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Abstract—With the increasing use of multi- and many-core
processors in real-time and embedded systems, software’s ability
to utilize those cores to increase system capability and function-
ality is important. Of particular interest is intra-task parallelism
whereby a single task is able to harness the computational
power of multiple cores to do processing of a complexity that is
untenable on a single core.

This paper introduces the design and implementation of
FJOS, a system supporting predictable and efficient fork/join,
intra-task parallelism. FJOS is implemented using abstractions
that are close to the hardware, and decouples parallelism man-
agement, from thread coordination, yielding efficient fast-path
operations. Compared to a traditional fork/join implementation,
results show that FJOS has less overhead, is more scalable up to
40 cores, and can generally make better use of parallelism. We
modify a response-time analysis to integrate system overheads
to assess schedulability in a hard real-time environment, and
design an effective algorithm for assigning task computation
to cores. This assignment more than triples effective system
utilization, and when implementation overheads are considered,
FJOS maintains high system utilizations, thus providing a strong
foundation for predictable, real-time intra-task parallelism.

I. INTRODUCTION

The increasing prevalence of multi-core and many-core
architectures, together with the the stagnation of single-core
performance has motivated the investigation of parallelism
in real-time and embedded systems. Harnessing inter-task
parallelism – where many tasks possibly previously executed
on separate systems, are consolidated onto a single multi-core
system – has significant research devoted to it. More recently,
research has investigated intra-task parallelism – where tasks,
themselves are written to harness multiple cores – on real-
time systems. This approach increases the functionality and
potential of real-time tasks, as they can achieve higher per-
formance than is available on a single core. This can enable
tighter control loops, or more intelligence within a given
time budget. Intra-task parallelism is particularly relevant
in domains with high computation requirements including
video processing, computer vision (for which we give an
example in Section II), radar tracking, and robotic planning
and autonomous vehicles [1].

However, it is notoriously difficult to achieve significant
parallelism within a task, especially if using only the lowest-
level thread creation and control APIs (i.e. provided by
pthreads). Frameworks have emerged that provide simpler
interfaces to structured parallelism including OPENMP [2]
for fork/join parallelism. With OPENMP, different iterations
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Fig. 1: A fork/join task composed of separate strands of compu-
tation, and transitioning through parallel stages, one of which has
nested parallelism. The dotted line is a single (master) thread that
multiple strands are mapped to.

of a for loop can simply be executed in parallel, where
possible. The OPENMP run-time manages the parallelism
transparently. Figure 1 shows a single task decomposed into
different parallel stages (e.g. for each loop). Each horizon-
tal line, including each iteration through a loop, represents
computation we call strands. At a fork, strands are created,
and they must all complete execution at a join. Strands are
mapped to threads, many-to-one, including the strands within
the same stage. If there are multiple threads, the task can
harness parallelism.

Research into the use of fork/join in real-time systems has
focused mainly on the schedulability of such tasks. With
the exception of [3], very little research has assessed the
practical ability of fork/join infrastructures to support real-
time, predictable execution of parallel computation. That work
also indicates that significant progress is required, as the over-
head imposed for OPENMP is prohibitive for high-frequency
tasks. This research focuses on an execution environment we
call FJOS, the Fork/Join Operating System, that is designed
for predictable, efficient execution of OPENMP workloads.
To evaluate the effectiveness of FJOS in hard real-time
computation, we take a practical approach by augmenting a
response-time analysis with the system overheads, create an
overhead-aware assignment algorithm, and demonstrate that
we can achieve a high system utilization.

Contributions and organization.
• FJOS design and implementation. Section II provides
fork/join background and overview of existing implementa-
tions, and in Section III, we present the implementation of
FJOS, a system optimized for the predictable and efficient
implementation of OPENMP fork/join workloads.
• FJOS evaluation and comparison. In Section IV, we com-
pare the overheads of FJOS with Linux’s GOMP, measuring
both µ-benchmarks, and applications from an established
benchmark suite. FJOS demonstrates significant benefit for
high-frequency tasks that are common in real-time systems.
• Overhead-aware response-time analysis (RTA) and assign-
ment. Section VI introduces an existing RTA that we augment
with system overheads from the previous experiments to



determine system schedulability. Additionally, Section VII
introduces an assignment algorithm of strands to threads to
cores that takes system overheads, especially due to expensive
cross socket communication, into account. This assignment
algorithm is essential to achieve high utilization.
• Schedulability evaluation. Finally, Section VIII presents
an evaluation of the effectiveness of both the RTA and the
assignment algorithm, before evaluating the schedulability for
FJOS and GOMP. This study reinforces the result that FJOS
provides significant benefit for both high-frequency tasks, and
tasks with significant parallelism.
Sections IX presents the related research, and Section X
concludes.

II. FORK/JOIN PARALLELISM

Fork/join parallelism represents a design point that maps
well to the structure of imperative programs: different itera-
tions of for loops are executed in separate, parallel threads.
When a sequential program reaches a for loop, control
is forked between parallel threads, and, after the loop, all
threads are joined back into a single sequential thread. In
OPENMP, the thread that was executing the sequential section
before the parallel stage takes part in the parallel execution,
and is called the master thread. We will call all non-master
threads activated at a fork, and that complete strand execution
at a join, the worker threads. The assignment algorithm in
Section VII will discuss the mapping of strands to threads,
and will determine the number of threads per stage.

