
Temporal Capabilities: Access Control for Time∗

Phani Kishore Gadepalli, Robert Gifford, Lucas Baier, Michael Kelly, Gabriel Parmer

The George Washington University

Washington, DC

{phanikishoreg, robertgif, lbaier, gparmer}@gwu.edu

Abstract—Embedded systems are increasingly required to
handle code of various qualities that must often be isolated, yet
predictably share resources. This has motivated the isolation of,
for example, mission-critical code from best-effort features using
isolation structures such as virtualization. Such systems usually
focus on limiting interference between subsystems, which compli-
cates the increasingly common functional dependencies between
them. Though isolation must be paramount, the fundamental goal
of efficiently sharing hardware motivates a principled mechanism
for cooperating between subsystems.

This paper introduces Temporal Capabilities (TCaps) which
integrate CPU management into a capability-based access-control
system and distribute authority for scheduling. In doing so, the
controlled temporal coordination between subsystems becomes a
first-class concern of the system. By enabling temporal delega-
tions to accompany activations and requests for service, we apply
TCaps to a virtualization environment with a shared VM for
orchestrating I/O. We show that TCaps, unlike prioritizations
and carefully chosen budgets, both meet deadlines for a hard
real-time subsystem, and maintain high throughput for a best-
effort subsystem.

I. INTRODUCTION

Embedded and real-time systems are increasingly expected

to provide a challenging combination of timing predictability,

reliable software, and complex feature sets. For example,

such systems often co-host more general purpose computation

with timing-critical computation due to the twin forces of

the (1) increasing functional requirements (e.g. computer

vision, mapping), and (2) the pressures of cost and Size,

Weight, and Power (SWAP) have forced consolidation of many

disparate systems. Driven by these often conflicting goals,

systems erect isolation boundaries between different bodies of

software to constrain the impact of temporal and spatial faults.

Significant research has focused on scheduling for mixed-

criticality systems [1] to constrain the impact of temporal

irregularities, and to explicitly differentiate timing properties

for bodies of software based the designer’s level of confidence

in them, and their importance to the embedded system.

Unfortunately, less research has investigated the interactions

between spatial and temporal isolation. The focus of spatial

isolation has often been on providing separation kernel-style

complete isolation between subsystems [2]. Though appealing

from an isolation perspective, such approaches often require

partitioning memory and I/O thus prohibiting inter-subsystem

∗This material is based upon work supported by the National Science
Foundation under Grant No. CNS 1149675, ONR Award No. N00014-14-
1-0386, and ONR STTR N00014-15-P-1182 and N68335-17-C-0153. Any
opinions, findings, and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views
of the National Science Foundation or ONR.

sharing. This paper squarely focuses on how isolated sub-

systems can both coordinate to provide services to each

other, while also mutually controlling the interference that

coordination can cause. We make few assumptions about

these subsystems: they can have different scheduling policies,

be implemented as an arbitrary number of spatial protection

domains, and can handle interrupt processing.

This paper introduces Temporal Capabilities (TCaps), an

abstraction that enables the user-level control of access to

processing time that provides a principled means for distribut-

ing and restricting time management responsibilities between

isolated subsystems. TCaps decouple scheduling decisions

(what computation should consume time at any point) from

the ability to consume time (if a computation has a timeslice

and can be active now). TCaps enable the inter-subsystem

delegations of a non-replenishable processing time and track

multiple priorities from different subsystem schedulers that

are involved in the delegation path. These multiple priorites

are used to control preemption decisions to vector interrupts

directly to their subsystems.

TCaps are built on the Composite OS [3] which does

not have an in-kernel scheduler, instead enabling user-level

definition of scheduling policy provided by a dispatch opera-

tion. This enables scheduling policy specialization and distri-

bution of system scheduling responsibilities between multiple

schedulers (e.g. as with virtual machines). In this setting,

TCaps provide a number of key features necessary for full-

system predictability: (1) controlled subsystem coordination

by enabling schedulers to delegate extents of time to each

other, thus enabling temporal flows that correspond with

inter-subsystem functional dependencies; (2) inter-subsystem

isolation as each subsystem uses only processing resources

granted to it from other subsystems that are associated with a

priority (of sorts), thus limiting the scope of its interference

on other subsystems; (3) control over timer notifications is

enabled for each individual scheduler within their TCap-

provided slice of time; and (4) predictable interrupt scheduling

via the association of the interrupt’s execution with a TCap.

Figure 1 depicts a system containing multiple coordinating

Virtual Machines (VMs). On the left, a traditional system

that contains multiple VM schedulers, all orchestrated through

the underlying hypervisor’s scheduler. Timers and interrupts

can only be delivered to the hypervisor subsystem which

then orchestrates the control flow. On the right, TCaps are

used to control and coordinate access to processing resources.

Timers and interrupts can be directly vectored to subsys-

tems as determined by TCaps and their delegation patterns.

Different parts of subsystems can use separate TCaps, and

interruptstimer

TCaps Scheduler

SchedSched

interrupts timer

Scheduler

Sched Sched

Fig. 1: Left: a traditional system with virtual machines. Applications
are in darker grey at the top. Arrows designate control flow, and
dotted arrows designate hardware interaction. Right: a system where
the TCaps mediate and control interactions between subsystems.
Darkest gray paths designate processing time flow through TCaps.

subsystems delegate and activate each other. In this example,

the center subsystem is activated only by requests from the

other subsystems with TCap processing-time delegations, thus

is not necessarily scheduled by the global scheduler. This

enables systems to accurately account for the time spent

in processing the requests in the center subsystem to the

surrounding subsystems.

TCaps use a combination of cycle-accurate budget tracking,

one-shot timers, capability-controlled budget delegation, and

priority tracking using an information flow tracking-like [4]

system. Each TCap includes a budget of processing cycles.

Schedulers charged with making fine-grained CPU manage-

ment decisions can delegate time to a subsystem, thus enabling

it to manage a slice of processing time, or use it to process a

service request. TCaps decouple the conventional fine-grained

scheduling of threads, from the temporal guarantees made

between various subsystems. In managing these flows, TCaps

enable preemption decisions to be conducted based on all

involved schedulers.

II. BACKGROUND AND RELATED WORK

TCaps employ budget, scheduling, and priority mecha-

nisms that superficially resemble those in existing systems.

The differences that we discuss here, though subtle, have a

profound impact.

Scheduling contexts [5]. Scheduling contexts (SCs) in Fi-

asco.OC are kernel-level objects that provide an abstraction

of processing time accessible through capabilities. SCs can

be created and modified through the system call interface

and are dependent on the kernel-level scheduler configured

at compile-time. Each SC encloses a scalar priority value

that is kernel-level scheduling policy dependent. Interrupts can

trigger SCs based on a scalar priority and the processing time

is accounted to these SCs. In contrast, TCaps are a kernel

mechanism that enables user-level scheduling by allowing

individual schedulers control over timer notifications within

their TCap-provided time-slice. Each TCap encloses a non-

replenishable processing time and tracks priorities for each

scheduling policy involved in the delegation path. TCaps

preemption decisions for interrupts and asynchronous notifi-

cations are based on priorities of all the subsystems involved

in a delegation path, thus considering the scheduling policies

spread across multiple subsystems. TCaps also allow inter-

subsystem service requests (i.e. for I/O) to account for pro-

cessing time in interrupts and device drivers to subsystems

that make the service request for I/O.

Budget management. Budget servers enable the rate of com-

putation to be constrained, thus providing varying temporal

guarantees. We refer to these as rate-based servers as they

constrain the rate of execution of windows of time. Rate-based

servers are used in flattened hierarchical scheduling [5] in Fi-

asco.OC by attaching SCs to vCPUs subject to replenishment

rules, RTXen [6], and Quest [2].

