumption
characteristics of individual functions drastically differ
from their corresponding execution time profiles.

Table 2 shows the energy and execution time profiles
on several applications with 8 threads running on 8
cores. All of our experiments were done using SESC [11],
a cycle-accurate, multi-core architecture simulator that is
integrated with McPAT power model [8]. Table 2 shows
the processor configuration details input to the McPAT
power model.

1) Ocean: relax() consumes 30.31% of the total energy
but only accounts for 15.02% of the total execution
time. On the other hand, slave2() accounts for 30.30%
of execution time, but only consumes 18.98% energy.
Upon further examination, we observed highly overlapped
execution of double-word arithmetic instructions in re-
lax() led to higher energy with lower execution time.
However, slave2() had higher numbers of branch and
load/store instructions leading to longer execution time
despite consuming lower energy than relax().

2) Radiosity: v_intersect() consumes 11.06% of total
energy with only 6.60% of the total execution time,



TABLE 1

Energy and performance profile of functions in Splash-2 and PARSEC-1.0 benchmarks with 8 threads

Ocean Radiosity Bodytrack
Function | % of Energy | % of Time Function % of Energy | % of Time Function % of Energy | % of Time
relax 30.31% 15.02% v_intersect 11.06% 6.60% InsideError 25.38% 9.12%
slave2 18.98% 30.30% compute_diff_ 7.39% 14.07% Exec 19.20% 4.34%
disc_formfactor
jacobcal2 14.47% 12.22% traverse_bsp 4.83% 5.53% EdgeError 18.53% 6.77%
laplacalc 12.68% 9.85% four_center_points 3.03% 5.06% ImageProjection 10.66% 3.67%
TABLE 2
Processor Configuration and Power Model
Processor 3 GHz, 8-core CMP; 4-wide issue/retire, out-of-order execution; 4096-entry BTB, hybrid branch Predictor; 8-entry instruction queue;

176-entry ROB; 96 integer registers; 90 floating point registers; 64-entry LD/ST queues; 48-entry scheduler

Memory Sub-system

32KB, 4-way, I-cache; 32KB, 4-way, D-cache; 256KB, 8-way, private L2 cache; 16MB, 16-way, shared L3 cache; 64-entry ITLB/DTLB

Interconnect shared bus below private L2 caches

Power Model

MCcPAT, 32 nm, Vg4 =125V

while compute_diff_disc_formfactor() has 14.07% of the
total execution time with only 7.39% of the total energy.
On a closer review, we found that v_intersect() heavily
used complex instructions like madd.d (that perform
multiply-add of double word values) leading to higher
energy, while compute_diff disc_formfactor() had a lot
of load operations leading to higher execution time
despite consuming lower energy than v_intersect().

3) Bodytrack: The top four energy consuming func-
tions account for 74% of the total energy, but only
account for about 24% of the total execution time. About
64% execution time is actually spent on lock and barrier
synchronizations implemented by pthread_cond_wait()
that actually puts threads into sleep without consuming
much energy.

2.1 Are Current Hardware Energy Meters Sufficient?

Modern high performance processor architectures [12],
[5] have begun integrating hardware energy meters that
can be read through software driver interfaces. For
example, starting from Sandy Bridge, Intel provides a
driver interface called RAPL (Running Average Power
Limit) that can let programmers periodically sample
processor energy usually at the granularity of a few mil-
liseconds of program execution time. While this is going
to be a useful first step toward helping programmers
understand processor energy consumption, it is still far
from providing them with a more practical feedback at
a granularity that relates the processor energy consump-
tion back to the program source code.

3 FINE-GRAINED ENERGY PROFILING

To help programmers, compilers or runtime optimizers
apply effective energy optimizations to the right code
regions, energy profile information must be given at the
level of fine-grained code blocks (say a few basic blocks).
Toward this goal, we explore the use of hardware that
can efficiently estimate energy using hardware counters,
and apply light-weight software estimation techniques
to uncover the energy share at a finer granularity, e.g., a
few selected instructions.