OPENMP is the standardization effort around a fork/join
environment. GOMP is a popular implementation of
OPENMP on Linux. In specific cases where different iter-
ations of a loop only access the iterator, and local data, C
code is trivially converted to use fork/join as depicted in the
following code.

i n t i ;
#pragma omp p a r a l l e l f o r
f o r ( i = 0 ; i < N ; i ++) {

/ / l oop c a l c u l a t i o n s , pe r fo rmed i n p a r a l l e l
}

Though this uses the conventional C for loop, the pragma
is interpreted by an OPENMP compiler, which generates
closures for different loop iterations, and generates code to
invoke a parallel runtime that distributes the computations
between threads. In this way, an OPENMP program switches
between stages of sequential execution (before a fork), and
parallel execution (contents of the for); each parallel stage
can create more parallelism using nested omp loops. The par-
allelism in a stage is controlled by an environment variable.

Though other abstractions exist for parallelism, we use
OPENMP because (1) it is widely-used, (2) it represents a
reasonable complexity/parallelism trade-off in that programs
can often easily be adapted to use it and harness some parallel
execution, and (3) it is mature and well-studied in the real-
time and high-performance computing communities.

A. Intra-task Parallelism Effectiveness in Real-time Systems

To briefly demonstrate the utility of fork/join, intra-task
parallelism, we present an application for processing visual

sensor data that could fit into a software stack for autonomous
robot control. Images gathered from a visual sensor are
passed through a face detection algorithm to detect humans
as sources of input and interaction, and as obstacles. We use
the ccv image processing library (http://libccv.org/), and to
make use of parallelism, we slice the image into subimages
that we pass to the face detector, and merge the results into
a final image. We run the system on a 40 core, 4 socket (10
cores per socket) Intel Xeon E7-4850 platform with hyper-
threading disabled. If executed sequentially, each execution
of the face detector takes 3821ms, but goes down to 331ms
and 199ms for 12 cores and 35 cores, respectively.

If a single core is used, the cost of the detectors is
far too expensive to include in a reasonable control loop.
However, when harnessing intra-task parallelism, the latency
for computation becomes tenable for real-time control. It
should be noted that this simple form of parallelism decreases
in accuracy due to processing partitions of the image. This
application leverages the fact that a video stream of images
is processed where faces not detected in one frame will be
detected in another.

B. GNU OPENMP: Fork/Join in Linux

(a) (b)
Fig. 2: (a) Architecture of GOMP. (b) Architecture of FJOS. All
interfaces in each system are annotated by a circled letter which will
be detailed in coming sections.

Here we review the traditional implementation of OPENMP
in Linux, GOMP – GNU OPENMP. Figure 2 depicts the
architecture of GOMP and FJOS. GOMP consists of a
compiler that generates pragma-directed, OPENMP-specific
code ( A ), which invokes the shared run-time GOMP library
( B ). That, in turn, uses the Linux kernel’s interface ( C ) to
create, coordinate, and synchronize between threads.
Linux compiler support. gcc includes OPENMP support
(we use gcc version 4.4). When it parses a pragma omp, it
determines which data is thread-local (for example, the i vari-
able in the previous code listing), generates a closure around
the work, and synthesizes a block of code corresponding to
the loop body. Next, the compiler passes both the generated
code and data to the second component of OPENMP, a run-
time library in charge of managing parallelism. At the end
of the parallel thread’s execution, code is generated to again
invoke the library to join the threads. Note that the compiler-
generated code is simply linked with separate libraries and
run-times for Linux GOMP, and FJOS, and we do not require
changes to the compiler.
GOMP run-time library support. Table I summarizes some
of the most common functions exported by the GOMP
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OPENMP run-time lib function Description
omp get thread num get the current thread number
omp get num threads get the number of threads in a parallel stage
GOMP parallel start create parallel threads, execute a function
GOMP parallel end barrier synchronization to join threads

TABLE I: Summary of a subset of the OPENMP and GOMP run-
time library functions.

run-time library that correspond to interface B in both
Figure 2(a) and (b). Each parallel stage has a number of
parallel threads identified by their thread number, retrieved
with omp get thread num. The number of threads in a
parallel stage is omp get num threads. A parallel for
loop, that iterates with a range, will use the thread num-
ber and the total number of parallel threads to determine
which iterator values to process for a specific thread (i.e.
which strands map to which thread). The GOMP parallel *
functions are invoked by the OPENMP-specific, compiler-
generated code to fork and join the parallel threads, and the
omp get * functions are called to distribute work (strands)
amongst parallel threads.