These rate-based servers are subject to both global schedul-

ing and replenishment policies. This places the burden on each

scheduling policy to convert its own priority into the kernel’s

version of priority, and to use implicit replenishments appro-

priately. We find that there is a semantic gap between these

global policies, and the needs of systems with coordinating

subsystems. For example, the interference caused by network

interrupt execution can be controlled by executing them in a

server [2], [5]. However, choosing the budget and replenish-

ment is choosing between conflicting goals: smaller utilization

lessens interference and is necessary for predictability, but

might prohibitively constrain best-effort throughput. Better is

to always execute those interrupts with a controlled processing

share delegated from the best-effort subsystem at the time of

service request. However, this is difficult if VMs don’t share

both identical scheduling policies and thread priorities. Though

others have investigated priority inheritance for interrupts

based around which tasks are requesting service [2], what is

required is a form of budget inheritance, but that is difficult

given the wide variation in interrupt rates, and I/O request

rates. In Section VIII-E, we demonstrate the difficulties of

choosing static budgets to satisfy both real-time constraints,

and effectively manage best-effort throughput.

Concretely, the difference in mechanism between [2], [5],

[6] and TCaps, are that (1) TCaps are a simple slice of

time and do not have a replenishment period, and (2) TCaps

track the priorities for each scheduling policy involved in the

management of the time, instead of flattening priority for

a single policy. The former enables transient delegations of

time with a single finite amount of interference that matches

activations of other schedulers (as in hierarchical scheduling),

or functional request-based delegations where a finite amount

of work will be done in the “server” subsystem. The latter

enables the controlled coordination between subsystems with

different scheduling policies, and different notions of a given

computation’s priority. This, for example, enables interrupts to

be properly scheduled even in a hierarchical system including

both fixed priority, and EDF schedulers.

Rate-based servers are a strong abstraction to provide an

upper bound on a thread’s execution. However, TCap budgets

and delegations are a better fit for the fine-grained coordination

required in a loosely coupled system. TCaps generalize rate-

based allocations by using TCap-based servers that make

delegations in accordance with replenishment policies.

Inter-protection domain interactions. When harnessing the

functionality of another subsystem, passing budget and priority

via synchronous Inter-Process Communication (IPC) [7], [8]

has a number of complications: 1) asynchronous execution

(i.e. for device driver execution during interrupt processing)

cannot use a scheduling context that is transient, and 2) timing

irregularities in the server directly impact timing and budgets

of the client. TCaps differentiate between inter-subsystem

dependencies that imply relatively a strong trust relationship,

and those that require a weaker temporal coupling. For the for-

mer, Composite uses thread-migration-based IPC [9] where

server execution uses the same scheduling context as the

client. With the latter, subsystems interact in Composite using

asynchronous notifications and TCap delegations.

Existing systems typically focus on priority inheritance on

synchronous invocations (e.g. system calls [2], IPC [7]) where

each protection domain shares a notion of priority. Priority in-

heritance on IPC between subsystems that each define separate

scheduling policies or mappings between computations and

priorities is more challenging. TCaps track the priority of all

schedulers that delegate a slice of time, and makes preemption

decisions based on all priorities to avoid undue interference.

User-level scheduling. The µ-kernel system design philosophy

is based around a notion of system minimality in which only

those system services that must be in the kernel, are imple-

mented there [10]. Systems have successfully exported most

necessary system-level services to user-level such as virtual

memory management [10], kernel memory management [11],

and device drivers, often with very little overhead. However,

processing time management, though going through a large

amount of turbulence [7], [12], [13], [11], [5], [14], is still

implemented as a kernel-resident policy.

Providing user-level control over scheduling policy was

proposed by Elphinstone et al. [11] as one of the long-

standing problems in µ-kernel construction. Composite has

long enabled the user-level customization of scheduling [15].

That work used shared memory regions between user-level

schedulers and the kernel, so that the kernel could refer-

ence thread priorities to make scheduling decisions. Unfor-

tunately, the asynchronous access of user-level schedulers and

the kernel to these regions led to complex, inefficient, and

buggy code. TCaps provide comparable functionality and

provide the foundation for distributed scheduling with both

fine-grained user-level control, and kernel-assured allocation

guarantees.

CPU Inheritance Scheduling [16] provides a processor

scheduling framework in which arbitrary threads can act as

schedulers for other threads. However, their work requires

traversing unbounded scheduler hierarchies and often multiple

inter-process context switches for each event (interrupt, timer).

In contrast, TCaps enables direct interrupt delivery, timer

interrupt notification to any scheduler subsystem, and inter-

subsystem coordination with delegations that strictly limit the

scope of interference.

Composite features user-level scheduling that counter-

intuitively provides overheads less than those for monolithic

systems such as Linux (see Section VIII-B), and TCaps en-

able efficient and predictable, kernel-based interrupt schedul-

ing based on the priorities assigned by all relevant user-level

schedulers.

III. TCAP SYSTEM MODEL AND DESIGN

To understand the relationship between TCaps, scheduling

in different subsystems, and thread execution, we introduce

a simple model. A system is a composition of multiple

subsystems, sx ∈ S, that we treat as the principals of the

system (consumers of time). A scheduler in each subsystem

is responsible for managing the computational resources of

all threads that execute within that subsystem, and of all

subsystems that leverage its scheduling services. Conventional

examples include VMs, hierarchical scheduling systems [17],

and separation kernels [2]. A TCap must be active at all

points in time, and all processing time (measured in cycles)

is accounted to the active TCap. Each thread’s execution is

associated with a TCap dynamically by dispatching between

both threads and TCaps.

Each subsystem sx has capability-controlled access [3] to a

set of TCaps, T x = {tx
1
, . . . , txn}.

A. TCaps Budget

Each TCap, txn, has a budget, Bx
n, which is the scalar size of

the slice of time it provides to it’s subsystem, in cycles. This

budget is expended via thread execution. Delegation enables

time to be transferred from one TCap to another through

asynchronous end-points, often across different subsystems.

When b time units are delegated from txn to tym, the natural

adjustments to budget are performed:

Bx
n = Bx

n − b
By

m = By
m + b

(1)

The budget in a TCap is not replenished by the system, and

instead must be delegated by another TCap.

A single TCap we call Chronos, tc, in a trusted subsystem,

sc, has Bc = ∞. Once all other TCaps have expended

their budget, tc is activated, and it delegates appropriately to

replenish budgets. Since this replenishment is programmatic,

the amount of replenishment for each TCap can vary over

time.

B. TCaps Quality

Each TCap, txn, has a quality, Qx
n, which denotes a metric

of the importance of the TCap’s time. Qx
n is a set of priorities

for each subsystem, Qx
n = {pxn, p

y
n...}. A subsystem assigns a

scalar priority to each of its TCaps using its own semantics.

A TCap’s quality includes the priority of each subsystem that

has (transitively) delegated budget into txn. Lower numerical

values of pxn designate a higher quality.

