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Abstract—Recent researches show that computers which
are physically shared by multiple users are vulnerable to
microarchitecture-based information leakage. Among all mi-
croarchitecture components, cache provides the largest attack
surface. Cache timing channels manipulate the cache access
latency to leak information leaving no physical trace. To mitigate
cache timing channels, various detection methods are proposed.
However, with the knowledge of existing detection methods,
an advanced adversary can intentionally inject noise to evade
detection. For example, the detection based on correlation method
which extracts the repetitive behavior of cache timing channels
can be evaded by randomizing the gap between information
transmitting and receiving activity. The classification based de-
tection would be obfuscated if adversary imitate the behavior of
benign applications. We propose a novel noise-resilient detection
method which focuses on the dependency between behavior of
two processes. For each process, we define a group of events
and track the conditional probability of every event given the
appearance of the events from another process. With this method,
we are able to detect the existence of cache timing channels.
Our detection method is hard to evade because the dependency
of cache behavior is necessary for any communication through
cache timing channels.

I. CACHE TIMING CHANNEL

With the development of cloud computing, more and more
developers deploy their processes and data on shared plat-
forms to reduce infrastructure cost and boost performance.
The scenario where multiple processes from different owners
running on a same physical machine becomes ubiquitous.
To prevent information leakage, platform operators usually
prohibit direct communication of processes from different user
domains using Operating Systems or Hypervisors. However,
as long as the hardware is still shared, the microarchitecture
covert and side channels are still potential security harzard for
information leakage. Among all microarchitecture covert and
side channels, cache timing channel [8], [11], [12], [13], [15],
[16] is one of the most notorious because cache provides the
largest attack surface and the channels cannot be mitigated
by software-based approach. Cache timing channel usually
involves two processes: trojan/victim and spy. For the side
channel scenario, a victim unconciously leaks informaiton
through its cache access pattern while a malicious spy tries
to track victim’s cache access pattern and finally reveals the
victim’s secret. In a covert channel scenario, a trojan which
has access to secret tries to leak information intentionally
by modulating cache access and the spy manages to receive
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Fig. 1: Cache block replacement in Prime+Probe Attack.

trojan’s information by observing its cache access pattern.
We note that the only difference between trojan and victim
is whether the process leaks information on purpose. The
behavior of trojan and victim is simillar. In the following
paper, we use the word trojan to represent both trojan in the
covert channel scenario and victim in the side channel scenario.

Among various implementation of cache timing channels,
the prime+probe is the most common protocol because it
does not have prerequisites beyond physically shared cache. In
prime+probe attack, the trojan manipulate the spy’s cache ac-
cess latency by creating conflict miss. Conflict miss is caused
by cache block replacement. When one process accesses a
memory line from DRAM which is mapped to a full cache set,
the newly accessed memory line would be brought to cache
and replace one cache block inside the cache set. If a process
access the replaced cache block, it would suffer from cache
conflict miss and observe higher latency.

As shown in Figure 1, to launch prime+probe attack, the
spy firstly primes every cache block in cache sets with its own
memory lines, then the trojan transmits bit ’1‘ by evicting all
cache blocks owned by spy and transmits bit ‘0’ by staying
idle. After trojan’s activity, the spy probes the memory lines
which were used to prime and measures the access latency.
If the trojan transmits bit ‘1’, the spy would observe high
latency because of conflict misses. If the trojan transmits bit
‘0’, the spy would observe low latency because all its memory
lines remained in cache. From the observed cache access
latency, the spy can infer the trojan’s behavior and decipher the
information from trojan. The measured cache access latencies
of spy during transmission are shown in Figure 2, the latencies
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Fig. 2: Cache access latency observation of spy in
Prime+Probe attack. The observed latencies which are higher
than 2000 cycles indicate the bits ‘1’ from trojan and the
observed latencies which are lower than 1000 cycles indicate
the bits ‘0’ from trojan.
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(a) Cache access of trojan and spy in round-robin prime+probe protocol.

0 100 200 300 400 500
Time ( s)

spy

cache

trojan

(b) Cache access of trojan and spy in parallel prime+probe protocol.

