
Practical Principle of Least Privilege
for Secure Embedded Systems

Samuel Jero∗ Juliana Furgala∗ Runyu Pan† Phani Kishore Gadepalli† Alexandra Clifford‡§

Bite Ye† Roger Khazan∗ Bryan C. Ward∗ Gabriel Parmer† Richard Skowyra∗
∗MIT Lincoln Laboratory, †The George Washington University, ‡Draper Laboratory

Abstract—Many embedded systems have evolved from simple
bare-metal control systems to highly complex network-connected
systems. These systems increasingly demand rich and feature-full
operating-systems (OS) functionalities. Furthermore, the network
connectedness offers attack vectors that require stronger security
designs. To that end, this paper defines a prototypical RTOS
API called Patina that provides services common in feature-
rich OSes (e.g., Linux) but absent in more trustworthy µ-kernel-
based systems. Examples of such services include communication
channels, timers, event management, and synchronization. Two
Patina implementations are presented, one on Composite and
the other on seL4, each of which is designed based on the
Principle of Least Privilege (PoLP) to increase system security.
This paper describes how each of these µ-kernels affect the PoLP-
based design, as well as discusses security and performance
tradeoffs in the two implementations. Results of comprehensive
evaluations demonstrate that the performance of the PoLP-
based implementation of Patina offers comparable or superior
performance to Linux, while offering heightened isolation.

I. INTRODUCTION

Embedded systems must manage the competing forces of
increasing workload complexity such as autonomous driving,
and the need for strong security due to the criticality of their
functionality. To enable their rich functionality, such systems
are increasingly network connected (e.g., (I)IoT), must handle
diverse input sources (e.g., cameras, lidar, sensors), and must
carry out nuanced control processing tasks. Further, many
services are increasingly being consolidated on a common
computing platform. While such systems offer the promise
of new technologies and features, their network exposure and
advanced software capabilities pose dangerous new attack vec-
tors for cyber criminals. Towards that end, it is imperative that
future embedded systems are built upon secure and trustworthy
OSes that can support demanding real-time workloads.

These workloads are increasingly being migrated from bare-
metal or embedded RTOS systems to more feature-full oper-
ating systems such as Linux. For example, SpaceX famously
controls many of their systems, such as the Falcon rocket and
Dragon capsule, with Linux with the PREEMPT_RT patch [1].
However, large complex monolithic operating systems are
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also subject to more vulnerabilities – borne out by their
constant stream of CVEs [2] – given their massive size and
complexity. For systems that control the physical environment,
such compromises can lead to damage or human harm.

An important security design goal is the Principle of Least
Privilege (PoLP) in which “Every program and every user of
the system should operate using the least set of privileges
necessary to complete the job” [3]. A consequence of this
principle is that the scope of any compromise is restricted only
to the small set of accessible resources from the compromised
functionality. It is often paired with a focus on software
simplicity (economy of mechanism) to provide software that
is more easily certified and resilient to attack. Toward these
goals, µ-kernel-based OSes have limited functionality, and
implement higher-level features as isolated, user-level services.
As such, µ-kernels enable highly trustworthy designs, and
seL4 demonstrates this as the first formally verified OS [4].

However, given the minimalist µ-kernel architecture, com-
mon services must be implemented in userspace. In practice,
it is common for µ-kernels to be employed as a separation
kernel, with most applications executing in virtual machines.
Real-time and embedded applications often avoid complex
APIs such as POSIX, but require a basic interface including
threads, message passing, timer-based activation, and synchro-
nization. These benefit from a trustworthy, simple interface and
implementation, rather than running in a complex VM.

This paper investigates RTOS abstraction layers on top
of µ-kernels that are designed to enforce PoLP within the
abstraction layer to strengthen system security. We call our
RTOS API Patina1, and it is designed to be a prototypical
RTOS API. We designed a new small and simple µ-kernel-
agnostic API that could be efficiently implemented on a variety
of µ-kernels. In comparison, prior OS APIs are either (i)
incredibly low level, forcing developers to deal with undue
complexity (e.g., raw SeL4 or Composite), (ii) bloated and
complex (e.g., POSIX), or (iii) are designed for a single shared
address space (e.g., FreeRTOS). In the remainder of this paper,
we refer to an implementation of this API as a Patina.

A naı̈ve approach to RTOS-API implementation on modern
µ-kernels is to place all RTOS services in a single protection
domain and use IPC-based service invocations. However,
in this design a fault or compromise in any service (e.g.,
communication) could impact all services and/or applications.
Instead, in this paper we focus on RTOS-API implementations

1A patina is a thin layer on top of a surface that is often protective.



(specifically Patina implementations) that separate system
functionality into separate, isolated user-level services, while
focusing on simplicity of implementation. As such, our focus
is enabling more fine-grained granularity of resource access to
RTOS services, thus constraining the impact of any failures.
The core scientific question is if a PoLP-optimized RTOS can
provide real-time, predictable performance, and common-case
performance competitive with existing systems. Significant re-
sults have laid the groundwork for a PoLP RTOS: (1) Mehnert
[5] showed that user-level, isolated system services can pro-
vide response times on the order of kernel-resident logic, and
(2) Slite [6] demonstrates that user-level scheduling can have
similar or better performance to kernel-resident scheduling.
This paper seeks to answer if an RTOS consisting of many
higher-level system services can maintain strong predictability,
while also achieving sufficient average performance. Note that
such a PoLP-driven RTOS can co-exist with virtual machines
to provide legacy execution environments.

To demonstrate both the feasibility of developing PoLP-API
implementations, as well as to compare and contrast design
methodologies, we implemented PoLP-focused Patinas on
two different µ-kernels, Composite and seL4. These different
µ-kernels have differing design philosophies and mechanisms,
which has yielded different Patina designs. Based upon these
two independently developed Patinas, we discuss (i) design
commonalities, (ii) performance and security considerations of
different design decisions and (iii) lessons learned developing
PoLP-focused services on differing µ-kernel architectures.

After describing relevant security challenges (§ II) and back-
ground (§ III), this paper makes the following contributions.
• We describe two independently developed Patinas on two

different µ-kernels, seL4 and Composite. (§ IV)
• We discuss the design and implementation of Patina on

each, guided by the principal of least privilege. (§ IV)
• We evaluate both Patinas with respect to their predictabil-

ity and performance, and find that they provide significant
quantitative benefits in addition to stronger isolation. (§ V)

• We discuss different Patina design decisions in each im-
plementation based on security/performance tradeoffs, as
well as the underlying µ-kernel design. (§ VI)

II. SECURITY CHALLENGES

The PoLP is an important security-design principle. How-
ever, it does not protect against all threats. It is therefore
important to consider the attack vectors and threat models that
the PoLP is designed to address within our OS Patina.

When applying the PoLP within an OS, the privileges and
capabilities of processes and system services are reduced. This
limits what an attacker can do if they are able to compromise
a system process. For example, a compromise of a vehicle
infotainment system should not enable the attacker to hijack
control of the steering of the vehicle.