The “higher quality” relation on TCap (≻) is used to make

preemption decisions. An asynchronous event (asynchronous

send, or interrupt) that activates txn should preempt execution

of the current thread using tym if and only if Qx
n ≻ Qy

m. Quality

is not used to determine which TCap to execute at all points

sp

sh

sm

sl

B

sp

L

sl

tl

3
-
-
1

thM

1
1
-
-

sh

sm

t
m

0

t
m

1

N

2
-
1
- 0

-
-
-
-

0
-
-
-

∞
tp

3

2

1

sp

L

sl

tl

3
-
-
1

th

1
1
-
-

sh

sm

t
m

0

t
m

1

N

2
-
1
- m

1
0
0
-

0
-
-
-

∞
tp

0

M'

sp

sl

tl

3
-
-
1

sm

t
m

0

t
m

1

N

2
-
1
- n

3
0
0
2

0
-
-
-

∞
tp

th

sh

M'

2

L' n = m + l

M' = M - m L' = L - l

sx

S
u
b
s
y
s
te

m
,
s

x

1
1
-
-

TCap, tx
n

tx
n

(a) (b) (c)

Fig. 2: TCap example. TCap structure is shown on the left, including the array Qx
n with a priority entry for each of the subsystems,

S = {sp, sh, sm, sl} (the parent, high priority, medium priority and low priority subsystems), and budget B. The system includes five
TCaps. The priority each subsystem has control over is bolded for clarity. The dashed arrow indicates an interrupt attached to TCap tm1 .
(a) The parent (sp) delegates L budget at priority 3 (lower value = higher priority), N budget at priority 2, and M budget at priority 1, into
sl, sm and sh, respectively. (b) sh delegates m cycles into tm1 in sm with priority 0. (c) sl delegates l cycles into tm1 in sm with priority
2, which degrades the quality of tm1 .

in time – it is not used to make scheduling decisions – so it

is not necessary for it to define a total order between TCaps.

Qx
n ≻ Qy

m , ∀
sz∈S,pz

n∈Qx
n,p

z
m∈Q

y
m

pzn ≤ pzm (2)

Note that it is possible that neither Qn ≻ Qm nor Qm ≻ Qn.

In such a case, two system schedulers disagree on the relative

importance of the time associated with a TCap. A fundamental

goal of TCaps is to ensure that the delegation of a local

priority limits the interference of the delegated budget on local

threads. Thus, a preemption is made only if all schedulers

agree that a preemption should be made.

To prevent undue interference upon delegations, the quality

of the delegation is degraded to the lesser priority for each

subsystem:

Qx
n ⊔Qy

m ,
⋃

∀sz∈S pz
n∈Qx

n,p
z
m∈Q

y
m

max(pzn, p
z
m) (3)

Equation 3 ensures that temporal priorities for a specific

scheduler in a subsystem are maintained, and used in pre-

emption decisions across transitive delegations. This is similar

to how labels are tracked in distributed information flow [4]

systems. The combination of Equations 2 and 3 leads to an

important TCap property: local subsystem priorities have a

global impact on preemptions.

C. TCap Usage Example.

Figure 2 depicts a simple system with four subsystems

interacting in a simple delegation pattern. Figure 2(a) shows

a parent delegating time to children, and Figure 2(b) shows a

inter-child delegation (e.g. to accompany a sh request for I/O

from sm). The implications of the assignment in (a) include:

(1) sm is given a lower sp priority (higher numerical value)

than sh, an asynchronous send to it would not preempt sh

execution (i.e. tm
0
6≻ th); (2) the depicted interrupt to activate

execution associated with tm
1

would not cause a preemption

as Bm
1

= 0; and (3) if these delegations were made every

T = M + N + L cycles, the utilization of the subsystems

would be M/T for sh, N/T for sm and L/T for sl.

After the inter-child delegation in Figure 2(b), in which sh

delegates m cycles into tm
1

to be used for I/O processing

on its behalf, interrupts associated with tm
1

will preempt all

execution in sm (tm
1
≻ tm

0
) and sh (tm

1
≻ th), but not sp

(tm
1
6≻ tp). This inter-child delegation in (b) shows that sm can

preempt the execution in sh for m cycles. This is significant

because conventional prioritization (from the delegations in

(a)) would never let sm preempt sh. sh limits the interference

that sm can have on its own threads by carefully choosing

m in accordance with the execution required for satisfying

the I/O request in sm. Note that any of sp, sh, sm and sl

could – through delegations and re-prioritizations – prevent

tm
1

from preempting a subset of their threads, thus effectively

integrating the timing of execution in another subsystem with

their own for a time-slice as specified through the delegation.

This example demonstrates the ability of TCaps to enable

fine-grained coordination between subsystems, while main-

taining scheduler-local guarantees on limited interference.

Even though sp isn’t involved in the delegation in (b), its

timing constraints are still abided by in that only M cycles

execute at its priority 1 every T cycles.

Figure 2(c) demonstrates subtle implications of delegations.

Inter-child delegation from sl to tm
1

after (b) degrades the

quality of tm
1

for n = m + l cycles. sl delegates l cycles

with lower sl priority than tl to tm
1

so that tm
1

cannot preempt

sl (tm
1
6≻ tl). The sp priority in sl is the lowest among all

TCaps, so an implication of this delegation is that tm
1

inherits

this low priority. Due to this, it cannot preempt any subsystem

including sm (tm
1
6≻ tp, tm

1
6≻ th, tm

1
6≻ tm

0
). All of this time

(n) is degraded in quality (even that which wasn’t derived

from sl) which demonstrates the design of TCaps: quality is

pessimistic, but guarantees that any delegating subsystem can

upper-bound the interference the delegated time can have on

it. Unfortunately, delegations from different subsystems have

negatively impacted the overall quality of the TCap. Thus, an

important design constraint for systems where this is undesir-

able (for example, if they have isolation requirements between

I/O requests from different subsystems) is to use different

TCaps to receive delegations from different subsystems. Thus,

TCaps are paired tightly with a protection medium (such as

capabilities in Composite) that control which TCaps a given

subsystem has permission to delegation to.

TCaps are an access-control layer that interpose on

all scheduler operations and asynchronous communication.

TCaps fundamentally decouple the allocation of processing

time, and the consumption of time in a subsystem. This de-

coupling enables the distribution of the scheduling guarantees

throughout the system while maintaining fine-grained control

in schedulers. They provide isolation by limiting the amount

of computation each subsystem can have, and limiting when

each subsystem can cause temporal delays (preemptions) in

another via ⊔ and ≻.

We’ve avoided discussing the scheduling details of any

specific subsystem. Which threads consume a subsystem’s

TCap at any point in time, is a policy decision within that

subsystem and is, by design, orthogonal to the inter-subsystem

guarantees that TCaps provide.

IV. TCAPS EXAMPLES AND GUARANTEES

A

BC

D

A

B
Chronos

Applications

VM0

Global Sched

VM1

Fig. 3: TCap usage examples. Darkest gray is TCaps, and its arrows
indicate temporal flows through delegation. Black arrows indicate
control flow, and dotted arrows are interrupts.

By focusing on the collaboration and control of time

between multiple subsystems, TCaps enable a variety of

relationships between subsystems. The pattern of delegations

that determines the flow of time through the system provides

a number of trade-offs and design points. For example, budget

delegated to a subsystem can derive from subsystems of

varying levels of assurance, the granularity and priority of

delegations impacts the recipient subsystem’s interference, and

which subsystems are charged with managing which threads

and interrupts has a significant impact on their activation

latency. Figure 3 depicts two virtual machines each having

multiple applications, an application at the same level as

the VMs, and a global scheduler. The VM1, receives time

delegations (e.g. for I/O computation) from the VM0 and

the application. Chronos that inserts time into the global

scheduler and VM0. We use Figure 3 as a means for describing

various conventional system structures in the following.

Global Scheduling. Conventional system design uses a single

subsystem with a kernel scheduler to manage system time.

Analogously, the global system scheduler makes delegations

and transfers control to subsystems in Figure 3 B .