Though examples in this paper use omp parallel for,
the functions in Table I are used by many OPENMP opera-
tions and are the fundamental building blocks for creating
parallelism and joining. FJOS supports all applications in
OMPSCR [4], unchanged.
Spin vs. Block in OPENMP. GOMP includes implementa-
tions of thread coordination that utilize spinning and blocking
at forks and joins. Parallel worker threads can either spin
waiting for an activation via GOMP parallel start, and
the master can spin waiting for all workers to finish, or
they can block waiting for corresponding activations. The
blocking implementation is Linux-specific, and uses futexes
(interface C in Figure 2(a)): threads blocking waiting for
activation use FUTEX WAIT, and are woken when appropriate
using FUTEX WAKE. The implementation of this system call
will use inter-processor “rescheduling” interrupts to awaken
threads across cores. GOMP uses spinning unless either
an environment variable is used to request blocking, or if
the number of threads is greater than the number of cores.
Though the spin-based implementation is faster, it requires
parallel threads to consume processing time even when not
doing useful computation, thus possibly wasting power, and
preventing other task’s execution. It is ideally suited for
environments such as high-performance computing where a
system is dedicated to a single task, and power is (until
recently) a secondary concern.
OPENMP scheduling. OPENMP supports multiple means
for scheduling work between parallel threads. If a parallel
loop includes more iterations (strands) than there are threads,
this scheduling mechanism is important. OPENMP supports
dynamic and static scheduling policies. Whereas dynamic
policies will attempt to choose a thread for each separate
work item, static policies partition the iterations at fork-time
(using the omp get * functions). Static scheduling is the
default. Dynamic scheduling is useful when the variability
in the processing time for each work item (strand) is large,
thus enabling the fine-grained balancing of work. This often
imposes overhead as inter-core coordination becomes frequent

(especially in the worst-case). However, in real-time systems,
each iteration of the same code has a comparable worst-case
execution time, thus increasing the utility of static scheduling.
We, therefore, focus on static scheduling in this paper. This
focus is consistent with much [1], [3], [5], [6], [7], but not
all [8], fork/join real-time research.

Though OPENMP generally is an implementation of
fork/join parallelism, it also provides the nowait construct
which avoids the join at the end of the parallel construct.
Though we support this construct, for the sake of space, we
do not discuss it further.
OPENMP for real-time systems. OPENMP does provide
some useful support for real-time systems including control-
ling the maximum number of threads, setting thread affinity,
and disabling thread migration. However, OPENMP has a
few impediments to its adoption in real-time systems. (1) It
does not provide fine-grained control over the priority of
individual threads. (2) It does not provide access to syn-
chronization primitives (i.e. critical sections) with predictable
resource sharing protocols [9]. We consider these additions
to the OPENMP runtime to be relatively straightforward (i.e.
widening the OPENMP API). FJOS does not have these
shortcomings.

III. FJOS: SYSTEM SUPPORT FOR PREDICTABLE,
EFFICIENT FORK/JOIN

FJOS is an operating system built to support predictable
OPENMP computation. Unlike GOMP, FJOS is a clean-slate
implementation that focuses on predictability, simplicity, and,
lastly, performance. FJOS achieves these goals by (1) using
only wait-free synchronization between coordinating threads,
thus avoiding any locking, (2) using a low-level, optimized
API for asynchronous, cross-core notifications with multi-
cast Inter-Processor Interrupts (IPIs), thus enabling efficient
blocking fork/join, and (3) decoupling the thread scheduling,
prioritization, and core assignment, from the common-case
fork/join operations. Much of this is possible as FJOS is
implemented as an OS on the COMPOSITE component-based
system.
COMPOSITE background. COMPOSITE is a component-
based OS in which system policies and most abstractions are
defined in fine-grained, user-level components. Components
in COMPOSITE consist of code and data that implement some
functionality and export a functional interface through which
other components can harness that functionality. Components
have a set of functional dependencies on interfaces that must
be satisfied by other components. Components execute at
user-level in separate hardware-provided protection domains,
and access to resources and communication channels is re-
stricted by a capability system. Even low-level services such
as scheduling [10], physical memory management and map-
ping, synchronization, and I/O management are implemented
as user-level components. Invoking a function in the interface
of a depended-on component transparently triggers thread-
migration-based [11] synchronous inter-component communi-
cation (called “component invocation” here). In this way, the
same schedulable thread executes through many components,



and can be preempted at any time. Multiple threads can
concurrently execute within a component and predictable
resource sharing protocols are required [9] just as they are
in system services of more traditional OSes. Components are
passive unless a thread is created in them, or a thread from
another component invokes the component.
FJOS overview. FJOS is implemented as a set of compo-
nents and libraries in COMPOSITE. See a depiction of the
software in FJOS in Figure 2(b). It depends on a small set of
other components (namely, a scheduler and physical memory
mapper), thus enabling a lean system with a (relatively)
simple software stack. That said, the system is not customized
to the point of only running OPENMP tasks. General tasks
spanning from best-effort and general purpose to hard real-
time with specific time management policies, are supported.
The mutual customization of different execution environments
is supported by HIRES [12]. In FJOS, we reuse a scheduler
and memory manager from the existing COMPOSITE code-
base. Currently, we have only investigated using fixed-priority,
preemptive scheduling. However, as schedulers are replace-
able user-level components in COMPOSITE, another scheduler
could be plugged in.

COMPOSITE supports parallel execution using partitioned
scheduling whereby a thread created on a core cannot migrate
later to another core. This simplifies the implementation
of the scheduler as it avoids cross-core synchronization on
scheduler data-structures, and the overheads of migrating
thread working sets between caches. Threads executing on
different cores can invoke the same components (similar to
how multiple parallel Linux threads can invoke the kernel),
thus data within a component must be either partitioned
(as with the scheduler), protected via locks that use pre-
dictable resource sharing protocols, or use the appropriate
non-blocking synchronization.

int acap trigger(cid t) trigger an event
int acap wait(cid t) block current thread until

the event is triggered
cid t acap receiver crt(comp t) create a wait-able cap
cid t acap sender crt(cid t, create a trigger-able cap;

comp t) associated with a receiver cap

TABLE II: ACAPs: kernel asynchronous communication API.