We therefore consider a threat model in which there is
a potentially malicious user-space process. Such a malicious
process may seek to exfiltrate data, corrupt system integrity,
achieve adversarial remote control, etc. To some degree, a

threat model based on malicious applications may appear to be
admitting defeat at the outset. Clearly, a compromised applica-
tion can adversely impact the system by refusing to perform its
role, e.g., by ignoring service requests or consuming resources
(e.g., CPU cycles) without generating useful output. However,
stopping possible compromise across all system services is an
effectively impossible endeavor. Even formal verification relies
on assumptions that have been shown able to be violated in
the real-world. For example, the Spectre [7] and Rowham-
mer [8] attacks demonstrated the danger of assuming that
hardware behaves according to its specification. In addition,
attacks based on impersonating legitimate operators (e.g., the
credential theft [9]) will not be stopped by bug-free code, since
attackers are operating outside the verification boundary.

This threat model of assuming that a process is potentially
malicious is also supported by a number of different attack
vectors. While there are myriad ways in which an attacker
could compromise a process on the system, they fall into
two broad categories: (i) malicious input, which exploits
vulnerabilities in code, often to hijack control of the victim
process; and (ii) malicious code, such as software installed on
the system that was developed by an untrusted party or subject
to a software supply-chain threat.2 These attack classes demon-
strate the relevance of this threat model, though the specific
mechanism employed by an attacker is inconsequential to our
model. While there are defenses that seek to mitigate some
of these attack techniques, they are not perfect, and attackers
constantly evolve to bypass new and stronger defenses. Such
defenses are complementary to PoLP-based mechanisms.

Additionally, we consider the µ-kernel itself to be benign
and not subject to compromise. µ-kernels are minimal, highly
trusted, and in the case of seL4, formally verified [4]. In our
OS Patinas, there are user-mode services providing system
functionality not implemented by the µ-kernel itself. These
services are considered to be potentially buggy, and therefore
subject to compromise, but benign.

With this threat model and motivation, there are several key
security and performance challenges associated with develop-
ing a PoLP-optimized embedded system:
• Predictability. Least-privilege enforcement must not lead

to temporal violations of real-time requirements. Any least-
privilege policy must result in predictable execution regard-
less of the complexity or nuance of that policy.

• Minimality. Embedded systems are resource-constrained
and lack a substantial margin for the addition of new
capabilities. Least-privilege enforcement must minimize
its impact on legitimate system operations, which often
constitute the vast majority of normal execution.

• Granularity. Privilege, especially with respect to resource
access and shared data structures (e.g., for synchronization)
must be as fine-grained as possible in order to ensure
that any violation of intended application semantics will
be detected and prohibited. However, finer granularities of
enforcement may also make enforcement more intrusive

2Hardware-based threats, such as Rowhammer [8], may also enable process
exploitation, but we consider such threats outside the scope of this work.



(reducing minimality) or require complex checks and meta-
data operations (reducing predictability).

• Recovery. Small components offer the potential to recover
faulty or malicious processes efficiently [10]. However, the
system must be designed to enable such recovery without
otherwise compromising the security of the system.

III. µ-KERNEL BACKGROUND & RELATED WORK

Capability-based models are a strong fit for enforcing PoLP
as they support fine-grained and efficient access control for
kernel resources. Figure 1 depicts different OS structures
among a self-contained RTOS with monolithic support for core
services (a), and two instances of modern µ-kernels (b, c) that
decentralize services while applying the PoLP. Note the focus
in (b) and (c) not only on inter-application isolation, but also
on the PoLP-focused isolation between system services.

A. Background and µ-Kernel Foundations

Capability-based kernels. Modern µ-kernels, inspired by
Eros [11], use capability-based addressing to access all kernel
resources [12]. A capability is an unforgeable token denoting a
principal’s access to a resource. They enable delegating access
to the resource by copying the capability to another principal,
and revoking capabilities previously delegated, thus removing
access to the corresponding kernel resource.

We describe principals that have capabilities as protection
domains that include a virtual address space (provided by page
tables) and the principal’s capability tables. Threads executing
in a protection domain are confined to the resource accesses
allowed by the protection domain. Inter-Process Communi-
cation (IPC) provides inter-protection-domain coordination,
enabling client requests to be handled by logic in a different
protection domain than the client, thus with different privi-
leges. Capability-based access control enables a composable,
efficient means of manipulating the access to kernel resources
and the construction of protection domains. IPC enables the
separation of concerns since protection domains specialize to
provide mediated access to services.
Kernel minimality. The guiding principle for µ-kernels [13]
is minimality. “A concept is tolerated inside the µ-kernel only
if moving it outside the kernel [...] would prevent the imple-
mentation of the system’s required functionality.” µ-kernels
implement device drivers in user level, which requires trans-
lating interrupts into kernel-instigated IPC. System policies
for networking, memory management, and time management
are implemented in user-level protection domains. Of note,
scheduling policy and blocking semantics have traditionally
been bound to the kernel, even in L4 variants.

Exporting policies to user level has a number of benefits. It
enables configurability of core system policies, minimizes the
size of the kernel that must be trusted by all system execution,
and enables the separation of concerns for different policies,
each implemented in different protection domains. In doing
so, it encourages the application of the PoLP.

The removal of memory management (esp. allocation) from
the kernel is of particular note. The user-level management of

kernel memory [14] is safely enabled with kernel-provided
memory retyping facilities. Memory typed as frames are
otherwise unusable, but are tracked using capabilities. They
can be retyped into various forms of kernel memory or
retyped into user-accessible virtual memory. This is safe as
protection domains can use only capability-accessible memory,
and memory can only have a single type (thus protecting kernel
data structures from user-level access).
Benefits of isolation. The errant effects of a faulty or compro-
mised service in monolithic RTOSes (Figure 1(a)) can impact
all applications. In contrast, both Patina implementations
move system services into separate protection domains. A
failure in one is constrained to its logic, data structures, and
any service requests. For example, a failure in the channel
service, being used to supply navigational commands from a
radio to high-level drone software, will not directly impact
a critical safety-of-flight device driver that keeps the drone
flying. Though beyond the scope of this research, such recov-
ery or reset mechanisms (e.g., using exception models [15],
interface-driven recovery [10], or redundant execution [16])
are fundamentally dependent on isolation.

B. Related work

Predictable µ-kernel implementation. µ-kernels are a natural
choice for real-time and embedded systems as the increased
isolation they provide is an asset for high-confidence com-
putation. Previous work [5] demonstrates that the latency of
translating interrupts into user level IPC is not prohibitive
while [17] demonstrates that interrupt-scheduling policy can
also be provided at user level. Composite has demonstrated
the ability to scale predictability guarantees up to multi-
core systems [18]. Blackham [19] demonstrates the automated
WCET calculation of a µ-kernel. Unfortunately, prior research
has not demonstrated that the end-to-end predictability of a
multi-protection-domain RTOS is possible and reasonable.
Component-based Environments. The SawMill multi-server
OS [20] built on L4, and the FLUX OSKit [21] decompose
existing monolithic systems into their constituent parts, and
execute them in (potentially) isolated protection domains.
Similarly, Composite is a component-based OS capable
of supporting webserver functionality in around 25 compo-
nents [22], though without the focus on RTOS functionality or
predictability. Camkes [23] is a component-based development
environment for seL4 used to construct the initial set of
protection domains, kernel resources, and connections among
them. OS personalities in Workplace OS [24], GrailOS [25],
and Exokernel [26] are custom implementations of existing OS
abstractions (e.g., POSIX, Win32). In this work, we define
a new OS abstraction, Patina, and implement two Patina
personalities on different µ-kernels. Our focus is on the design
of these implementations and how applying PoLP design
principles provides isolation and impacts performance.