Separation Kernel. Separation kernels [2] seek to provide

strong isolation between different subsystems by partitioning

resources between them and minimizing the Trusted Comput-

ing Base (TCB) they rely on. This strictly controls information

flow thus limiting attack surface, and provides strong temporal

isolation. TCaps can be used by sc to mimic a cyclic executive

in which a static, table-driven schedule is emulated. The sc

delegates from tc into each subsystem (Figure 3 in C),

and transfers control to the last. Subsystem switches occur

only when their budgets are expended, triggering the next

subsystem, and sc is activated once all budgets are expended

(as Bc =∞). Devices are partitioned across subsystems, and

interrupt threads are given priorities via delegations from sc

such that no subsystem can preempt another.

c o n s t i n t n s u b s y s = 2 ;

c o n s t i n t b u d g e t s [n s u b s y s] = {ms (3) , ms (5)} ;

c o n s t i n t p r i o [n s u b s y s] = {2 , 1} ;

whi le (1) {
f o r (i n t i = 0 ; i < n s u b s y s ; i ++)

d e l e g a t e (tc , i , b u d g e t s [i] , p r i o [i] , i == nsubsys −1);

}

Fig. 4: Chronos management code for guaranteeing specific rates
to two, static separation kernel-style subsystems. The last argument
is if the delegation should yield.

Figure 4 shows sc’s code that delegates 3 and 5 milliseconds

of execution to two subsystems. The execution guarantee

made to each subsystem is 3 and 5 milliseconds every 8

milliseconds, and the priorities guarantee that neither subsys-

tem will preempt each other. Consistent with the separation-

kernel philosophy, this minimal amount of trusted code ensures

a strict partitioning by completely eschewing fine-grained

scheduling between subsystems.

Hierarchical Scheduling. Hierarchical scheduling sys-

tems [18] (HSS) form a parent-child relationship between dif-

ferent subsystems. Any given parent subsystem, appropriately

delegates and activates its child subsystems. These delegations

can be made for a small portion of time commensurate with

a single time-slice, thus enabling the parent to completely

control the granularity of timer ticks for each subsystem. Each

child might itself be a parent to a further layer of children as

shown in Figure 3 with delegations of B and D . When

a child subsystem is idle, it can delegate the remaining time

back to its parent.

Virtual Machines. Virtual Machines (VMs) are a restricted in-

stance of HSSes, and the same techniques are used. However,

practical VM systems such as Xen [6] create dependencies

between different VMs. Most notably, Dom0 is a trusted VM

in charge of multiplexing I/O (VM1 in Figure 3). It receives

asynchronous requests for service from other VMs. TCaps

enable VMs that make functional requests via virtual device

drivers to Dom0 to also delegate the time for the request’s

processing. The execution in Dom0 on behalf of a VM is

conducted with that VM’s time, thus properly accounting for

that asynchronous execution. In Figure 3, the system scheduler

provides time to VMs (B), and they make requests and

provide TCaps for the I/O requests via A .

Generality across scheduling policies. Scheduling policies

are implemented in user-level logic, thus allowing arbitrary

scheduling policies. However, asynchronous activations be-

tween subsystems, and interrupts vectored to subsystems use

the TCap priority which is a single scalar value (for each

subsystem). We implement this value as a 64-bit unsigned

integer. TCaps, then, supports scheduling policies that can

compress pairwise scheduling decisions into a single, large,

uni-dimensional namespace. Fixed priority schedulers trivially

satisfies this constraint, and UNIX timesharing schedulers lin-

earize thread priorities into “nice” values. Dynamic scheduling

priorities such as Earliest Deadline First (EDF) can also be

trivially expressed by treating the priority value as a timeline,

and setting the priority of a thread to its deadline on that

timeline. This enables proper scheduling of event-triggered,

dynamic scheduling policies.

V. CAPABILITY-BASED OS INTEGRATION

Modern µ-kernel systems such as Fiasco.OC [5] and

seL4 [11] protect access to system resources through

capability-based access control. Access control policies define

which operations a principal can perform on each system

resource. These µ-kernel’s capability systems focus on ab-

stractions for memory, execution, and interrupts, and often

address time management by enabling the parameterization

of the fixed scheduling policy [8]. This often includes the

mapping of scheduling policies into a global fixed priority

namespace [5].

We implement TCaps in the Composite component-based

OS [3]. Composite has a small number of simple abstractions

that are all accessed through a capability-based kernel API.

Capabilities are unforgettable tokens whose ownership denotes

that specific operations can be performed on system resources.

Components host user-level execution and are a collection

of a capability table and page-table. All system resources

are accessed through those tables, thus components provide

a unit of isolation and their capabilities constrain the scope

of resource accesses. Among the kernel resources accessed

via capabilities are TCaps, components, threads, invocation

end-points, and asynchronous coordination end-points (both

for send and receive).

The Composite kernel does not have a scheduler. Instead,

the system uses user-level, component-based schedulers for

thread and interrupt scheduling, and TCaps for coordination

between them. To enable user-level scheduling, the kernel

provides a naive dispatch functionality in which any scheduler

that has a capability to a thread can switch to it, even if it is

executing in a different component.

Asynchronous end-points enable coordination between

components, while loosely coupling their execution. They

consist of a send end-point, attached to a receive end-point.

The latter is associated with a thread to functionally handle the

activation, and a TCap that is used both for the activation’s

execution, and to determine if the sending thread should be

preempted (via ≻). Subsystems use asynchronous end-points

as targets to delegate time from one of their TCaps, to

the other subsystem’s receive end-point’s TCap using ⊔ and

budget transfer (Section III-B). This enables subsystems to

both trigger events in each other – for example, child scheduler

activation, or issuing a service request – and transfer budget

for the subsequent processing. Interrupts in the kernel trigger

asynchronous sends to a receive end point, thus enabling user-

level interrupt processing1.

A. Delegation and Revocation

Delegation is performed on an asynchronous send end-

point by transferring budget and updating quality. Capability

systems usually provide some means for revocation – the

removal of access to resources that were previously delegated.

This process is often recursive [10], with transitive delegations.

Perhaps unexpectedly, TCaps do not support revocation of

previously delegated time. This is an important part of the

system design as it enables the flow of time to be complex, and

between mutually distrusting subsystems. Importantly, once

a subsystem has been given a delegation, it has a guarantee

of the full associated budget. Instead, TCaps enable limited

budget delegations, and only degrade the quality (via ⊔) with

each delegation. This is inspired by distributed information

flow systems [4] that accumulate taint with delegations to

provide confidentiality, while TCaps use ⊔ to constrain

subsequent preemptions. The fundamental goal is to bound

the interference from a subsystem that is delegated budget

from another. The budget obviously limits execution, but the

quality is important as it limits preemptions. For example, a

global scheduler (Figure 3) making delegations to children

(B) associates those with different priorities to prevent undue

control-flow switches into the lower-priority subsystem.

VI. TCAPS IMPLEMENTATION

A. User-Level Scheduling

Syscall Description

τ = thd create(fn) Create a thread executing fn
r = rcv create(τ,tcap,r′) Create a receive end-point
s = snd create(r) Create an async send end-point

switch(τ, tcap, p, t, r) Switch to a thread, execute using a tcap
snd(s) Send a notification to a rcv EP
(τ, cyc, blk) = rcv(r) Receive a notification, possibly blocking
hw attach(hw cap,isr#,r) Connect an ISR to a receive end-point

TABLE I. A summary of Composite system calls [3] for creating
and modifying threads (τ) and asynchronous send (s) and receive (r)
end-points (EPs). p, b, t are the priority, budget, and absolute timeout,
respectively. Receive end-points retrieve events for the end-point, and
for scheduling events. τ , and cyc are the thread that had the event,
and the number of cycles it asynchronously executed, respectively.
hw attach connects execution of an ISR to activation of the thread
associated with a receive end-point using the associated TCap.