Asynchronous notification in COMPOSITE. In addition to
synchronous component invocations which mimic function
calls, FJOS adds general support for asynchronous event
notification between threads. The kernel-provided API for this
functionality is summarized in Table II. The functions operate
on capabilities that reference asynchronous end-points (we
call these ACAPs). The first two functions are invoked to
both block a thread waiting for an event (acap wait),
and trigger that event which will activate a blocked thread
(acap trigger). No data is passed between the trigger and
the wait, only the event notification. These two functions
comprise interface C in Figure 2(b).

The thread that triggers the event can be on a separate core
than the thread that is woken up, effectively enabling events
to actively be sent between multiple cores. This cross-core
thread activation is implemented using the processor’s Inter-

Processor Interrupts (IPIs). ACAPs provide efficient wakeup
of blocked threads across cores, enabling threads to block
waiting for events (i.e. forks). Thus cores execute other tasks
in the mean time, and can be put into low-power states to save
energy. The downside of blocking is that IPIs and scheduling
overheads are higher than only using shared memory with
spinning. A received IPI that activates a thread waiting on
an ACAP results in a scheduling decision. The execution
time of an IPI is bounded, and ACAPs can be used to limit
the rate at which IPIs are generated within a hard real-time
system. Though the IPI itself executes at the highest priority,
the resulting computation is properly prioritized using COM-
POSITE’s support for user-level, component-based scheduling.
See the Appendix for more information. An alternative design
would unify the interrupts and task priority namespaces [13].
However, to maintain implementation simplicity and general-
ity, we instead focus on minimizing, and properly accounting
for the IPI execution.
The PARMGR: parallelism management in FJOS. The
second pair of functions in Table II are used by a sepa-
rate component, the parallelism manager (or PARMGR) and
constitute interface E in Figure 2(b). This component has
the access rights to create the ACAP endpoints. Specifically,
it creates the ACAP that is receiving the event notification
with acap receiver crt. After this function returns, the
current thread (making the system call) can now wait on the
ACAP in the specified component (the comp t argument).
The common-case use of this is for a thread wishing to
coordinate with another thread via ACAPs, to invoke the
PARMGR to create the end-point. One or more sender ACAPs
can be created with acap sender crt, that are connected
to the same receiver ACAP – the first argument.

The PARMGR is, more broadly, in charge of managing the
assignment of computation to cores at the proper priority,
and appropriately mapping the ACAP-driven coordination
between cores. It does this for all components and threads
in the system. It takes an assignment of strands to threads,
and threads to priorities and specific cores, from the as-
signment algorithm in Section VII, and deploys threads and
ACAP linkages between threads accordingly. The PARMGR
creates threads appropriately by harnessing the scheduler
component’s thread creation mechanisms (that, in turn, use
thread creation system calls). In FJOS, the assignment and
structure of the intra-task coordination is orchestrated by
the PARMGR, leaving the OPENMP run-time library to be
concerned only with fast-path operations for fork/join. This
separation of concerns, enables the PARMGR to be replaced,
thus completely modifying the structure of parallelism, if
desired.

Currently, FJOS does not support any of the omp set *
functions that are often used to control, for example, how
many parallel threads are used for an application. Instead, the
PARMGR manages parallelism across all tasks to ensure full-
system predictable execution. If desirable, these omp set *
functions could be supported by widening the PARMGR
interface.
FJOS run-time library. Each thread involved in fork/join
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Fig. 3: FJOS run-time library data-structures.

computation in FJOS has a set of per-thread data-structures
used for inter-thread coordination. Figure 3 depicts those data-
structures. Each thread has: (1) an array of triggerable ACAPs
and wait-free ring-buffers1, one per worker thread, that the
master will use when activating and passing data to these
workers upon fork; (2) workers include an ACAP to block on
awaiting a trigger from the master to fork, and a pointer to
the ring-buffer to contain the function/data to process; (3) a
pointer to a barrier count variable that is used to join to track
how many workers have joined, and an ACAP to trigger if we
are the last worker; and (4) an ACAP to block on if we are
the master, and awaiting the completion of a join. The only
data-structures that are shared between threads (thus cores)
are wait-free – the ring buffer and the barrier count, thus
we do not require any locks. The ring-buffer is used for a
master to transfer to a worker both the function pointer to the
compiler-generated code for the computation, and data2. The
barrier count variable is initialized before a fork to the number
of parallel threads, and each thread atomically decrements it
when they join. The last to do so, sends a notification to the
master to resume execution. The data-structures are modified
with simple fetch-and-add atomic instructions. As all shared
memory operations involved in inter-thread coordination are
wait-free (i.e. they have local progress guarantees), they have
a fixed (and low) worst-case cost on a given system, thus
support hard real-time execution.

The FJOS thread’s data-structures are composable, and nat-
urally support nested fork/join, inter-component coordination
(given the ring buffer and barrier counter are shared between
components), and parallelism beyond fork/join. Such support
requires changes only to the PARMGR.