L4Re [27] and Nova [28] are runtime environments with
a strong focus on providing facilities for multiplexing I/O
and memory across virtual machines while providing per-VM
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Fig. 1: Differing system structures for an RTOS API. The dotted line is the Patina API, light-blue boxes are protection domains, dark blue
are functional modules, and the purple box is the kernel.

VMMs. This focus on VM support is complementary to the
PoLP-focused, high-confidence RTOS of this paper.

Patina, to the best of our knowledge, is the first system
design to thoroughly apply the PoLP to an RTOS implementa-
tion. Further, we’ve demonstrated in two different systems, that
more aggressively pursuing the PoLP for an RTOS does not
prohibitively impact performance nor real-time predictability.

IV. PATINA DESIGN AND IMPLEMENTATION

We have developed two PoLP-based implementations of
Patina: one on Composite and one on seL4 For Compos-
ite, this is reflected in the distribution of responsibility and
authority for the management of different system abstractions
among isolated components. For seL4, this manifests in the
development of self-contained processes to isolate and protect
a process’s memory and capabilities from all other parts of the
system. First, we introduce our Composite and seL4 Patinas
and provide an overview of the Patina API.

A. Architecture Overview

Both the Composite kernel and the seL4 kernel expose
difficult to use, very low-level system call APIs. For example,
creating a new thread involves retyping memory to be used
for the kernel’s thread object, retyping and using (potentially
multiple levels of) capability-table nodes to provide the capa-
bility table for the thread, retyping and using multiple levels of
page-table nodes to provide virtual memory for the thread, and,
finally, the association of the thread with a protection domain.
This complexity is particularly pronounced for Composite
since the kernel includes no scheduling and synchronization
policy, nor recursive capability revocation. This means that
user-level logic must define policy on top of the kernel’s
policy-less system calls to dispatch to a thread and to modify
capability-tables for already accessible resources.

As a result of these complex “raw” kernel APIs, both
Patinas build extensive abstractions to hide as much of
this complexity as possible. Their fundamental designs focus

(b) thread migration(a) syncronization
between threads

C C SS

C C

Fig. 2: IPC via synchronous rendezvous between threads (e.g., L4)
and via thread migration.

on principles and techniques to build from primitive system
abstractions and APIs, up to a full-featured RTOS.
Composite Patina Design. Patina on Composite relies
on two existing libraries, one for transparently creating and
constructing the capability- and page- tables for protection
domains (components in Composite), and another to easily
use the dispatching and timing facilities of the kernel to create
and schedule threads. On top of this, we add a library (the
Composite runtime, or cosrt) to allocate and manage the
capability and page tables of both the current component, and
other components it creates, complete with the ability to load
a component from an ELF file. The system abstractions at
this point are still low-level and based on kernel resources –
threads, IPC endpoints, pages, and components.

Composite focuses on predictable execution through com-
ponent composition. Components are functionally composed
together using the main Composite mechanism for IPC: syn-
chronous thread-migration-based invocation [29]. Figure 2(a)
depicts L4-style IPC using blocking rendezvous on an IPC
endpoint between threads. Figure 2(b) shows thread-migration,
in which, when a thread in a client component (C) invokes
a function in a server component (S) in a separate protection
domain, it executes using the same schedulable entity in both
C and S. This maintains strong memory isolation as the
execution context (registers and stack [30]) are separate for
S and C. For invocation arguments and return values, a set of
registers are passed and returned. Thread migration is integral
to the Composite Patina implementation as it ensures a
thread’s execution maintains the same end-to-end real-time



TABLE I: Patina API

API area API Functions Description
Process
and Thread
Management

process_create(), process_exit(), process_get_exit_status()
thread_create(), thread_set_params(), thread_kill(),
thread_exit(), thread_get_exit_status()

Create processes and threads, terminate
them, configure them, and retrieve exit sta-
tus codes

Channels channel_create(), channel_destroy(), channel_get_recv(),
channel_get_send(), channel_retrieve_recv(),
channel_retrieve_send(), channel_close(), channel_send(),
channel_recv()

Create channels that can be either “named”
or “unnamed”. These channels have dedi-
cated send and receive sides that must be
explicitly opened or retrieved. These sides,
then, allow sending or receiving

Timers
and Time

timer_precision(), timer_create(), timer_free(),
timer_start_oneshot(), timer_start_periodic(),
timer_cancel()
time_current(), time_create(), time_add(), time_sub()

Oneshot and periodic timers that can be
canceled. API also exposes the current time
and provides functions to manipulate time
values

Synchronization semaphore_create(), semaphore_destroy(), semaphore_take(),
semaphore_try_take(), semaphore_give()
mutex_create(), mutex_destroy(), mutex_lock(),
mutex_try_lock(), mutex_unlock()

Standard semaphores and mutexes
with take/lock, try take/try lock, and
give/unlock operations. Mutexes support
priority inheritance and (optionally)
recursive locking

Event Handling event_create(), event_delete(), event_add(),
event_remove(), event_wait(), event_poll()

Create/delete event handlers, add or remove
event sources, and wait or poll for events.
Event sources include timers (fired), chan-
nels (ready to receive, ready to send), pro-
cesses (exited), and others

Memory
Management

mem_alloc_pages(), mem_free_pages(),
mem_shared_create_named(), mem_shared_destroy_named(),
mem_shared_map_named(), mem_shared_create_anon(),
mem_shared_destroy_anon(), mem_shared_map_anon()

Allocate and release pages of memory as
well as create both “named” and “anony-
mous” shared memory regions and map
them into processes

I/O io_print() Output to a shared UART or console

execution properties as it would if it were executing in only
a single component. This has a very important side effect: a
scheduler component must define the blocking and synchro-
nization policies. The scheduler’s data-structures, logic, and
policy define CPU allocation and synchronization.

For synchronous IPC, including thread-migration-based in-
vocations, C’s execution is tied to S’s as C won’t reactivate
until S returns. Thread migration ensures that schedulers
maintain a consistent scheduling context (priority, budget, etc.)
while executing across the system. However, this poses a chal-
lenge: shared-resource access within S must be synchronized
between client requests (as in Figure 2(b)). As a result, the
blocking API that Composite schedulers export is designed
to integrate predictable resource-sharing protocols by default.
The combination of thread-migration-based IPC and efficient,
predictable synchronization enables local reasoning about
full-system predictability. Patina components implement their
functionality following traditional real-time system principles:
ensuring bounded execution, and sharing resources, without
explicit consideration of the composition of components.

seL4 Patina Design. We implement a Patina on top of the
seL4 kernel to take advantage of the integrity and confidential-
ity guarantees seL4 provides. In particular, seL4’s verification
ensures that data can only be read or written with permission
and that the kernel implements its specification correctly [4],
[31]–[34]. These powerful guarantees eliminate entire classes
of bugs including memory-safety issues, undefined behavior,
missing permissions checks, and even logic bugs.