1 We use “interrupt processing” to refer to user-level interrupt processing.
The “top-half” execution of the interrupts is in the kernel and includes only
interrupt service routine processing, ≻ calculation, and possibly preemption.

asnd ep

rcv ep

TCap

Fig. 5: TCaps data-structures, and their relationships. Solid arrows
indicate the thread and TCap associated with a receive end-point.
Dashed arrows show the connection between an asnd and rcv end-
points. Dotted arrows indicate the scheduler thread/TCap.

Table I summarizes the relevant aspects of the Compos-

ite system call API. Component schedulers use switch to

dispatch to a thread while activating a TCap whose budget

will be consumed. snd and rcv form the basis of asyn-

chronous notification in Composite and are complementary

to synchronous thread migration that is the main form of

IPC. Threads can suspend using rcv, awaiting a snd. A snd

triggers ≻ calculation to determine if a preemption should

occur for the thread associated with the receive end-point.

Interrupts (including IPIs) are implemented as snd calls from

the kernel interrupt handler which are attached to receive end-

points using hw attach.

Receive end-points deliver snd notifications to their as-

sociated thread, but can also send scheduler notifications to

a scheduler receive end-point. A challenge in implementing

user-level scheduling is determining if preemptions should

occur, and if a thread blocks awaiting a notification, which

thread to execute next. Thus, a call to rcv can trigger the

execution of a per-subsystem scheduler thread. To support

this, rcv create takes another receive end-point (r′) as an

argument which is the scheduler’s thread receive end-point.

This explains why the rcv system call can return a thread τ ,

blk, and cyc. The scheduler thread will receive these values

to determine if thread τ is blocked or not (blk), and if it is,

how long it executed before blocking (cyc).

Figure 5 depicts the kernel’s data-structures and their rela-

tionships. A receive end-point in the “child” subsystem on the

left is activated (and possibly delegated to), which switches

to its thread and TCap. When that thread does a rcv, the

scheduler’s thread associated with its receive end-point is

activated which can dispatch between any of the four threads

in its subsystem. Once it chooses to go idle and executes

rcv, its parent scheduler in the parent subsystem on the right

would be activated. If the parent wishes to reactivate the child

subsystem’s scheduler, it can use its asnd end-point to do so,

possibly with a delegation of time.

Component schedulers use a combination of switch,

and notifications from rcv to maintain their own data-

structures and thread execution accounting. Schedulers coor-

dinate through send and receive end-points by delegating time

to each other as appropriate which will only cause control

flow changes if TCap quality deems it so (≻). Interrupts are

Syscall Description

tcap = tcap create() Create a new tcap
tcap delete(tcap) Deallocate a zero-budget TCap
delegate(tcap,s,p,b,yield) Delegate via asynchronous channel
transfer(tcap,r,p,b) Transfer budget tcap → r.tcap

TABLE II. TCap operations. Budget (b) is transferred between
TCaps, at specific priorities (p). Delegation is performed over an
asynchronous notification channel (s), to a receive end-point (r)
associated with a TCap (r.tcap). The associated thread is switched to
if either it has a higher quality (via ≻), or if yield is true. Transfer
enables a scheduler to transfer time between its own TCaps. Both
delegation and transfer implement ⊔.

vectored into subsystems, and cause preemptions based on

TCap quality.

B. TCap Interface

Table II shows the TCap interface. A TCap can make

delegations to a send end-point that will perform both a

budget transfer with a priority p via ⊔, and make a preemption

decision via ≻. The yield flag is used to immediately switch

to the receiving thread, and is commonly used by schedulers

that want to unconditionally execute a child subsystem. This

function targets a send end-point so that the receiving sub-

system controls which TCap will gain budget. This enables

loosely coupled subsystems to transfer time, while still control-

ling their own TCaps and execution. Alternatively, within a

scheduler, a transfer via ⊔ from one TCap to another can be

made by directly addressing a receive end-point. This enables

subsystems to maintain multiple TCaps– for example, to

receive delegations from other subsystems, yet to still balance

budget between them.

C. Computing and Comparing the Quality of Time

Each TCap is implemented in the kernel with a cycle-

accurate budget tracked using the processor’s cycle counter

retrieved with rdtsc. Modern Intel x86 processor’s cycle

counter are “Constant TSC”s which are supported on all

Haswell and later processors. These progress at a constant

rate independent of the processor frequency, or sleep state.

The quality, Qx, for a TCap must be implemented in a

manner that enables efficient implementations of delegation

(⊔) and comparisons (≻) to determine if a preemption should

occur. This is particularly important in Composite as the

kernel is non-preemptive. Composite is a real-time system,

thus every path in the kernel must be bounded and fast (i.e.

no unbounded loops, no recursion) [3]. The implementation of

delegation – Qa ← Qa⊔Qb – requires that each subsystem in

Qa is compared against the same subsystem in Qb, and any

subsystems not present in Qa are added from Qb. Determining

preemptions – Qa ≻ Qb – requires that each subsystem in Qa

is compared against the corresponding subsystem in Qb. Both,

if implemented naively, take O(N2) as pair-wise subsystem

comparisons are required.

In Composite, we implement both efficiently (1) by using

an array in the TCap to store the (subsystem, priority) pairs to

optimize cache locality, and (2) by ensuring that they are sorted

by a unique subsystem identifier to ensure that both operations

are O(N). Delegation simplifies to an algorithm similar to

merging two sorted arrays, and determining preemption is a

process of iterating two cursors through each array, comparing

priority when a similar subsystem is found.

D. Temporal Faults and Chronos

When budget runs out, TCaps must determine what thread

and with what TCap execution should continue. This is

the only instant when TCaps must make what might be

considered a scheduling decision. The intention is that it is

almost never triggered as the fine-grained, component-based

scheduling should adhere to the execution requirements of the

system codified in TCaps.

However, to ensure the TCap guarantees are respected, a

TCap with no budget must discontinue execution. First, the

system checks if it can switch to the TCap’s scheduler thread

(i.e. the scheduler’s TCap has budget). Otherwise, all TCaps

with budget are tracked in a list ordered LIFO with respect to

delegations, and the TCap at the head’s scheduler is activated.

Eventually, all TCaps will run out of time, and Chronos will

be activated.

E. Scheduler Control over Timeouts

Timer management in Composite must consider TCap

budgets to maintain temporal isolation, but should also en-

able user-level schedulers to control the frequency of timers

for their computation. The frequency of timers can have

a significant impact on system throughput and latency [6].

TCap budgets provide one means of controlling timeouts

as when a TCap’s budget expires, its scheduler thread is

notified (Section VI-D). However, using this as the sole means

for controlling timer notifications is inefficient and prone

to scheduler race conditions. It is inefficient as it requires

transfers in addition to switchs, thus doubling the system

calls required to dispatch to a thread. It is prone to races as

preemptions between the transfer and the switch can lead

to arbitrary computation in the mean time, thus requiring re-

calculation of when the timer should fire.

The TCaps API in Section VI-A passes a timeout parameter

to switch. Timeout is specified on an absolute timeline (i.e.

not relative to the current time), thus removing the possibility

for any races and simplifying scheduler implementation. Two

special cases must be considered. First, if the timeout is past

when the TCap’s budget will expire, the budget expiration

is used for the timeout instead. Second, a preemption can,

at worst, lead to a timeout being specified for a time in the

past, which the kernel will return as an error (EAGAIN). The

priority argument to switch is comparably motivated. Instead

of requiring a transfer to change the priority of a thread’s

execution, it can be passed as an argument and is used for that

TCap only during that thread’s execution.