Note that FJOS does not modify the compiler, and instead
provides only a customized run-time environment. The FJOS
OPENMP library exports functions including those listed in
Table I that are linked with compiler-generated application
code.
PARMGR interface. Table III summarizes the interface the
PARMGR exports to components that use OPENMP in FJOS,
D in Figure 2(b). These functions are harnessed at applica-

tion initialization, or could also be used on-demand. They
enable the creation of the per-thread structure in Figure 3.
parmgr fork num is invoked by all new fork/join threads,
and returns the number of worker threads that execute in

1Modified from the Concurrency Toolkit, http://www.concurrencykit.org.
2Unless the OPENMP nowait construct is used, there will only ever be

one item in each ring buffer.

int parmgr fork num() # threads this master forks
fork info t retrieve information about a specific
parmgr fork info(int) worker thread to be forked
join info t information a master thread
parmgr join info() uses to join
fork info t information a worker thread uses to
parmgr worker info() await activation, and execute
join info t information a worker thread uses
parmgr worker barrier() uses to join

TABLE III: PARMGR functions to coordinate parallelism.
fork info t and join info t are defined in the text.

fork/join stages with it. For a worker that is not a master, this
number is zero. parmgr fork info returns the triggerable
ACAP and ring-buffer information (in fork info t) about
this worker that the master uses to populate its worker array.
parmgr join info provides a master with data needed
to join: the ACAP to block on (to be triggered by the last
joining worker, and the barrier count variable). Each worker
thread uses the second part of the API to retrieve the ACAP
to block awaiting a fork (with parmgr worker info), and
to retrieve the ACAP to trigger, and barrier counter for the
master.

Fork/join spinning. The above description is simplified to
describe fork/join using a blocking mechanism. This is an
important policy as it enables other tasks to execute in
the mean time. However, FJOS, also supports inter-thread
coordination using spinning. The PARMGR controls this by
simply returning a specific FJOS SPIN value as the ACAP.
In this case, all worker threads simply spin awaiting data,
thus activation, in the ring-buffer. Comparably, when joining,
the master simply spins when it joins on the barrier counter
integer that counts worker completions till it is zero, then
it continues. Though spinning will, in general, have better
performance characteristics than blocking, blocking is desired
when (1) multiple real-time tasks share a core, (2) energy
consumption is of concern, (3) best-effort tasks wish to use
spare capacity.

Fork multi-cast optimization. The master threads in the ini-
tial implementation of FJOS made an array of Q = number of
cores, <ACAP, ring-buffer> pairs, and successively triggered
each ACAP, where Q was the parallelism of the stage. Though
the O(Q) cost of this operation is acceptable on a single
socket, as we went to multiple sockets, each acap trigger
caused cross-socket IPIs that are particularly expensive. Thus
the current implementation of FJOS instead uses a multi-cast
structure to delivery the IPIs. One dissemination thread per
task, per socket (except on the master’s socket) is activated
by an ACAP from the master. The dissemination thread
then activates the ACAPs for threads on the cores within
its socket, including any worker thread on the same core
as the dissemination thread. These IPIs are now socket-
local, and have a much lower latency. This optimization was
carried out almost entirely within the PARMGR by adding the
dissemination threads as intermediate “workers” activated by
the master, that activate the real workers. This is similar to the
methods used in [14] for TLB shootdown, but in that case,
they use shared memory and spinning.

The dissemination threads execute at the highest thread
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priority and immediately block after triggering the workers.
This is to avoid delaying the activation of the workers on
the other cores on the dissemination thread’s socket. If this
were not done, then any delays in the execution of the
dissemination thread would impact the activation time of
all workers on that socket. The trade-off here is that now
these dissemination threads must be taken into account in
the timing analysis as high-priority threads. We found that
their maximum overhead for a fork is 14.10 µ-seconds on
our system.

Though we tried comparable optimizations for the spin-
based implementations of fork and join, they did not provide
better performance in the average or worst case than the naive
implementations. This might change if the number of sockets
increased greatly, but we have not tested past 4 sockets with
up to 40 cores.
Summary. FJOS has multiple interfaces and layers that in-
teract to implement the OPENMP specification. The emphasis
of this implementation is on decoupling the management
of priority, assignment, strand to thread partitioning, and
the structure of thread interactions, from the common-case
operations involved in fork/join. This separation of concerns
has enabled the configuration of parallelism management
(by adding dissemination threads), and the efficient and
predictable thread interaction – mediated by wait-free data-
structures, and a low-level, secure wrapper around IPIs.
Notably, the entire system including kernel and essential
components is less than 15K lines of code (the PARMGR and
run-time library are less than 1500). This might open up the
use of parallelism for systems that have stringent certification
requirements.

IV. FORK/JOIN SYSTEM EVALUATION

We evaluate FJOS by comparing it to GOMP on both
vanilla Linux and Linux with the real-time patches applied
(we’ll refer to this as LinuxRT). Some unexpected results on
LinuxRT motivate the inclusion of vanilla Linux. Both Linux
systems use kernel version 3.10.10. We compile all code with
gcc version 4.4. All experiments are conducted on a system
consisting of Intel Xeon E7-4850, 10 core chips, with four
sockets. Hyper-threading is disabled, leading to a total of 40
cores. We boot and execute COMPOSITE using the Hijack
technique [15].
Microbenchmarks. For the real-time execution of fork/join
workloads, we require an understanding of the underlying
overheads of the different operations for any OPENMP frame-
work, so that they can be integrated into a schedulability
analysis. We execute an empty parallel for loop using five
different system configurations: (1) FJOS using spinning,
(2) FJOS using blocking, (3) GOMP on LinuxRT using spin-
ning, (4) GOMP on LinuxRT using blocking, and (5) GOMP
on Linux using blocking. Note that the implementation and
results for GOMP using spinning on Linux are identical on
LinuxRT (i.e. no system calls are made). Figure 4 shows the
results of measuring the code on N cores:

#pragma omp p a r a l l e l f o r
f o r ( i n t i = 0 ; i < N ; i ++) ;

The time is measured with rdtsc, the time-stamp counter,
and each measurement is performed 100,000 times. Fig-
ure 4(a) reports the average, while Figure 4(b) shows the
maximum. For these measurements, we filter out interference
from the timer interrupt, as the worst-case of the timer should
be considered separately.