Since seL4 provides only a complex API consisting of iso-
lation, scheduling, and communication primitives, our Patina
implements a set of user-space services and abstractions to

simplify key operations. Each of these services consists of a
thread in its own protection domain, including both capabil-
ities and virtual memory. Note that protection domains are
fundamentally processes in our seL4 Patina. Two services
are central to the entire rest of the system: the loader service
and the capability service. The loader service handles the
creation and management of processes and threads, including
transparently constructing and configuring capability tables,
page tables, and thread objects and providing the ability to load
a process from an ELF file. The capability service manages
unallocated memory for other parts of the system, holding
all untyped memory in the system, and allocating capabilities
from this memory for the rest of the system. The rest of the
Patina is implemented as a number of services, or dedicated
processes, that build on these two core services, each providing
a different aspect of the API, like events, timers, or channels.

Unlike Composite, each thread in seL4 is bound to its
protection domain and communication is performed via IPC,
where the sending thread is blocked and the receiving thread
made runnable. In particular, seL4 IPC is rendezvous-style
IPC and thus synchronous and blocking. Additionally, the
scheduling of threads and control over blocking is baked into
the seL4 kernel and not configurable by user space (as shown
in Figure 1c). While this makes reasoning about full-system
predictability more complex, the seL4 kernel is designed with
a fixed-priority scheduler to enable real-time performance.

B. Patina API Overview

In this section we present an overview of our Patina API,
summarized in Table I, emphasizing its expressiveness, while
also touching on its implementation in Composite and seL4.



Timers. Timers enable time-triggered activations and can be
one-shot or periodic. Timer activation occurs in the form of an
event that will be delivered through the event-handling API.

In Composite, user-level schedulers have the ability to
program one-shot timers (within their TCap budget [35]),
thus allowing the scheduler to implement timers and control
preemption. The timer manager tracks Patina software timers,
and triggers expired timer events via the event component. In
seL4, we implement a timer service that uses a dedicated hard-
ware timer to generate interrupts. This timer service manages
a timer wheel to track software timers and communicates with
the event service to generate timer events.
Channels. Channels provide buffered data transfer of mes-
sages between endpoints that may be in separate processes.
Channels may be either named, allowing them to be addressed
globally, or unnamed, requiring them to be shared explicitly.
By default, read and write operations are non-blocking, but
blocking reads and writes may be optionally implemented.
This default behavior avoids inter-application synchronization
and encourages blocking awaiting multiple notifications.

In Composite, channels are implemented using a shared-
memory wait-free message queue to avoid blocking syn-
chronization. The channel manager sets up and tears down
these channels while a library provides the message-queue
implementation. In seL4, channels exist in a dedicated channel
service and all read/write operations are performed as IPC
messages to this channel service.
Event Handling. The Patina event-handling API enables a
caller to be edge-notified of one or more events in either a
blocking or non-blocking manner. Events are generated by
other Patina resources in response to events (e.g., a timer
firing). By adding one or more of these resources to an event
handler, a thread can wait for events on those resources, much
like the select() and epoll() system calls.

In Composite, a dedicated event-manager component hands
event-notification endpoints to event listeners and event-
triggering endpoints to event sources. The event manager
ensures event ordering. In seL4, a dedicated event service
hands notification endpoints to event listeners. Event sources
perform an IPC to this service to trigger an event.
Synchronization. Patina provides synchronization in the form
of both mutexes and semaphores. For predictability, Patina
mutexes support priority inheritance (PI) [36].

As Patina currently focuses on single-core systems,3 both
Patinas provide blocking-synchronization variants, rather than
spin-based. Composite exposes a scheduler-provided abstrac-
tion for blocking that decouples fast-path (uncontended lock)
access, from blocking, similar to Futexes [37], [38] (see
synchronization in both an application library and service in
Figure 1(b)). The seL4 Patina uses a separate synchronization
server that leverages the client’s blocking IPC to halt the thread
requesting a lock, while replying only to the highest-priority
blocked thread to allocate the lock. We discuss synchronization
in the seL4 Patina in greater detail in §IV-D.

3Mainline seL4 does not include verified multicore support.

Thread Management. The Patina execution abstraction is
threads, and conventional (pthread-like) APIs for setting
parameters, exiting, and joining on them are supported. In our
Composite Patina, this is implemented in the scheduler while
our seL4 Patina implements it in the loader service.
Memory Management. Memory can be dynamically allo-
cated and released and shared memory is supported. Shared
memory may be either named, allowing it to be addressed
globally, or unnamed, requiring it to be explicitly shared.

In Composite, static memory (data and bss, read-only
data, code, etc.) is provided at boot time by the constructor
component, which is responsible for creating not only ap-
plication components, but also the service components, and
does not expose APIs for application interaction. After boot,
the capability manager is in charge of providing dynamic
allocations, and exposes memory-management APIs, including
those for shared memory. In seL4, the kernel sets up memory
for the initial loader and capability services. All dynamic
memory after that point is allocated by the loader service,
in collaboration with the capability service. In particular, the
loader service exposes memory-management APIs, including
those for shared memory, to applications.

C. PoLP Design in the Composite Patina

Here we explain the primary mechanisms by which we
support and enforce least privilege in the Composite Patina,
while providing efficient and predictable functionality.
Authority decentralization in the Composite Patina. Au-
thority is distributed throughout the components of the system
as shown in Figure 1(b) by applying the separation of concerns
to break the system software into pluggable, mutually isolated
components, each responsible for different resources.

The Composite Patina adds a service component for each
abstract resource: a channel manager, event manager, timer
manager, and scheduler. Service components that manage
kernel resources have access only to the subset of appro-
priate resources. These include the scheduler (that dispatches
threads), the capability manager (that defines delegation and
revocation policies), and the constructor (that creates/loads
the graph of components). This has the benefit that key
components relied on by many others focus on simplicity.
The PoLP guides the design by enabling only the scheduler
to dispatch threads, only the constructor to have access to
the static memory allocations of each component (code and
data), and only the capability manager to have access to
untyped memory for dynamic allocation to other components.
Figure 1(b) shows how capability-management policy is dis-
tributed between (1) process creation in the constructor, and
(2) dynamic management in the capability manager.

Components cannot alter their capability access and instead
rely on the capability manager to pass resources and revoke
access to them. In contrast to L4-style µ-kernels that define
capability delegation and revocation policies in the kernel, the
capability manager defines the dynamic capability delegation
and revocation policies for kernel resources.



The constructor is the only component created by the kernel
at boot-up, and it is responsible for loading all other compo-
nents. It starts with access to all system kernel resources (i.e.,
all memory) and distributes them among components based on
a static specification of components and their dependencies.
Importantly, the constructor creates the initial component
images (including all non-dynamic memory) and the initial set
of capabilities. Thus, only the constructor has access to static
component memory, decoupling this static privilege from the
dynamic memory and resource management in the capability
manager. The constructor also creates the synchronous invoca-
tion capabilities that enable invocations between components.
A side effect of this is that the inter-component control flow
(i.e., the control flow between components) is constrained
solely by the constructor, providing a form of inter-component
Control Flow Integrity [39] (CFI). To strengthen this CFI, after
initialization of the capability manager, the constructor is not
executed again (aside from for faults).
System simplification via custom resource management.
As Composite components can be tailored to a specific set
of requirements, we focus on economy of mechanism to
implement Patina. Though §?? discusses this quantitatively
for all services, below we discuss three examples.