Fig. 3: Cache access pattern of different cache timing channel
protocols

of spy are either larger than 2000 cycles indicating bit ‘1’ or
lower than 1000 cycles indicating bit ‘0’.

The prime+probe based cache timing channel can be im-
plemented using round-robin or parallel protocols. The cache
access behavior of trojan and spy using round-robin cache
timing channel is shown in Figure 3a. The spy synchronizes
with trojan and only accesses cache after the trojan finishes
encoding. The round-robin protocol guarantee high bit rates
and low noise but it may take time for them to synchronize
before communication. The cache access behavior of trojan
and spy running parallel attack is shown in Figure 3b. While
implementing parallel protocol, the trojan and spy act at the
same time. The spy access cache more frequently than trojan to
assure that it observes complete trojan’s behavior. The parallel
protocol does not need synchronization of trojan and spy and
its transmission rate is lower than round-robin protocol.

II. PROPOSED DETECTION APPROACH

A. Existing Detection Methods and Limitation

To mitigate cache timing channels, various detection meth-
ods are proposed [14], [2], [7], [3], [4], [9], [10], [5], [6].
The existing detection methods mainly include two categories:
1. Correlation-based detection [14], [2] which aims at ex-
tracting the repetitive pattern of trojan and spy caused by
information transmission, 2. Classification-based detection [7]
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(a) The cache miss rate of naive trojan and spy
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(b) The cache miss rate of advanced trojan and spy

Fig. 4: Advanced spy injects noise to make itself uncorrelated
with trojan and hide its repetitive behavior.

which focuses on comparing characteristics of suspicious pro-
cess and baseline benign processes. These detection methods
can efficiently detect adversaries which are not aware of
the existence of detection. However, with the knowledge of
detection strategy, the smarter adversaries could manage to
evade detection by noise injection and timing randomization.
The repetitive pattern would be obfuscated by timing random-
ization so that correlation-based methods would fail. With
noise injection, the adversary can pretend a benign cache-
intensive process to evade classification-based detection. To
illustrate how can an advanced adversary evade detection, we
implemented an advanced cache timing channel on Gem5 and
compared the observed cache miss of advanced cache timing
channel with the naive cache timing channel.. The advanced
spy and trojan exploit 16 cache sets to communicate using
prime+probe protocol. To evade potential detection, the spy
inflates its cache miss in another 16 cache sets. We note the
cache sets exploited to communicate as communication sets
and the cache sets for noise injection as noise sets. Besides
noise injection, spy also randomize the timing of cache access.
The number of misses of trojan and spy are shown in Figure 4.
As shown in Figure 4a, the miss rates of naive trojan and spy
are correlated. When trojan suffers from a number of cache
misses, the spy also suffers from cache misses. When trojan
doesn’t have cache miss, the spy would not suffer from cache
miss either. The misses of advanced trojan and spy are shown
in Figure 4b. The spy’s misses are not correlated with trojan’s
and its behavior is not repetitive compared to Figure 4a, hence
the accuracy of correlation-based detection would degrade.
Besides, the spy can create additional noise to pretend to be
a cache-intensive benign application so that the classification-
based detection would fail to detect it.
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Fig. 5: The labeling of time windows for cache timing channel
detection

B. Conditional Probability in Cache Timing Channels

The communication of trojan and spy through cache tim-
ing channels is based on the fact that the trojan’s behavior
can indirectly influence the spy’s observation. The trojan’s
access to cache would evict spy’s memory lines from cache
sets and result in the cache miss of spy. If trojan did not
access cache, the spy would not suffer from cache miss. The
spy’s cache miss and hit in the communication sets have
a significant dependency on trojan’s cache miss and hit in
the same sets. This property makes conditional probability a
potential noise-resilient metric to detect advanced cache timing
channel. During communication, the probability of spy’s cache
miss in communication sets given the appearance of trojan’s
cache miss in the same group of sets would be significantly
higher than overall probability of spy’s miss. On the other
hand, when trojan did not access the communication sets,
the probability of spy’s misses in the sets would be lower.
The conditional probability would not be influenced by the
obfuscation from adversary or third-party application because
the timing randomization or the noise does not change the
dependency of spy’s cache misses in communication set on
trojan’s cache misses in the same group of cache sets.