We assign threads to cores in a manner that minimizes the
number of sockets involved. As this doesn’t produce a worst
case for all assignments, we instead change the assignment
algorithm to also minimize the number of sockets involved.
This has a slightly negative impact on schedulability if no
overheads are considered, but enables much more efficient
run-time execution, thus increased practical schedulability.

Discussion. First, the spinning implementation in FJOS
has significantly less overhead than the spinning implemen-
tation in GOMP. This is due to the avoidance of any
shared data-structures besides the appropriate ring-buffers,
thus removing locking overheads (note that GOMP does
not use a lock with a predictable resource sharing protocol,
but this extension should be straightforward). In fact, the
blocking implementation in FJOS is not much slower then
the spinning implementation in GOMP especially for higher
core counts. However, the blocking implementation in vanilla
Linux shows significantly higher overhead. Using shared
data-structures, and futexes to block and wakeup-threads
imposes more overhead than the minimal structures in FJOS.
For example, futexes are a very general mechanism that
supports both notification and synchronization, and imposes
many overheads including looking up the kernel futex data-
structure based on a user-level address. On the other hand,
ACAPs in FJOS are specialized, light-weight wrappers that
provide access control around IPIs. The outlier in these graphs
is the blocking implementation of LinuxRT. The worst-case
overhead is almost a millisecond at 40 cores. This result is
consistent with the overheads observed in [3], and we were
not able to determine the cause. We include the vanilla Linux
result for perspective.
Application studies. We choose three programs from the
OMPSCR benchmarking suite [4] that are relevant to real-
time systems. Most benchmarks not included are relevant
within high-performance computing or don’t have much rel-
evance for embedded systems, for example, computing Pi or
producing the Mandelbrot sequence. We vary the input to
each application to assess the impact of system overheads.
These three applications are the Fast-Fourier Transformation
(FFT) that is pervasive in signal processing, solving a partial
differential equation using the Jacobi iterative method, and
the LU decomposition.

Figure 5 shows the performance of each of these applica-
tions for different input sizes for each of the implementations.
The plots represent the average of 100 runs.

Discussion. If the computation within a parallel stage is
large enough, then the overheads of the OPENMP imple-
mentation matter less, and, generally, the scalability of the
application is better. That is, as more cores are allocated
to the application, it proportionately gets faster. However, as
the amount of computation in the parallel stages decreases,
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Fig. 4: Microbenchmarks for different implementations of OPENMP. Plotted are average and maximum values where each point represents
100K runs. Note that the Y-axis is different for each graph.

the relative proportion of the OPENMP implementation’s
overhead dominates. We note that for real-time systems that
might use the computation’s results for control, or for sensor
processing, it is not uncommon to execute at a frequency
from 30Hz all the way up to 1000Hz, naturally increasing the
impact of any overhead. When these applications are executed
at high frequencies, FJOS is most useful. Interestingly, the
FJOS-block results often suffer only a small degradation, and
are sometimes better than LinuxRT-spin. Even though FJOS-
block avoids wasting computation, it still provides reasonable
parallel performance.

Note that one major irregularity in these graphs is that for
larger task sizes for Jacobi and LU reduction, tasks have an
increased speedup after decreasing. We believe this is due to
the increased availability of cache as more sockets are used.
For a worst-case timing analysis, either the worst-case cache
allocate has to be assumed, or an advanced cache-analysis
needs be performed. This is beyond the scope of this paper.

V. FORK/JOIN SYSTEM MODEL

So far, we have discussed general support for fork/join in
real-time systems. The implementation has applied equally to
hard real-time, soft real-time, and even best-effort systems.
We wish to provide an analytical basis to determine the
schedulability of FJOS task sets, thus we focus the rest of
this paper on a specific task model.

A system consists of a set of tasks {τ0, . . . , τn−1} ∈ T .
We assume a simple periodic task model in which each
task consists of an infinite stream of jobs. Each task τi has
periodicity pi, with implicit relative deadline, i.e. di = pi.
We adopt a simple fork/join execution model that is similar
to the one in [7]. For a task τi, si is its number of stages.
τi,j represents the jth stage of τi when j ∈ [0, si). ni,j is
the number of parallel strands in τi,j . τki,j is the kth strand
of τi,j , if k ∈ [0, ni,j). When si = 1 ∧ ni,0 = 1, τi is a
sequential task. For simplicity, we currently don’t consider
nested parallelism. In order to analyze task response time, the
worst-case execution time (WCET) of each strand is required,
and represented as cki,j . The WCET of τi is cmax

i , which
is the execution time required by τi when only one core is

dedicated to it. The critical path length (CPL) of τi is ccpli ,
which is the execution time required when infinite number
of cores is assumed and all strands execute on different
cores with no system overheads. We focus on hard real-time
systems where all task deadlines must be met. Necessarily,
ccpli ≤ di as it’s essential for a system to be possibly
schedulable. The utilization of task τi is Ui = cmax

i /pi,
which can be greater than 1 in which case parallelism must
be harnessed. The number of cores on the system is Q. We
assume fixed-priority, preemptive, partitioned scheduling. The
set of tasks with higher-priority than τi and the set with
lower-priority are hp(i) and lp(i) respectively. All strands
of a task share the task’s priority, and there is no inter-strand
interference: multiple strands for a stage on the same core
execute sequentially in the same thread.