First, blockpoints are the only blocking abstraction in Com-
posite and are provided by the scheduler. A blockpoint is
similar to a condition variable in that it enables threads to
block or to wake up a single thread or all threads blocked on
a blockpoint. However, unlike condition variables, they do not
require mutexes, and are instead intended to work with lock-
free data structures. Indeed, the implementations of mutexes,
semaphores, and channels require blocking synchronization.
Each of the data structures that back these abstractions use
atomic instructions to coordinate (e.g., to set the owner of
a mutex with a compare-and-swap instruction) and integrate
with blockpoints as follows:
1) repetitively execute the following,
2) take a checkpoint of the abstraction’s blockpoint,
3) update the data structure atomically, and if we do not need

to block (e.g., we take the critical section or can dequeue
from a channel), break out of step 1’s loop,4

4) otherwise block on the abstraction’s blockpoint.
Another thread can wakeup others blocking on the blockpoint
by later triggering the blockpoint. The “lost wakeup” race
condition motivated the creation of blockpoints. If preemptions
lead to the trigger happening between steps 3 and 4, we have
a lost wakeup, and the blocking thread might never awake.

Blockpoints avoid this race condition by separately track-
ing a blockpoint epoch in the library, and in the scheduler.
Operations performed on the blockpoint increment the epoch,
thus the scheduler can detect lost wakeups as the epoch passed
with the operation will be less than that in the scheduler.

4Note that, despite the “retry loop,” a thread will execute the retry loop
at most once per higher-priority thread that changes the state of the backing
resource. Thus, to ensure predictability, the small overhead of a retry can be
accounted for similar to context switch costs in a timing analysis.

Blockpoints also express dependencies between threads.
When one thread blocks, it can express that it is waiting for
(dependent on) another (e.g., a mutex holder). This enables
the scheduler to perform PI properly.

The blockpoint API aims to solve a similar problem to that
solved by Linux Futexes [37], [38]: providing fast, library-
based coordination when blocking is not necessary and a
means to avoid lost wakeups when blocking is necessary.
Blockpoints do so with significantly less complexity by iden-
tifying each blockpoint with an opaque id rather than a
physical address and not requiring that the scheduler access the
blockpoint memory. The result of this intentional design is that
the scheduler’s blockpoint implementation is only 103 C Lines
of Code (LoC), with the client library being another 105 LoC,
while futex.{h,c} are over 1850 LoC and intertwined with
the virtual memory subsystem. Customizing blockpoints to the
requirements of Patina avoids the PoLP-violating intertwining
of virtual memory and scheduling while maintaining strong
average-case performance.

Second, the capability manager defines resource-access del-
egation and revocation enabling it to be vastly simplified by
designing explicitly for the limited sharing relationship of
Patina. Traditional (in-kernel delegation/derivation) structures
track all delegations (and retypes) in a tree, and recursively
remove a subtree of delegations on revocation. Channels use
shared memory between two applications, which requires
page allocation and two delegations. The Composite Patina
specializes the data-structure that tracks resource delegations
by statically allocating it based on the maximum number of
allowed delegations. The simplicity of this implementation –
the capability manager’s logic is less than 700 LoC – avoids
dynamic memory allocation, has only bounded loops, and
enables the use of a lock-free structure to avoid mutex-based
synchronization. This is important as the very lowest-level
components cannot leverage the services of the scheduler.

Third, channels in the Composite Patina use memory
shared directly between applications. We arrived at this design
after assessing three different channel implementations. A de-
sign constraint is that Composite IPC passes only a register-
set between components with a synchronous invocation. The
first design passes all channel data to the channel manager
using many invocations, each passing a few words of data.
This design is simple and does not require shared memory,
but is slow due to the many invocations. The second design
uses shared memory between client channel libraries and the
channel manager to pass data. This design trades simplicity
for performance and centers trust in the channel manager.

Our final design uses direct shared memory for passing data
between applications. This has the benefit of removing the
channel manager from fast-path operations. Toward the PoLP,
this design vastly simplifies the manager as it provides only
channel setup and tear-down. However, it does expose appli-
cations to mutually shared memory, which is a wide interface
that requires a complex functional correctness analysis.

The shared memory is used only for a bounded, static, wait-
free ring buffer and uses no pointers. All library accesses



to the ring buffer are explicitly bounds-checked to prevent
errant accesses, and data is copied in and out of the buffer so,
outside of the channel code, data access is only to non-shared
memory. However, malicious applications can directly modify
any buffer entry along with the head and tail offsets. Note
that maliciously modifying data in the buffer is in many cases
equivalent to normal API operations (e.g., sending corrupted
data). There is one exception: a compromised application
can corrupt messages in the channel that were sent before
compromise but have not yet been received. The Composite
Patina accepts this risk as receivers must sanitize and validate
channel messages they receive regardless, and thus must
handle a broader range of corrupted messages.

As recoverability of the system in the face of adversaries is
a core design goal of Patina, all manager components track
allocations made to other components. A fault or compromise
in an application requires that each service be notified of the
failure, at which point it can reclaim all associated resources.
Predictability in the Composite Patina. The Composite
Patina is focused both on predictability and on minimizing
task interference. Thread-migration-based IPC is the enabling
feature. Figure 2(b) demonstrates that invocations to a service
component S are conducted in the same scheduling context as
executed in C. Thus, all execution in S is prioritized to that of
the client thread, but must consider concurrent client requests.

The Composite Patina uses two techniques to avoid this
interference: (1) most service components have simple data
structures in which new abstract resources (e.g., channels and
events) are created, but then not modified (or modified using
only wait-free structures) using the techniques in parsec [40],
[41], thus avoiding the need for mutual exclusion, and (2) for
the timer and scheduler services that require more complex
structures (runqueues, and timeout heaps), we use predictable
mutexes with PI provided by efficient, blockpoint-based locks.
All paths in all services are carefully engineered to be bounded
(no unbounded loops, no recursion) to support WCET reason-
ing. We also avoid all nested locking in the system components
so a PI-aware timing analysis is straightforward.

D. PoLP Design in the seL4 Patina
The seL4 Patina also seeks to apply the PoLP to its design,

although how that occurs in practice differs significantly from
the Composite Patina. In this section we examine the primary
design decisions for PoLP in our seL4 Patina.
Authority decentralization in the seL4 Patina. Authority in
the seL4 Patina is distributed throughout the components of
the system as shown in Figure 1c by applying the separation of
concerns to break the system into separate protection domains
(i.e., processes) each responsible for different resources. Much
like the Composite Patina, there is one service process per
Patina resource: a channel service, event service, timer ser-
vice, and a synchronization service, as well as a loader service,
which is responsible for processes, threads, and memory.

Our seL4 Patina also decentralizes authority by introducing
self-contained processes, a novel feature found in no other
system we are aware of. To be self-contained means that no
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Fig. 3: Self-Contained Processes in the seL4 Patina

other part of the system has access to a process’s capabilities,
memory, or identity, including the memory-management code,
process-management code, and loader. Other parts of the sys-
tem can only access this information if the process explicitly
requests some operation be performed. This design minimizes
privilege by ensuring that no single element of the system has
access to all memory or all capability tables or all threads in
the system (outside of the formally verified seL4 kernel).