3.1

To attribute energy back to program source code, we
choose to identify code sequences in applications. A code
sequence is a series of basic blocks during dynamic
execution that are formed as a result of executing a
few static basic blocks one or more times. For exam-
ple, if a loop comprises the execution of two static
basic blocks b; and b, with execution counts of n;
and ng, respectively, its code sequence is recorded as
< by, n1,ba,ny >. These code sequences can be identified
dynamically by maintaining a hardware buffer to record
the sequence of dynamically executing basic blocks,
and recording the execution frequency of these basic
blocks. The energy consumption of the corresponding
code sequence, F, is obtained using the hardware energy
meters. Subsequently, for every code sequence S, we
gather a tuple < E, by, n1,b2,no,...,bk,n, >, where n;
is the execution count for the constituent basic block b;,
and k is the total number of constituent basic blocks.
The hardware constructs identifier partial tags using the
basic blocks starting address (i.e., target address of the
branch instruction in the previous dynamic basic block)
and the ending address (i.e., branch instruction at the
end of the current basic block). Once a code sequence
finishes execution, we read the hardware energy meter to
record the energy value E for that code sequence. In our
experiments, we observed that even the most expensive
energy consuming loops did not have more than 15 basic
blocks. Hence, an on-chip hardware histogram buffer to
temporarily hold 15 tags and 16 counters (15 for basic
block counts and 1 for energy) is sufficient for every
hardware core. Since the histogram buffer is off the
critical path, and has access latency of 0.18 ns using Cacti
5.1 [6] (less than one CPU clock cycle), it is unlikely to ad-
versely impact the processor performance. We note that
code sequences with longer chains of static basic blocks
might need to be chopped into multiple shorter code
sequences such that the hardware can record energy
information about the constituent basic blocks. Software
support will be needed to identify and instrument such
longer code sequences.

Code Sequences



3.2 Fine-Grained Energy Estimation Methodology

The energy spent by a code sequence is essentially an
additive function of all of its constituent basic blocks’
energy consumption. We show this additive function in
Equation 1, where E is the measured code sequence
energy; e; is the unknown unit basic block energy, that is,
basic block b;’s average energy consumption; n; is the
known execution count of basic block b;; k is the total
number of constituent basic blocks. Note that Equation

—

1 can be vectorized as F = 7i - €.
k

The next step is to find the estimate of the unknown
unit basic block energy. Among several different param-
eter estimation methods, Least Square Estimation (LSE)
and Maximum Likelihood Estimation (MLE) [9] are two
popular techniques. LSE can make very efficient use of
the data, and typically desirable estimated parameters
can be obtained with relatively smaller numbers of
sample data. Mathematically, MLE can also yield good
estimates, but it has two major disadvantages compared
to the LSE: 1) estimating unknown parameters in MLE
often requires solving complex non-linear equations [9];
2) MLE assumes the underlying data to follow a specific
probability distribution model. Therefore, we chose to
use LSE as our method to estimate the unit basic block
energy.

c:fj[Ei—m-az @)
i=1

In our design, LSE performs parameter estimation
by minimizing a cost function C' using Ordinary Least
Squares (OLS) method [9]. Specifically, the unknown
parameter € (that denotes unit basic block energy) is
estimated by finding the optimal parameter value vector
¢ that minimizes the cost C, where C is the sum of the
squared distance between E and 7; - € over n samples
(Equation 2). However, one of the assumptions that OLS
makes is that basic block execution has deterministic
energy consumption. In other words, the execution of the
same sequence of basic blocks should always consume
similar amounts of energy. This assumption, however,
may not hold all the time due to variability in archi-
tectural events during program execution (e.g., cache
hits and misses for the same load/store instruction at

different times).

o:iwi[&—ﬁ,@f ®3)
i=1

When such variable measurements exist in our data,
Weighted Least Squares (WLS) [9] is better suited to
estimate unit basic block energy. In WLS’s cost function
(Equation 3), we multiply every squared distance, [E; —
Ei . éﬂQ, with a non-negative weight, w;, that reflects how
much contribution that each sample would have on the
final parameter estimation. These w;’s are heuristically

derived by assigning higher weights to samples with
lower variances.