The kernel uses architectural one-shot timers that are repro-

grammed when threads are dispatched or activated due to a

snd. We have experimented with High Precision Event Timers

(HPET), Local Advanced Programmable Interrupt Controller

(LAPIC) one-shot mode timers, and the newer LAPIC TSC-

deadline mode. These timers have trade-offs in programming

time and precision. We found that on our machines, the HPET

takes more than 10 µ-seconds to program, while both LAPIC

methods take on the order of 100-400 cycles. One-shot timers

have an internal clock and the kernel must transform a user-

level specified timeout into that clock’s domain. This has the

impact of making timeouts more coarse-grained (on the order

of µ-seconds), and requiring expensive calculations on thread

dispatch. Thus, when it is architecturally available, we use the

TSC-deadline mode which enables timeouts to be specified at

a cycle granularity.

The overhead of programming the LAPIC methods does

have a non-negligible overhead. The switch operation without

reprogramming the timer is almost 70% faster than when

it is programmed. Thus, we enable user-level schedulers to

avoid that cost when possible, ideally once per actual timer

interrupt. Schedulers can pass in a special value for the timeout

which maintains the previous timer’s programming when not

switching between TCaps.

F. Intra-Subsystem Resource Sharing

Predictable resource sharing protocols limit priority inver-

sion when a low-priority task mutually exclusively holds a

resource that is contended by a higher-priority task. Though we

omit details here, this is supported with TCaps by using such

support in user-level schedulers while inheriting the TCap of

the contending thread.

G. Multi-processor Considerations

This paper focuses on a single core’s computation. TCaps

are intrinsically a per-core, partitioned resource; processing

time cannot generally be transferred between cores. Extending

to multiple cores is beyond the scope of this paper. Even if lim-

ited to only a single core, the current results are useful given

embedded system’s difficulty in achieving predictable behavior

out of multi-core machines. For example, the FAA [19] cites

significant difficulties in certifying multi-core systems and

limits systems that require strict isolation between untrusted

subsystems to uni-processors.

VII. VIRTUALIZATION SYSTEM DESIGN

To evaluate TCaps, we implement a virtualization system

that shares much of its design with Xen [6]. As with Xen,

we segregate device drivers into a more trusted domain that

communicates with the other VMs in the system via virtual

device drivers. We will adopt Xen’s terminology and refer

to the device driver domain as “Dom0”, and the application

VMs as “DomU”. Xen does not account Dom0 execution

to the DomU for which Dom0 computes, and it executes

Dom0 effectively with high priority when it handles I/O

and interrupts. A separate global scheduler multiplexes the

CPU between the VMs (as in Figure 3 B), while Chronos

delegates to it. DomUs request I/O through their virtual drivers

to Dom0 using snd calls, and a large shared ring buffer per

communication direction that is used to pass data between

Operation Composite Linux

Round-trip IPC 787, 3664 pipe RPC:8678

switch 365, 2708 yield:1157
switch, set timer 418, 2734

switch, inter-pgtbl 542, 3778

asnd + rcv 770, 5332 pipe:3233

scheduler activation 321, 504

timer activation 881, 2608 sigalarm:7331

delegate 786, 7480 pipe:3233

TCap preemption calc. (≻) 70, 616

transfer (⊔) 562, 4276

TABLE III. Composite kernel operations measured in cycles (2738
cycles = µ-second) – Average Costs, Worst-Case Measured Time
(WCMT) and Average costs for Linux operations.

VMs. We will call this system cosXen as it is, in some ways,

a port of the Xen architecture to Composite with the main

design changes being that all our scheduling is user-level, and

the use of TCaps for coordination.

TCaps are integrated by delegating time along with the

functional requests from each of the DomUs to Dom0 (as

in Figure 3 A). Dom0 maintains a TCap for each DomU

that requests service, and it uses those TCaps to also handle

interrupt processing. In this way, the end-to-end I/O processing

due to asynchronous communication with Dom0 is accurately

accounted to the VMs requesting that service all the way down

the interrupt processing. The system scheduler is not involved

in such delegations, and Dom0 does not need to trust the VMs

making requests and providing execution budget. We call this

second version of the virtualization system cosDist as the flow

of time is distributed between VMs.

VM implementation. We build our virtualization platform

on Composite and Rumpkernels [20]. Each VM, and the

system scheduler are all implemented as separate subsystems

in Composite. They are based on NetBSD and consist of the

following changes: (1) virtual memory support is removed

as the application is co-resident with the kernel services, and

(2) scheduling, synchronization, and memory management are

removed from the kernel, and provided by a library instead.

Rumpkernels have multiple back-ends including those that

execute in kernel-mode on the bare-metal.

We re-implement the library for scheduling, synchroniza-

tion, and memory management to use the Composite prim-

itives. Notably, the scheduling of application threads, kernel

threads, and interrupt threads (i.e. software interrupts) are re-

implemented to use TCaps. Device drivers are those provided

by NetBSD and are used unmodified. We create a cnic

pseudo-device sends packets between Dom0 and each VM. It

includes a shared-memory ring-buffer for passing data between

VMs, and a set of send and receive end-points that are used

to trigger notifications and pass time (in cosDist).

VIII. EVALUATION

All evaluations of TCaps are performed on a system with

an Intel Core i7-2600S processor running at 2.80 GHz with 4

GB of memory (less than 800MB are used in the Composite

cases). Only a single core is enabled in each test. The system

has an Intel 82579LM Gigabit NIC directly connected to

clients generating workload over a Gigabit Ethernet and we

are using NetBSD version 7.99.17 in Rumpkernels for device

drivers.

A. Complexity

TCaps form the basis for time management in Composite,

and are fundamental in making temporal guarantees. It is

important that this foundation is relatively simple. Though

an imperfect metric for complexity, the Composite kernel is

less than 7,500 lines of code, of which TCaps operations are

300. We believe this, along with a minimal Chronos, is small

enough to have high confidence in the system.

B. Microbenchmarks

Table III evaluates the efficiency of each of the constituent

TCap and time management operations, compared versus

typical Linux operations, where applicable. Each of these costs

is the result of averaging over 1 million different executions

along with Worst-Case Measured Time (WCMT) costs for

Composite kernel operations.

Discussion. Composite is an optimized µ-kernel, so it is

no surprise that its communication primitives are efficient.

Importantly, the dispatch overhead for the system, even though

it necessarily involves a system call, does not appear to

be prohibitive. TCap operations also seem relatively well

optimized and delegate, which can also trigger control flow

transfer, demonstrates relatively high performance compared

to Linux pipes that don’t transfer time. All TCap operations

involve priorities from 3 subsystems. The WCMT costs for

each operation is measured with a cold cache. We have

observed occasional spikes in WCMT that are consistently

around 400,000 cycles and we think they’re due to Non-

Maskable Interrupts (NMI) interference. We omitted these

from our measurements. These microbenchmark experiments

were rerun on a newer hardware Intel Core i5-6400 processor

running at 2.70 GHz with 8 GB, and all the benchmarks

were faster, but relatively similar across the different systems.

Another important detail to note is that the newer hardware

did not have the spikes of 400,000 cycles that we observed on

the older hardware and attributed to NMI interference.