Self-contained processes are valuable for high-reliability
systems because they reduce the trusted computing base (TCB)
once a process is running and help ensure the ability to
recover from failures. In particular, they ensure that even the
component that created a process, initialized its address space,
or provided its capabilities cannot subsequently modify those
capabilities. Thus, once a self-contained process is running
and has allocated sufficient memory, it can continue running
without needing to place future trust in other elements of the
system. This is in contrast to monolithic kernels (e.g., Linux)
in which the kernel still retains access to all memory and can
arbitrarily remap or unmap memory out from under a process.

The development of self-contained processes was possible
primarily because seL4 does not have a process abstraction,
but only threads, address spaces, and capability spaces. As
a result, we were free to design a process abstraction from
scratch. This abstraction consists of one or more threads,
a virtual address space, a capability space, metadata, and
identity, as depicted in Figure 3. The core of a process is its
capability space, which both contains a capability to itself and
contains capabilities for all the other elements of the process.
It is by ensuring that the only capability to this capability
space is in itself that the seL4 Patina ensures self-contained
processes. Many capabilities are required for virtual memory,
including page-frame capabilities, page-table capabilities, and
page-directory capabilities, as well as capability-table space to
store all of these capabilities. This is complicated by the fact
that seL4 capabilities allow the owner to modify an object but
not query it,5 necessitating metadata, stored on more pages, to
determine where page capabilities are mapped, etc. Identity
is achieved by badging all IPC endpoints in the process’s
capability space – the only way it can communicate with the

5This comes from the information flow guarantees of the seL4 kernel; the
ability to query configuration would expose a trivial storage side channel [32].



outside world – such that the process’s process ID will be
unforgeably conveyed with any IPC messages.
Restoring minimal control via escrow processes. While self-
contained processes have many benefits, they have one major
downside: they allow malicious processes the same strong
isolation guarantees afforded other processes. In particular, a
self-contained process can resist attempts to terminate it, can
prevent its resources from being reclaimed, and can modify
its capability space or metadata and then request operations
requiring the seL4 Patina to parse these structures. Since
seL4 capabilities cannot be re-identified once moved, the
seL4 Patina has a way to assert limited control over untrusted
processes that may be, or could become, malicious.

This limited control consists of two parts: (1) the ability
to force controlled termination of an untrusted process, and
(2) the ability to prevent untrusted processes from modifying
their capability space or metadata arbitrarily. Note that this
is much narrower than the modifications that can be made to
any process in traditional systems; in particular, memory maps
cannot be changed nor can capabilities be added or removed.

The seL4 Patina provides this control using escrow pro-
cesses. An escrow process is a trusted process whose sole role
is to manage the capability space (and all the capabilities and
metadata stored inside) of an untrusted process. In essence the
escrow process hold a process’s capability space “in escrow”
making any required modifications on behalf of the process
while ensuring that those modifications are done correctly and
providing a way to command the process. Note that there
is one escrow process for each untrusted process to avoid
centralizing these capabilities in a single service.

The escrow-process executable is part of the core of the
seL4 Patina and is a self-contained process itself. It is
designed to hold the capability space of a single untrusted
process and perform all legitimate modifications of that capa-
bility space on behalf of that process. As a result, requests to
other services that require a process’s capability space must
first be sent to the escrow process, to get the capability space,
and then sent on to the desired service. Examples of operations
requiring the capability space include: starting a new thread,
allocating memory pages, and creating an event handler.
Interface complexity. Because the threat model for Patina
includes malicious processes, as discussed in §II, the internal
interfaces between components are particularly important, as
they represent attack surface. A variety of different designs for
these interfaces are possible, with varying levels of complexity
and efficiency. However, a particularly important concern is
how well the interface maintains correct behavior in the face
of a malicious party. This is often tied to the complexity,
or wideness, of the interface: wide interfaces tend to have
shared state and implicit protocols about how to update that
state while narrow interfaces tend to have partitioned state and
explicit protocols about how to communicate state changes.

As an example, consider a correct process communicating
over a buffered message queue (e.g., a Patina channel) with
a compromised, malicious process. As discussed in § IV-C, a
shared memory implementation contains a wide interface with

a number of variables representing the state of the channel.
This state needs to be updated using an implicit protocol
that the adversary is free to ignore by, for example, placing
one message in the queue but claiming to have placed 100
messages in the queue. The code to check for and safely handle
these kinds of issues is complex and frequently incorrect,
leading to vulnerabilities. Our Composite Patina frequently
uses these wide, shared memory interfaces and then provides
extensive correctness analysis to ensure safety.

In contrast, our seL4 Patina relies on narrower interfaces
that can take advantage of the seL4 kernel’s formally verified
IPC path to ensure safety from malicious parties. In particular,
the seL4 kernel supports IPC messages up to about 480
bytes, by using a special memory page as an IPC buffer,
and this implementation is formally verified. For example,
in the seL4 Patina, channels are implemented by storing
the message queue in the channel service (inaccessible to
processes directly) and using seL4 IPC to communicate with
the channel service to send and receive messages. This places
the state in the channel service, keeps the data communicated
via IPC incredibly simple – operation type, channel id, and
message data – and maximally leverages the kernel’s formal
verification. On the other hand, it does introduce more over-
head – several additional data copies and two instead of one
IPC calls – compared to a shared memory approach. This kind
of architecture is also used for mutexes, event handling, etc.
Predictability in the seL4 Patina. The seL4 Patina also
places emphasis on predictability. However, its ability to
provide predictability and minimize interference among tasks
is constrained by the seL4 kernel, which is opinionated about
scheduling and blocking, defining a rigid policy in the kernel.

seL4 only provides a fixed-priority scheduler and provides
no mechanism to determine a thread’s current priority. Thus,
we statically prioritize services over user applications. The
service priorities are carefully chosen, with services that in-
teract with hardware the highest, followed by the event service,
loader, capability service, and the other Patina services.

Recent versions of seL4 [42], [43] support execution-time
budgets and the ability to donate part of a thread’s budget to
another thread. We did not use these extensions in our seL4
Patina, because without thread migration attaching a budget to
a service risks that service exceeding its budget early, starving
other higher-priority requests. Donating time from requestors
does not solve this problem, because there is not certainty that
a requestor’s time will go towards its own request.

We also explored the creation of a user-level scheduler, as
demonstrated in [44], that would manipulate thread priorities
to effectively control scheduling. Unfortunately, all designs we
were able to devise resulted in the centralization of all thread
capabilities and required the user-level scheduler to interpose
on nearly all system calls and service interactions, doubling
the amount of IPC and corresponding overhead.

Adding PI support for mutexes in the seL4 Patina syn-
chronization service was complicated. seL4 has notification
capabilities that appear to be well suited for synchronization,
with a wait operation that blocks a thread and a signal



operation to unblock a single waiting thread. Unfortunately,
the wait-queue design is FIFO, not priority based, and does not
support PI. As a result, we developed an alternative blocking
mechanism for mutexes that enables PI. This mechanism
leverages the IPC reply capability generated by a two-way IPC
call. Essentially, mutex lock and unlock operations become
IPC calls to the synchronization service, which does not reply
to the IPC, releasing the thread, until that thread owns the
mutex. To provide PI, a copy of each thread’s thread capability
must be supplied to the synchronization service prior to the
first lock operation by that thread. Then, when a higher-priority
thread blocks on a mutex, the service can increase the owning
thread’s priority temporarily using its thread capability.