VI. OVERHEAD-AWARE RESPONSE-TIME ANALYSIS

We adapt the response-time analysis from [7] to our system,
and add system overheads to conduct a schedulability analysis
for parallel hard real-time systems. In that work, a general
event model is used to describe task arrivals. As we assume
a simple periodic task activation model, significant portions
of the RTA are simplified.

We briefly summarize the RTA introduced in [7]; for
additional details, see that paper. The response-time of a task
is the maximum amount of time it takes to complete from
its activation given interference from other tasks, and it is
analyzed stage by stage. For task τi, the analysis starts from
its first stage τi,0. Within a stage, the execution of strands of
τi,j that are assigned to different cores is analyzed separately.
Without loss of generality, we consider each core to have
only one strand of τi,j : when multiple strands of a stage
are assigned to the same core, they are combined into an
aggregate strand that is analyzed as a single strand. For each
strand, interference from strands of higher priority tasks is
taken into account by finding their maximum overlap with the
strands (based on period, execution time and jitter). Once all
strands in τi,j are analyzed, their largest response time decides
the entire stage’s response time. τi,j’s stage-completion time,
which is represented as Bi,j , is defined as the response time
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Fig. 5: Three applications from the benchmark suite in [4]. We plot differently sized matrices to show different computation time to
fork/join overhead ratios. Applications compute the Fast Fourier Transform, solve equations using the Jacobi iterative method, and do LU
decomposition. The speed of sequential execution is reported in the graph titles, and Y axis shows speedup over sequential execution.

of τi,j offset from the activation time of τi. Therefore, the
start time of τi,j+1 is Bi,j . The completion time of the last
stage is the task response time. More precisely, Bi,j is used
as the release jitter of the strands in τi,j+1. The strands in the
first stage have 0 jitter. Combining with pi and cki,j , the jitter
of τki,j is used to derive the worst-case interference from τki,j
to strands belong to lp(i).

To reduce the pessimism of the analysis, the RTA in [7]
performs an optimization to remove redundant interference
from higher-priority tasks across stages. When analyzing
a stage τi,j , the strand that contributes to the worst case
response time of τi,j is considered to be the critical strand
of the stage. The core that a critical strand τki,j executes on is
the critical core of the stage. The interference from hp(i) to
τki,j on the critical core is recorded. In the analysis of future
stages, this recorded interference is prevented from identically
impacting those stages. For example, if 1) τki,j , τ li,j+1 and
τwu,v (which belongs to hp(i)) are all assigned to the same
core, 2) τki,j records a specific amount of interference from
τwu,v , and 3) by τ li,j+1’s iterative response time (relative to
τi’s activation) the amount of interference τwu,v can generate
is no more than the amount τki,j records, then τ li,j+1 does not
need to consider interference from τwu,v . Meanwhile, on the

non-critical cores, the interference from hp(i) is “delayed” to
future stages, where it can contribute to critical path in these
stages. This guarantees the worst-case scenario is considered.

Integrating system overheads into the response-time anal-
ysis. Some system overheads are straight-forward to inte-
grate into the RTA. The fork/join costs can be added to
the computation of aggregate strands in a parallel group.
Based on the number of cores a task uses, the amount of
fork/join system overhead added is derived from the results
of our microbenchmarks in Section IV. However, to derive a
tight bound on these overheads using a measurement-based
approach, we would have to run the system with all possible
permutations of threads across sockets – from one thread per
socket, to no socket crossings, to all cores used. We don’t
believe this amount of measurement is practical. Instead, the
assignment algorithm in Section VII ensures that tasks only
cross a socket boundary when they are assigned to all the
cores on that socket. This matches how the microbenchmarks
are parametrized and measured, thus enabling the use of
the simple microbenchmarks measured across one varying
parameter (number of cores).

FJOS overheads. However, there are some subtle cases
that require further attention. Notably, in FJOS, there are



two areas that require additional treatment. First, the IPI
for an ACAP are sent to a destination core regardless of
which thread is executing on that core. Thus the “top-
half” overhead of these interrupts must be accounted for
at the highest priority. Our measurements have shown that
imposes at most an overhead of 0.492 µ-seconds per IPI.
Note that the thread that is activated by a ACAP trigger is
only switched to if it is of the highest priority, so this high-
priority overhead only comes from IPI reception. The rest
of the overhead for thread activation, and all the activities
in the worker for a fork are accounted into the activated
thread. Second, the dissemination threads for the multi-cast
of thread activations execute at a high priority to prevent the
delay of the subsequent activations. For simplicity, here we
are pessimistic: regardless of how many cores on a socket
the dissemination thread will activate, we assume the worst
– all 10 on our system. We measure this overhead to have a
maximum of 14.10 µ-seconds.