C. Scalability of TCap Operations

TCap operations increase in overhead as the time is

delegated through multiple subsystems. Here we study the

impact of this on the three key TCap operations: dispatch,

transfer, and the computation of if a preemption should

occur (≻). Figure 6 plots the Average and WCMT costs of

these three operations as an increasing number of subsystems

is involved. The Composite kernel puts an upper-limit on

the number of subsystems a TCap tracks – 16 in the current

implementation – to maintain a predictable (bounded) kernel

execution time, and to simplify the allocation of statically-

sized TCap memory.

Discussion. As detailed in Section VI, the cost of each

of these operations is linear in the number of subsystems

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 50 100 150 200 250 300 350 400 450 500

%
 D

e
a
d
li
n
e
s
 M

a
d
e

Packet Rate (1,000 packets/sec)

cosDist
Dom0High
Dom0Low

Fig. 7: % Deadlines made by DLVM for
different packet rates. Packets are destined to
IOVM and with no CPUVM interference.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 1 2 3 4 5 6 7 8 9

%
 D

e
a
d
li
n
e
s
 M

a
d
e

CPU Interference (ms), Period=10ms

cosDist
Dom0High
Dom0Low

Fig. 8: % Deadlines made by DLVM in dif-
ferent systems for different CPU Workloads
from CPUVM and no IO interference.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 2 3 4 5

%
 D

e
a
d
li
n
e
s
 M

a
d
e

Dom0 Budget (ms)

cosDist*
Dom0High
Dom0Low

Fig. 9: % Deadlines made by DLVM in tra-
ditional systems for different DOM0 budgets
with a ping flood to IOVM.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

3 4 8 16

C
o
s
t

(1
0
0
 C

y
c
le

s
)

of Subsystems

Dispatch
Transfer

TCap preemption calc

Fig. 6: The scalability of TCap operations as more subsystems are
involved. errorbars are used to depict WCMT costs.

involved. dispatch, which only switches between TCaps has

a constant cost. Notably, the ≻ operator is efficient, which is

important given that it is evaluated for each interrupt.

D. TCaps and Priorities

To understand how systems handle the I/O dependency of

multiple subsystems on a Dom0, we investigated Xen. Xen

effectively gives Dom0 highest priority, and in our tests, this

could lead to livelock situations, a phenomenon we investigate

here. Some details of our Xen setup are in Section VIII-F.

To understand the impact of different priority and budget

assignments, and to understand the utility of TCaps, we

evaluate three different system configurations in Composite.

All three setups have three VMs: Dom0 that handles inter-

faces with devices on behalf of clients; a best-effort VM de-

signed both to generate interference and to test throughput; and

a hard real-time VM performing event-driven computation.

The best-effort VM is configured to either interact with Dom0

for networking I/O – we call this the IOVM – or to generate

CPU interference – we call this the CPUVM – depending on

the test we are conducting. The IOVM is running the Nginx

webserver to handle HTTP workloads. The real-time VM is

deadline-sensitive – the DLVM – and it is event-activated by a

device in Dom0 through a service request. To ensure periodic

activations of DLVM from the device so that we can best

measure the real-time responsiveness of the system, we use

the HPET timer whose period is configured to 10ms. In all

cases, a global scheduler does Fixed-Priority (FP) scheduling.

The first two system setups we study are Dom0High and

Dom0Low which rely on the global scheduler to control

all processing time allocations to each of the VMs (B

delegations in Figure 3). These two systems differ only in

their priority assignments. As Dom0 is relied on by both other

VMs for I/O services, its priority is important. In Dom0High,

Dom0 is set to high priority, DLVM to medium priority and

IOVM/CPUVM to low priority. The motivation is to give

Dom0 high priority as both DomUs require I/O from Dom0.

However, high rates of I/O traffic served by Dom0 might

interfere with DLVM deadlines. In Dom0Low, Dom0 is set

to low priority, DLVM to high priority and IOVM/CPUVM to

medium priority. The motivation is to give Dom0 low priority

to limit the impact of high rates of I/O that can interfere with

deadline completion. These setups enable us to investigate the

trade-offs that these priority assignments make with respect to

predictability and throughput.

The third system configuration we study is cosDist that

leverages TCaps to delegate time between VMs (A +

B Figure 3) – the DLVM is set to high priority and the

IOVM/CPUVM set to low priority. Dom0 receives TCap

delegations from those VMs with which to conduct its I/O.

The global scheduler also delegates to it a minimal amount of

medium priority time for its own service tasks. The HPET in-

terrupt handler in Dom0 uses a separate TCap which receives

DLVM delegations. Unless otherwise mentioned, the DLVM

is set to have a utilization of 0.5 with a pipeline of threads

that execute for a WCET of 5ms over HPET activation, and

use an implicit deadline of 10ms.

In the first experiment in Figure 7, we evaluate how all three

systems handle an increasing rate of network traffic going to an

IOVM via Dom0. To prevent the IOVM from starving Dom0

in Dom0Low, the global scheduler constraints it to a budget

of 4ms every 10ms. In this experiment, we use a UDP flooding

client to generate the configurable workload.

Discussion. The results show that with increasing packet rates,

the DLVM in the Dom0High fails to make its deadlines due to

priority inversion caused by an increasing amount of network

processing in Dom0 for the IOVM. The system does not

properly discriminate between I/O performed for the DLVM

versus the IOVM, thus suffering significant unpredictability.

.In the Dom0Low setup, DLVM makes most – but not all

– of it’s deadlines because the network interrupts, which are

processed by Dom0, cause minimal interference on the higher

priority DLVM.

The cosDist system does not miss any deadlines because

Dom0’s HPET interrupt processing is processed using the

DLVM’s budget and priority, thus preventing interference from

the IOVM, and from the interrupt paths in Dom0 for network

processing. This demonstrates the ability of TCaps to enable

the controlled distribution of budget that is properly prioritized

from application all the way to interrupt processing.

Figure 8 depicts the percent of deadlines made by DLVM

with varying interference from a CPU-bound VM. We use the

same setup as the previous experiment except that we disable

the IOVM and introduce a CPUVM that produces a budget’s

worth of interference on lower priority subsystems.

Discussion. Contrary to the previous experiment, DLVM in

Dom0High is now able to meet all deadlines as neither it

nor Dom0 suffers any interference. Similarly, cosDist avoids

any priority inversion as all processing in the I/O path for

the DLVM is properly prioritized and budgeted. However, the

DLVM in Dom0Low misses all of its deadlines once the CPU-

bound interference on low-priority Dom0 prevents it from

processing the HPET activations in time.

E. TCaps and Budget

A conventional technique for constraining high-priority

interference is through rate-based servers. As discussed in

Section II, choosing a budget for Dom0 can be difficult.

On the one hand, a large budget can still cause significant

interference, while on the other hand, a small budget can stifle

throughput. In this section, we attempt to meet deadlines while

maximizing by giving Dom0 a budget in both Dom0High and

Dom0Low (note that Dom0 already has only a minimal budget

in cosDist).
In Figure 9, we compare how Dom0High Dom0Low and

cosDist behave under high I/O workloads with varying Dom0

budgets. We give the IOVM infinite budget as its execution is

constrained by either Dom0’s processing time in Dom0Low

or, as in the two other setups, it’s lowest priority, rendering

its budget unimportant. We vary Dom0’s budget from 1ms to

5ms (as more could impact the DLVM).