We define the event of spy suffering from cache miss
in cache set i as si. For trojan, we define the condition
where trojan suffer from cache miss in cache set j within
a predetermined time window as tj and the condition where
trojan did not suffer from cache miss in the cache set j within
a predetermined time window as tj . For i, j belonging to
communication sets, we will observe:

|P (si|tj)− P (si|tj)| > ε (1)

where ε is a threshold of change of conditional probability.
If cache set p belongs to noise set, the P (sp|tj) would be
approimately equal to P (sp|tj) since the cache miss of spy
in the noise sets are created by spy itself and independent to
trojan’s behavior.

C. Using Cache Miss Rate to Estimate Conditional Probabil-
ity

To estimate the conditional probability we mention in the
Section II-B by observing the cache miss pattern of trojan and

spy, we divide the time axis into equal-size time windows. We
add labels to each time window based on the following rule:

• Trojan Label: If the trojan suffered cache miss in the
cache set j in the last M time window, add label Tj to
current time window. Otherwise, add label Tj to the time
window.

• Spy Label: If the spy suffered cache miss in the cache set
j in the time window, add label Sj to the time window.

Figure 5a shows an example of time window sampling for
cache timing channel. In this scenario, the time window is
relatively large so that the number of window labeled as T0
is set to one. The trojan and spy exploit cache set 0 and 1
to communicate while spy imitates benign application on the
other cache set, for instance cache set 2. The trojan’s cache
miss is presented by the orange arrows. The spy’s adversary
behavior is represented by red arrows and its benign behavior
is represented by gray arrows. We can observe that the spy
has cache miss in the cache set 0 and 1 in every time window
with label T0 and has no cache miss in the same cache sets
in every time window with label T0.

The conditional probabilities in Equation 1 can be estimated
by the count of time windows:

P (si|tj) =
#time windows with both labels: Si, Tj

#time windows with label Tj

P (si|tj) =
#time windows with both labels: Si, Tj

#time windows with label Tj
.

(2)

As shown in Figure 5b, when the time interval is small enough
such that at most one cache miss could happen within one time
interval, the first conditional probability can be represented
using cache miss rate:

P (si|tj) = Rijtwindow (3)

where Rij is the number of spy’s cache misses in cache set i
in time windows with label Tj divided by the time elapse of
all time windows with label Tj and twindow is the size of each
time window. The second conditional probability in (2) can be
expressed in the similar way where Rij is replaced by Rij .
We note that it is more practical to track cache miss rate in
real machine. In the following paper, we will use cache miss
rate to estimate conditional probabilities we mentioned in (1)

To illustrate the efficiency of detection, we do the cache
miss rate analysis on the advanced cache timing channel
introduced the Section II-A. Figure 6a shows the cache miss
rate of spy given that trojan accessed the cache set 0 within
150-microsecond time interval. And the Figure 6b shows the
cache miss rate of spy given that trojan did not access the
cache set 0 within the 150-microsecond window. We can
observe that the conditional probability on set 0, 5, 7, 8, 9, 10
and 11 change significantly when trojan has different behavior
indicating they are communication sets. On the other hand, the
conditional probabilities of the other sets do not change a lot
when trojan access or not cache set 0, indicating that they are
noise sets.



(a) The cache miss rate of spy given that trojan accessed the cache set
0 within the 150-microsecond window

(b) The cache miss rate of spy cache miss given that trojan did not access
the cache set 0 within the 150-microsecond window

Fig. 6: Cache Miss Rate of spy in round-robin attack

Fig. 7: Histogram of cache miss rate decrease of spy when
trojan does not access the cache set 0 within given time
window.

III. EXPERIMENTAL SETUP

We implement the cache timing channel attack using
Gem5 [1], a cycle-accurate, full-system simulator. We config-
ure Gem5 with four x86 cores, 32 KB private L1 and 512
KB, 8-way shared L2 caches. All the experiments are run
on full system mode under Linux kernel version 2.6.32. We
collect the cache access traces from simulator and implement
the detection methods on the traces.