We use OLS for code sequences with lower variabil-
ity due to architectural events, and use WLS for code
sequences with higher variability.

3.3 Energy Profile Gathering: The Problem of Data
Collinearity

In statistics, data collinearity refers to the situation where
one of the columns (predictors) of the sample data matrix
is highly correlated with other columns. Often seen in
time-series or region data, collinearity might be caused
by one predictor variable being the exact duplicate of
another, or by one predictor being equal to a linear
combination of other predictors. When using such data
as the training set, it will result in erroneous estimation
of the coefficients.

To illustrate the data collinearity in energy profiling,
we show an example in Figure 1 (a). In this case, consec-
utive basic blocks (b; through bs) get executed repeatedly
resulting in all of b;’s having the same execution count.
This affects our ability to estimate the individual energy
contribution of b}s, effectively leading to them being
treated as a single unit (like extended basic block) for
energy estimation purposes.

CS# N Start* #b, #b, #b, #b, #b,
1 {149 b, | 30 | 29 | 30 | 30 | 30 | E

Energy

b
2 103 | b, | 20 | 21| 21 [ 21| 20 | E
3

4 257 b | 52| st | st |51 2] E
bs

5 227 | b, 45 45 45 46 46 Es
* Denotes the first b; appearing in the code sequence sample

@ (b)

3 181 | b, 36 36 36 37 36 E;

Fig. 1. lllustration of Collinearity-aware Energy Profiling

3.4 Collinearity-aware Energy Profiling

To mitigate the problem of data collinearity and be able
to estimate basic block energy at a fine grain level, we
design a collinearity-aware energy profiling approach.
We intentionally create code sequences with differing
numbers of basic blocks in each sample such that we
are able to form at least k¥ unique samples as inputs
for our parameter estimation model. Specifically, the
hardware randomly pick a prime number N from a
pre-populated vector of prime numbers, and use this
randomly chosen N as the dynamic basic block count
within a code sequence sample. This process is repeated
at least k& times to generate enough unique samples for
our parameter estimation. For each sample, a random
starting point (basic block b;) is picked and the code
sequence is terminated after N dynamic basic blocks.
Figure 1 (b) shows an example of our collinearity-aware



profiling approach where code sequence samples have
differing (prime) numbers of dynamic basic block counts
to break the data collinearity among them.

3.5 Validation of Energy Estimation

Due to highly overlapped execution of basic blocks, it is
impossible to accurately measure the energy consump-
tion of individual basic blocks. Hence for validation, we
compute the relative differences between Zle(m X é;),
the sum of estimated basic block energy within the
code sequence, and E being the actual measured code
sequence energy. In our experiment, we adopt Ten-fold
Cross-validation [7] method where 90% of the code
sequence samples are used as the training set and the
remaining 10% of them are used for validation. This
step is repeated ten times where a different valida-
tion set is selected during each time. We calculate the
average cross-validation errors on the code sequences
that account for 90% of the total application energy
consumption.

k
Error = \(Z(nl X €;) — E)/E| 4)

Figure 2 shows the average cross-validation errors of our
energy estimation model with collinearity-aware energy
profiling. Note that, in our experiments, we use a prime
number vector that holds prime numbers less than 500.
The average cross-validation error across all applications
is less than 1%, and the maximum error is less than 2.5%
(observed in raytrace).

5%
4%
3%
2%
1%
0%

Average Error

Fig. 2. Cross-validation errors in Splash-2 and PARSEC-
1.0 benchmarks

4 RELATED WORK

Isci et al [3] propose runtime power monitoring tech-
niques for processor core and functional units. Powell
et al [10] and Jacobson et al [4] show the feasibility of
using a limited set of of metrics to estimate functional
unit power. In contrast to these prior schemes, we in-
vestigate ways to provide fine-grain energy feedback to
help programmers understand their application’s energy
characteristics.