V. EVALUATION

In this section, we evaluate both Patina implementations to
characterize their performance and predictability. In particular,
in our evaluation, we seek to: (1) assess the latency of
time-triggered activations using the Patina API for real-time
computation, (2) evaluate the performance and predictability
of Patina operations with functionality that spans multiple,
isolated services, and (3) use Linux with the PREEMPT_RT
patch as a baseline for a system with strong average-case
performance, and, in many domains, acceptable predictability.
These results should enable us to ascertain if systems designed
for the PoLP can achieve strong, predictable performance.

A. Methodology and Experimental Setup

For our evaluation, we use the popular Zynq-7000 XC7Z020
SoC, which includes a dual-core Arm Cortex-A9 processor
running at 667 MHz and a Xilinx FPGA. We use only a single
core for this evaluation, and do not use the FPGA at all. We
use gcc version 8.3.0 (Debian 8.3.0-2) for arm-linux-gnueabi-
gcc and evaluate against Linux kernel version 5.4.61-rt37. Our
seL4 Patina was built with rustc version nightly-2020-05-
31. All systems use the built-in UART to output results.

Unless otherwise noted, each result is computed from
10,000 test runs. In our seL4 Patina, the user-level timer
device backing the timer manager is disabled to avoid inter-
ference (on runs that do not use the timer), though the kernel’s
timer is not modified. In our Composite Patina and in Linux,
we avoid using timers, but do not disable the kernel timer, thus
timer interference is present in some results. We take many
samples so that the impact of this interference is minimized,
though the maximum measured readings likely include its
impact. We filter out the first sample on all systems.

B. Analysis

Table II summarizes our results, and Fig. 4 shows Cumu-
lative Distribution Functions (CDFs) for Patina operations:
mutex locking, timer expiration, and channel communication.
Core System Overheads. Each system exhibits core over-
heads for system operations such as thread context switches.
Additionally, IPC overhead in both µ-kernels is critical, as
Patina functionality is provided by services that are composed
using IPC. These overheads are important to understand the
overheads of different Patina functionalities.

Discussion. Both µ-kernels have IPC on the order of Linux
system calls (measured with close(999)), which demon-
strates a basic feasibility of a multi-process, PoLP-focused
system. Native seL4 round-trip IPC takes 660 cycles, so the
seL4 Patina which includes serialization and deserialization
adds only around 50% overhead. seL4’s thread switch latency
is quite low (almost an order of magnitude faster than Linux’s),
and has tight bounds. Composite IPC is faster than seL4’s,
but thread switches through the user-level scheduler incur
more overhead. Note that Slite [6] removes many of these
overheads by avoiding kernel interactions on thread switches,
but we have not ported it to this platform yet. Further points
of comparison are available through data gathered from other
common RTOSes, such as QNX [45].

We also provide extensive comparisons between Linux and
the two implementations of Patina in Table II. In particular,
we compare Linux against not only equivalent Patina oper-
ations, but also, in the top row of Table II, against the raw
µ-kernel performance for context switching and IPC. These
system outputs quantitatively demonstrate performance with
and without Patina support. As these metrics are the basic
building blocks for more complex system components, they
are fitting as core comparison values.

Event handling is a core operation in the Patina API.
To evaluate its performance, we add a debugging API to
allow applications to trigger events. We measure the latency
between this trigger and when the event-wait operation returns.
This gives us an indication of how much overhead the event
subsystem adds to the other measurements. There is no Linux
equivalent of this measurement, as there is no direct way to
raise an event, thus all means of measurement would also
include another system abstraction (e.g., writing to a pipe).
Channels. Patina provides sized channels for communication
between processes. Here we evaluate the latency from when
a message is sent to when it is received, both for the case
when the sender is higher priority than the receiver, and when
it is lower. Note that the seL4 Patina does not implement
the optional blocking channel API. In Linux, we evaluated
both pipes and sockets (both UNIX Domain sockets and UDP
sockets) and concluded that pipes have the least overhead,
so we compare Patina channels against Linux pipe overheads
here. Higher-priority senders uniformly exhibit more overhead
as they must block to execute the low-priority receiver.
Discussion. The average overhead of the Composite Patina
is less than that of Linux, and the measured worst case
costs for channel operations for the seL4 Patina are close
to those in Linux. These results show that PoLP-based Patina
implementations can be competitive with Linux.
Timers. Awaiting a timer expiration in Patina involves the
timer device, the timer manager, and the event manager to
convey the timeout event to the application. In Linux, we
evaluate multiple methods for measuring timer-propagation
latency, including using signals with a handler that simply
writes into a pipe (the common, re-entrant means of handling
signals) that is read by a target thread, and using a timerfd



TABLE II: Patina Overheads in Cycles in Composite and seL4 with equivalent Linux operations.
† the seL4 Patina does not implement the optional blocking channel API. * No direct Linux equivalent.

Linux Composite Patina seL4 Patina
Avg Std Dev 95%tile Max Avg Std Dev 95%tile Max Avg Std Dev 95%tile Max

Context Switch: Thread 1,060 25 1,077 3,232 959 158 978 7,474 542 12 563 597
Context Switch: Process 4,816 327 4,858 17,919 1,617 174 1,630 7,888 542 12 564 703
Round Trip IPC * * * * 540 3 543 733 989 19 1,027 1,113
Event Latency: equal prio * * * * 2,868 203 2,954 9,114 11,504 175 11,801 12,247
Event Latency: L2H prio * * * * 2,883 217 2,970 9,124 11,407 176 11,702 12,233
Event Latency: H2L prio * * * * 2,843 212 2,930 9,002 16,585 222 16,953 18,160
Mutex Uncontended 217 2 217 328 125 61 126 4,196 9,959 184 10,270 11,165
Mutex Contended 15,844 619 16,263 30,570 4,677 412 4,974 8,116 13,053 234 13,440 13,918
Semaphore Uncontended 116 90 116 9,112 104 35 104 3,558 9,051 179 9,357 9,792
Semaphore Contended 6,713 404 6,994 22,136 4,597 382 4,880 8,186 11,430 217 11,791 12,384
Timer Latency 20,665 1,068 21,171 33,118 9,422 159 9,654 10,630 16,042 203 16,381 17,317Timer Latency w/ timerfd 6,493 632 6,842 14,806
Channel Latency: L2H prio 9,439 423 9,627 22,671 3,290 243 3,388 9,066 23,749 230 24,138 25,678
Channel Latency: H2L prio 11,507 841 11,711 71,169 4,086 234 4,194 10,536 24,839 229 25,222 27,806
Channel: L2H, direct blocking 6,440 346 6,594 19,321 2,351 185 2,426 6,480 † † † †
Channel: H2L, direct blocking 9,408 1,013 9,591 92,286 2,572 196 2,648 7,622 † † † †
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Fig. 4: Cumulative Distribution Functions (CDFs) for three key Patina operations compared to equivalent operations on Linux.

to direct the timer event to a file descriptor. The former is a
POSIX-compliant approach, while the later is Linux-specific.
In both cases, we use epoll to await the event. To measure
the entire timer-propagation latency, we use a low-priority
thread that simply spins saving a cycle count into a global
variable. A higher-priority thread is notified by the timer
and immediately retrieves a cycle count and compares to the
global variable. In both Patina variants, multiple processes
are executed. In the Linux variant, only a single process is
involved, thus the results favor Linux.