We deploy the trojan and spy processes on separated CPU
cores. The trojan and spy communicate in either round-robin
or parallel fashion as we discussed in Section I. For the round-
robin attack, the trojan and spy use 7 communication sets. The
spy injects noise in 7 noise sets by creating self evictions. For
the parallel attack, the trojan and spy use 14 communication
sets to transmit information.

IV. EVALUATION

A. Round-robin Noisy Attack

As we discussed in Section II-B, the cache miss rates of
spy in communication sets drop significantly when trojan does

(a) The cache miss rate of spy given that trojan accessed the cache set
0 within the 150-microsecond window

(b) The cache miss rate of spy cache miss given that trojan did not access
the cache set 0 within the 150-microsecond window

Fig. 8: Cache Miss Rate of spy in parallel attack

not access communication sets while the cache miss rates in
noise sets drops much less than those in communication sets.
Figure 7 shows the histogram of cache miss rate decrease of
spy given different behaviors of trojan. The miss rate decrease
is normalized with the cache miss rate when the trojan accesses
the communication sets within a given time interval. Cache
miss rate drops 100% in communication sets which indicates
the spy’s behavior is strongly dependent on trojan’s activity.
The cache miss decrease in noise set ranges from -10% to
50% which is much lower than the cache miss rate decrease
in communication sets. The miss rate decrease can efficiently
distinguish communication sets from noise sets and finally
capture the covert communication in noisy background. We
note that as demonstrated in previous work [2], the benign
applications would not have this correlated behavior, so our
design is also able to identify adversary process when it is
running with benign workloads.

B. Parallel Attack

The cache miss rates of spy given different trojan activity
implementing parallel protocol are shown in Figure 8. The
cache miss rate of spy in cache set 0 drops 60% when trojan
does not access the same cache set in the last 150 microsecond.
The cache miss rate decrease in other cache sets may drop less
than the cache miss rate in cache set 0 because the activities of
trojan and spy are not synchronized. When spy is scanning the
cache set 1 to 13, it is possible that the trojan has already start
next transmission in cache set 0. For parallel attack, examining
the spy’s cache miss rate given different trojan’s activity in the
same cache sets can still distinguish the adversary behavior.



(a) Average cache miss rate decrease of spy given trojan’s different activity
within time intervals of different sizes.

(b) Standard deviation of cache miss rate decrease of spy given trojan’s
different activity within time intervals of different sizes.

Fig. 9: Cache miss rate decrease of spy in round-robin attack
as function of the size of influence interval of trojan activity.

C. Time Interval Analysis

In the previous experiments, we have analyzed the cache
miss rate decrease of spy given trojan’s different activity within
150 microseconds. The choice of the time interval length
would influence the detection accuracy. Figure 9 shows the
mean and standard deviation of cache miss rate decrease of
spy given the trojan’s different activity within time intervals
of different sizes. As shown in Figure 9a, the average miss
rate decrease in communication sets is always larger than
the average miss rate decrease in noise sets despite the
time interval. The miss rate decrease in communication sets
becomes larger as the time interval become larger. When the
time interval is shorter than the gap between trojan and spy’s
activity, the communication-related cache miss of spy would
not appear in the time interval so that the cache miss rate
decrease could not capture the dependent behavior between
trojan and spy. The miss rate decrease of communication set
becomes larger than 90% when the time interval is larger than
125 microsecond which is sufficient for cache timing channel
detection. As shown in Figure 9b, the standard deviation of
miss rate decrease becomes lower when the time interval
length increases which proves that the time interval length
should be longer than a threshold to make noise sets and
communication sets distinguishable.

V. CONCLUSION

In this paper, we propose a novel noise-resilient detection
method based on conditional probability to prevent informa-
tion leakage through cache timing channel. We demonstrated
our work on both round-robin and parallel cache timing
channel protocol. Our experiments shows that the proposed
method is able to distinguish cache sets which are exploited

by adversary in noisy background by calculating cache miss
rate in different condition.
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Guru Venkataramani. Prefetch-guard: Leveraging hardware prefetches
to defend against cache timing channels. In 2018 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), pages
187–190. IEEE, 2018.

[4] Hongyu Fang, Sai Santosh Dayapule, Fan Yao, Miloš Doroslovački, and
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