Discussion. Similar to the previous experiments, a high I/O

workload still cases the DLVM in Dom0High to miss all

deadlines. In this case, Dom0 will often run out of budget

before the HPET even gets a chance to activate, thus delaying

the notification to the DLVM till after deadlines have been

missed. In contrast, cosDist accounts the I/O processing

in Dom0 for the separate VMs to the budgets specifically

delegated by those VMs, thus avoiding the need to budget

Dom0. At low budgets, the Dom0Low system shows that

Dom0 cannot process all interrupts (including the HPET)

reliably in the time given. However, with larger budgets, it

is able to reliably process the HPET in time to deliver it to

the DLVM.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 70

 75

 80

 1 2 3 4 5 6 7 8 9 10

R
x
 P

a
c
k
e
t

R
a
te

 (
K

il
o
M

s
g
s
/s

e
c
)

Dom0 Budget (ms)

cosDist*

Dom0High

Dom0Low

Fig. 10: Throughput measurements for IOVM running a UDP server
and with smaller DLVM execution (C=0.5ms P=10ms), using a
simple UDP client tool on the host.

To assess the potential for the system to not only meet

deadlines, but also to best utilize spare capacity, we study

the throughput of the system. Section VIII-F compares the

throughput of the IOVM against Xen to determine if the TCap

system provides throughput on a practical level.

Figure 10 depicts the throughput of IOVM at varying Dom0

budgets. We use a similar setup as the experiment in Figure 9

but modify the execution time in the DLVM to be closer to

“average-time” than worst (0.5ms instead of 5ms). We have

a simple UDP server application running in the IOVM for

this experiment which recieves a 16Byte payload and replies

to the client with a 16byte payload. Throughput is measured

using a UDP client tool on the host PC that sends UDP

packets at a very high rate (72K Packets/sec), each containing

a 16Byte payload and displays the reception rate information

on the console. The higher packet rate stresses the interrupt

processing.

Discussion. Lower budgets for Dom0 do decrease its interfer-

ence on the rest of the system, but we see the impact of that

lower budget here. At low budgets, Dom0 doesn’t have enough

processing time to drive a high throughput for both Dom0Low

and Dom0High systems. At high budgets, the throughput for

the IOVMs in both Dom0Low and Dom0High plateau and

we observe that the Dom0High throughput even for high

budgets does not exceed cosDist system where TCaps are

used extensively and I/O processing in DOM0 is accounted to

IOVM.

F. I/O Throughput with different systems

Figure 11 studies the efficiency of the TCap system im-

plemented in Composite. We compare I/O throughput with

nginx 1.6.2 running in four different systems: cosDom0,

cosXen, cosDist, and in a DomU in Xen. We use Xen version

4.4 running Linux (as the most supported Xen OS) version

3.16 in both Dom0 and DomU. We use ApacheBench (ab)

2.3 to test each system with and without the persistent HTTP

connections (e.g. the “KeepAlive” flag). The transfer size used

for this is 1KB, with concurrency set to 100 and number of

connections to 100k.

5

10

15

20

25

30

35

40

45

50

55

60

Xen cosXen cosDist cosDom0

T
h
ro

u
g
h
p
u
t

(1
,0

0
0
 k

b
/s

e
c
)

w/o KeepAlive

w/ KeepAlive

Fig. 11: Throughput for nginx in different systems.

Discussion. User-level scheduling is used in cosDom0 run-

ning nginx, and TCaps are used to schedule its network-

ing interrupts. cosXen adds a separate VM serving clients

and relies on the system scheduler to make quantum-sized

delegations to the different VMs (B Delegations in Fig-

ure 3). While using ab without KeepAlive, the throughput of

cosXen and cosDist is 29% lower than Xen. However, with

KeepAlive, we observe a similar throughput in Xen, cosXen

and cosDist. Our virtualization system appears to interact

badly with TCP connection creation. The KeepAlive results

show that this issue is not likely attributable to the TCaps

mechanism. Importantly, cosDist does not show a throughput

decrease compared to cosXen. Our virtualization system is

completely unoptimized, uses up to five memory copies for

each packet during inter-VM message passing, has a trivial

system scheduling policy (RR without blocking) that doesn’t

do I/O boosting, and uses the NetBSD networking stack for

packet processing and routing. We believe that these results

show the ability of the system to provide efficient user-level

scheduling, and a low-overhead, pervasive use of TCaps that

has a reasonable performance compared to commonly used

systems.

IX. CONCLUSIONS

This paper introduces Temporal Capabilities that enable

the decoupling of fine-grained scheduling decisions (that are

made at user-level) from the temporal guarantees including

predictable interrupt scheduling, isolation, and inter-scheduler

coordination that is increasingly prevalent in modern systems.

TCaps are an integral part of the solution to a long-standing

challenge [11]: how to enable configurable, isolated, and ef-

ficient user-level definition of CPU management policies, and

integrate them into a capability-based OS. We’ve demonstrated

the ability of a system with dependencies spanning from

application all the way to interrupts to correctly prioritize

and budget both subsystems with strict timing requirements,

and best-effort subsystems that don’t, by both meeting all

deadlines, and achieving high throughput, a combination no

comparison system achieves.

REFERENCES

[1] A. Burns and R. Davis, “Mixed criticality systems-a review,” Department

of Computer Science, University of York, Tech. Rep, 2013.
[2] M. Danish, Y. Li, and R. West, “Virtual-cpu scheduling in the quest

operating system,” in RTAS, 2011.
[3] Q. Wang, Y. Ren, M. Scaperoth, and G. Parmer, “Speck: A kernel for

scalable predictability,” in RTAS, 2015.
[4] P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,

E. Kohler, D. Mazieres, F. Kaashoek, and R. Morris, “Labels and event
processes in the asbestos operating system,” in SOSP, 2005.

[5] A. Lackorzyński, A. Warg, M. Völp, and H. Härtig, “Flattening hierar-
chical scheduling,” in EMSOFT, 2012.

[6] S. Xi, J. Wilson, C. Lu, and C. Gill, “Rt-xen: Towards real-time
hypervisor scheduling in xen,” in EMSOFT, 2011.

[7] U. Steinberg, J. Wolter, and H. Hartig, “Fast component interaction for
real-time systems,” in ECRTS, 2005.

[8] A. Lyons and G. Heiser, “Mixed-criticality support in a high-assurance,
general-purpose microkernel,” in WMC, 2014.

[9] B. Ford and J. Lepreau, “Evolving Mach 3.0 to a migrating thread
model,” in WTEC, 1994.

[10] J. Liedtke, “On micro-kernel construction,” in SOSP, 1995.
[11] K. Elphinstone and G. Heiser, “From L3 to seL4 what have we learnt

in 20 years of L4 microkernels?” in SOSP, 2013.
[12] U. Steinberg, A. Bottcher, and B. Kauer, “Timeslice donation in

component-based systems,” in OSPERT, 2010.
[13] S. Ruocco, “A real-time programmer’s tour of general-purpose l4

microkernels,” in EURASIP Journal on Embedded Systems, 2008.
[14] M. Vanga, F. Cerqueira, B. Brandenburg, A. Lyons, and G. Heiser,

“Flare: Efficient capability semantics for timely processor access,” Max
Plank Institute, Tech. Rep., 2013.

[15] G. Parmer and R. West, “Predictable interrupt management and schedul-
ing in the Composite component-based system,” in RTSS, 2008.

[16] B. Ford and S. Susarla, “Cpu inheritance scheduling,” in OSDI, 1996.
[17] G. Parmer and R. West, “HiRes: A system for predictable hierarchical

resource management,” in RTAS, 2011.
[18] J. Regehr and J. A. Stankovic, “HLS: A framework for composing soft

real-time schedulers,” in RTSS, 2001.
[19] “FAA CAST position paper 32.” 2016.
[20] A. Kantee, “Rump file systems: Kernel code reborn,” in USENIX, 2009.