Discussion. Average Linux timer latency is low when using
Linux-specific APIs. However, measured maximums indicate
a significant variance of execution times. In this case, Linux
does not show significant benefit over the seL4 Patina while
the Composite Patina demonstrates overhead improvements.

Synchronization. Measuring uncontended mutex and
semaphore latency is straightforward (when using a single
thread and with semaphores initialized to a positive value).
Contention is more involved to measure, but possible with
a little careful effort: a low-priority lock holder activates a
higher-priority contender, and the priority-inheritance-assisted
boosting and eventual switch back to the higher thread is
measured. We are careful in all cases to measure no additional
APIs or behaviors other than lock contention.

Discussion. Both Linux and the Composite Patina success-
fully use mechanisms (Futexes and blockpoints, respectively)
to avoid system calls in uncontended cases. Due to the general
complexity of the contended-case Linux code that uses PI,

TABLE III: Lines of Code for the Patina implementations.

Composite (C code) seL4 (Rust code)
Event Handling 249 1016
Channels 688 1911
Timers 191 1681
Sched/Synchronization 2569 1863
Memory/Cap Management 696 8110
Core System/Libraries 5175 5075
Kernel 9227 (C code) 9300
Total 18795 29056

the measured maximum overheads (the main consideration
in a schedulability analysis) eclipse that of either Patina.
Mutexes that do not support PI on Linux demonstrate an
overhead of around 7200 cycles, so there is a significant cost
to predictability. Note that the maximum overheads in the
Composite Patina for uncontended mutexes and semaphores
demonstrate that we do not filter out timer-tick processing in
the results – around 3000 cycles of overhead.

Complexity. The number of Lines of Code (LoC) in each
Patina implementation is depicted in Table III, though this
is an imperfect complexity metric. The higher-level RTOS
functionality increases the LoCs over native kernels, but re-
mains much simpler than monolithic systems. Even the QNX
Neutrino kernel v6.3.2, which provides similar functionality
without PoLP-based isolation, is 23K LoC.

Summary. The results show that the measured overheads of our
Patina implementations do not suffer overheads significantly
greater than Linux. In many cases, the Patina implementations
demonstrate performance better than Linux. We believe this



demonstrates that a PoLP-based Patina design is a reasonable
and appealing direction for high-criticality embedded systems.

VI. DISCUSSION

In this section, we reflect on our two Patinas, both built
with a PoLP emphasis, but with different foci and restrictions.
We discuss how these differences expose trade-offs in design
and performance between the two implementations.
Policy defined by kernel vs user space. One of the major
differences between our Patina implementations is that the
Composite kernel pushes all policy, including scheduling and
resource delegation and revocation, to user space. In contrast,
seL4 defines scheduling and resource policies in the kernel.

seL4’s choice to define policy in the kernel initially sim-
plifies the system; no user-space scheduler is required before
multiple applications can be run, for instance. However, re-
solving situations where seL4’s policies do not provide what
is expected for the Patina API can be complex. For instance,
seL4 provides a notification capability that seems well-suited
for creating mutexes and semaphores, but because it does not
provide priority inheritance, our seL4 Patina had to take
a different approach that was less efficient. This is a major
reason that the seL4 Patina mutexes and semaphores do not
have a fast uncontended case and why the Composite Patina
mutexes and semaphores are faster. This mismatch between
seL4 policy and Patina expectations also arises with respect
to memory management and seL4’s policy that capabilities
cannot be used to query the current state of a capability.
This results in our seL4 Patina needing to track memory
and capability metadata separately, which requires over 8, 000
lines of code, compared to the under 700 lines required by the
Composite Patina, as shown in Table III.

Placing scheduling policy at user-level enables timing-
policy customization and constrains the access of the scheduler
to that appropriate for scheduling (consistent with the PoLP).
However, this imposes overheads for scheduler-component
invocations. The Composite Patina demonstrates increased
context-switching overheads over seL4, but, interestingly,
similar magnitude overheads to Linux. This demonstrates the
practicality of user-level scheduling.
Analysis-simplicity vs. performance-focused designs. In
§IV-C, we discussed an analysis of the functional correctness
and the impacts of a compromise on the channel implemen-
tation in the Composite Patina. This is trade-off made by
the two Patina implementations. The seL4 Patina uses the
kernel’s facilities for passing data along with IPCs and uses
the channel manager to control all channel logic. In leveraging
the kernel’s verified paths for copying a fixed, bounded data
amount, this implementation focuses on high confidence. The
downside of this approach is in overhead, as shown in §V-B.

In contrast, the Composite Patina uses shared memory for
data movement between communicating applications. This im-
proves performance compared to Linux. However, the shared-
memory approach to data sharing complicates the functional-
correctness analysis (the wide-API must consider any combi-
nation of loads and stores as discussed in §IV-C).

Predictability of Patina implementations. Despite their dif-
ferences, both of our Patina implementations provide perfor-
mance on par with Linux, if not better. This is unintuitive given
the larger structural costs in our PoLP-focused Patinas due to
isolation, and given Linux’s strong emphasis on average-case
performance. These results indicate that despite the focus on
strong isolation and the PoLP, our Patina implementations
demonstrate surprisingly competitive performance.

More importantly, the predictability of the Patina results
is key for embedded and real-time systems. Both Patinas
demonstrated very stable, predictable performance for key
Patina functionality, with minimal tail latencies, as illustrated
in Figure 4. Previous results have demonstrated that real-
time predictability with competitive bounds can be achieved
with user-level interrupt handling [5], even with a user-level
interrupt-scheduling policy [17], and that user-level scheduling
can have practically competitive performance [6]. We believe
that we have advanced the arguments for security-focused
RTOSes by demonstrating that the increased security and
isolation from a multi-protection domain RTOS does not come
at the cost of prohibitive overheads or higher latencies.
Benefit of Patina. The primary benefits of Patina is two
fold. First, Patina abstracts the low-level API provided by
µ-kernels. For instance, to create and start a new thread under
seL4, capabilities must be created from untyped memory for
memory such as the stack, and IPC buffer(s). Page directories
and page tables must be created and managed, the scheduling
priority must be set, and initial register values initialized.
Composite exposes a similarly low-level API that also makes
starting a thread a complex, multi-step operation. In contrast,
Patina provides one call to handle this setup.

Second, this work argues that Patina implementations
should be designed to separate the API implementation into
many separate protection domains. While this introduces mi-
nor overheads, as illustrated in our evaluations, it decouples the
different aspects of the API and prevents a fault in a single part
of the API implementation from compromising all API calls
across all applications. For example, a failure in the channel
or event management services will not necessarily impact a
high-criticality device driver. Isolation is also fundamental to
being able to recover from such failures.

VII. CONCLUSION

We have presented the concept of OS Patinas, which
provide feature-full OS abstractions on top of a µ-kernel. To
demonstrate the feasibility and performance of OS Patinas,
we independently implemented two Patinas, one on Com-
posite and one on seL4, each guided by the PoLP. Past work
has shown that shifting system services and scheduling policy
from the kernel to user level can be implemented efficiently
but this is the first attempt to apply the PoLP on the scale of an
entire RTOS API. In exploring Patina designs on two separate
µ-kernels, we have found that performance is comparable and
in many cases even supersedes that of monolithic kernels. Our
PoLP-based implementations also provide strong isolation.
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