Prior works [13] that estimate energy using instruction
counts assume a pre-determined cost for various instruc-
tion types, and ignore dynamic hardware effects such as
parallelism and interference that occur in most modern
architectures. Alternative strategies that use a specific set

of hardware events (such as cache misses) for energy
estimation often fail to include a comprehensive view
of application execution and ignore system-level effects
and interactions with other instructions (e.g., pipeline
stalls, pipeline flushes due to mispredicted instructions).
In contrast to these prior approaches, our methodology
directly queries the hardware to accurately gather total
energy consumed by a segment of program code, and
utilizes parameter estimation techniques to attribute en-
ergy to fine grain sets of instructions.

5 CONCLUSIONS AND FUTURE WORK

In this article, we showed the necessity to gather fine-
grained energy information about program code. We
explored a hardware-software cooperative solution to
attribute energy back to the program source code, and
observed very low estimation errors (less than 2.5%)
when tested on Splash-2 and PARSEC-1.0 benchmarks.
As future work, we will study ways to extend our
framework by incorporating the energy spent on GPU,
main memory, and I/0.

ACKNOWLEDGMENTS

This material is based upon work supported by the Na-
tional Science Foundation under CAREER Award CCF-
1149557.

REFERENCES

[1] C. Bienia, S. Kumar, J. Singh, and K. Li. The PARSEC Benchmark
Suite: Characterization and Architectural Implications. Princeton
University Technical Report TR-811-08, January 2008.

[2] S. Hao, D. Li, W. G. ]J. Halfond, and R. Govindan. Estimating
mobile application energy consumption using program analysis.
In Proceedings of ICSE, 2013.

[3] C. Isci, G. Contreras, and M. Martonosi. Live, runtime phase
monitoring and prediction on real systems with application to
dynamic power management. In Proceedings of MICRO, 2006.

[4] H. Jacobson, A. Buyuktosunoglu, P. Bose, E. Acar, and R. Eick-
emeyer. Abstraction and microarchitecture scaling in early-stage
power modeling. In Proceedings of HPCA, 2011.

[5] R. Jotwani, S. Sundaram, S. Kosonocky, A. Schaefer, V. Andrade,
G. Constant, A. Novak, and S. Naffziger. An x86-64 core imple-
mented in 32nm soi cmos. In Proceedings of ISSCC, 2010.

[6] N.P. Jouppi et al. Cacti 5.1. http://quid.hpl.hp.com:9081/cacti/, 2008.

[7] R.Kohavi. A study of cross-validation and bootstrap for accuracy
estimation and model selection. In Proceedings of the 14th Interna-
tional Joint Conference on Artificial Intelligence - Volume 2, IJCAI’'95,
1995.

[8] S.Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen,
and N. P. Jouppi. Mcpat: an integrated power, area, and timing
modeling framework for multicore and manycore architectures.
In MICRO, 2009.

[9]1 NIST. http://www.itl.nist.gov/div898/handbook/pmd/pmd.htm, 2013.

[10] M. D. Powell, A. Biswas, J. Emer, S. Mukherjee, B. Sheikh, and
S. Yardi. Camp: A technique to estimate per-structure power at
run-time using a few simple parameters. In Proceedings of HPCA,
2009.

[11] J. Renau et al. SESC. http://sesc.sourceforge.net, 2006.

[12] E. Rotem, A. Naveh, D. Rajwan, A. Ananthakrishnan, and
E. Weissmann. Power-management architecture of the intel mi-
croarchitecture code-named sandy bridge. Micro, IEEE, 2012.

[13] V. Tiwari, S. Malik, A. Wolfe, and M. T. Lee. Instruction level
power analysis and optimization of software. ]. VLSI Signal
Process. Syst., 13(2-3), Aug. 1996.

[14] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta. The
splash-2 programs: characterization and methodological consid-
erations. In Proceedings of ISCA, 1995.