Linux overheads. Linux-based implementations do not send
IPIs to activate blocked threads if they do not have the highest
priority on the destination core. This demonstrates a trade-
off in FJOS that attempts to maintain strong separation for
data-structures across cores. In an effort to avoid accessing
shared data-structures between cores, some optimizations are
sacrificed. However the benefits outweigh the costs both for
the spin-based approaches that share only wait-free data-
structures between cores, and for block-based approaches that
provide a thin abstraction over IPIs and IPI multi-cast.

Practical measurement and integration of fork/join over-
heads. As a practical matter, we wish to avoid measuring
the many separate aspects of fork/join. Consider the separate
overheads for a “parent” strand that starts the fork, and the
workers within the parallel stage. These include the overhead
for the forking in the parent, the overhead in the worker com-
ponent of activating, the worker’s overhead in a join, and also
the parent’s overhead in a join. To take these measurements
accurately is quite difficult because they require measurement
synchronization that itself imposes significant overhead. It is
much simpler to instead measure the end-to-end overhead of
the entire fork/join operation, and integrate that into the RTA
as explained above (i.e. essentially adding this overhead at any
fork point). However, if a core is shared by multiple tasks,
then accurate accounting is more difficult: we must add this
end-to-end overhead both onto the parent thread and onto the
local worker thread. Though this double-counts the fork/join
overheads, it is necessary to account for the interference on
other tasks on the core. Note that this is done rarely because,
as we will see in the next section, the assignment algorithm
attempts to prevent tasks from sharing cores.

VII. OVERHEAD-AWARE ASSIGNMENT ALGORITHM

In this section we introduce a simple assignment algorithm
to decide task priorities and to assign strands to threads on
cores. Confirming the results from [7], we have found that
inter-task interference has a significantly negative impact on
the RTA for a fork/join task. Interference on fork/join tasks
has a negative impact because its contribution from multiple

cores can easily have a disproportionate effect on the jitter
of later segments. Thus, the algorithm we use is a greedy
heuristic that tries to use a minimal number of cores to make
a task schedulable. This has the effect of often devoting cores
exclusively to specific tasks. Given the detrimental impact that
crossing sockets has on synchronization [16] and OPENMP
overheads, we use an assignment algorithm that explicitly
attempts to avoid separating tasks across socket boundaries. In
the evaluation section we compare against a more traditional
assignment algorithm which assigns strands using worst-fit
which spreads high-priority tasks across many cores.

The assignment algorithm takes these steps:

1) Assign all tasks priorities consistent with a deadline-
monotonic policy. All strands that constitute a task share the
priority of the task.
2) Order tasks from highest priority to lowest. We studied
the effect of different task orders and found highest priority
first works best. We believe this maximizes the chances of
avoiding having high-priority tasks spreading their interfer-
ence between many cores.
3) For the first unassigned task τi, decide the minimal
possible number of cores it requires: N = dUie.
4) Decide the minimal number of sockets to provide N cores:
S = dN/CPSe where CPS is the number of cores per
socket.
5) If N > Q (total number of cores), we conclude the
assignment fails and the system is not schedulable. Otherwise,
choose the S sockets with the largest available utilization.
Within those sockets, choose N cores with largest available
utilization and store these in an array cores[0...N − 1].
6) Starting from τi,0, assign strands stage by stage. For τi,j ,
assign the strands in that stage to cores using round-robin
policy, i.e. assigning τki,j to cores[k mod N ].
7) Schedulability test: after the assignment, run a schedula-
bility test with the analysis introduced in Section VI.
8) If the schedulability test in the previous step fails, N =
N +1 and goto step 4. Note that only when the N increases
beyond the number of cores in a socket, do we assign across
sockets (thus maintaining consistency with the microbench-
mark overheads of Section IV). If the test succeeds, the task
has been assigned; goto step 3 to attempt to assign the next
task. If all tasks are assigned, the assignment is valid and the
system is schedulable.

Assignment algorithm run-time overhead. The assignment
algorithm is polynomial and its asymptotic complexity is
O((|T | log|T |) + (|T | × ((Q log Q × SK log SK) × ST ×
R) × Q)) where ST is the number of strands in a task
(i.e. for a task τi, ST =

∑
j<si

ni,j), SK is the number
of sockets, and R is the complexity of performing an RTA
calculation from [7]. In other words, for each task, we must
inspect sockets and cores, and assign strands and do the RTA.
The outer loop (step 8) executes at most Q times. Note that
if overheads are measured in cycles, the worst-case cost of
RTA can be quite large, though still strictly polynomial. The
runtime is reasonable in practice: in our Java implementation
of the assignment algorithm, with the random tests described
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in Section VIII, we never observed it to take more than ten
seconds for 1000 random systems, and it would most-often
take around a second.

VIII. SCHEDULABILITY EVALUATION

Fork/join system generation. In this paper there is no
constraint on system utilization or critical path length when
generating random systems. We would like to study system
schedulability under a wide variety of fork/join configu-
rations. We use the following parameters to characterize
fork/join parallel tasks: 1) number of strands in each parallel
group, with default value range [1, 100]; 2) number of parallel
stages (separated by a minimal sequential stage) per task,
which is set to 10; and 3) per task utilization, with default
value range [2, 4]. All distributions are taken from a uniform
distribution. Task periodicity pi is decided by Ui and cmax

i ,
which will be studied in the evaluation. To complete a
fork/join system, tasks are generated until the desired total
utilization is reached. Only systems that are schedulable
with infinite cores are kept. For each configuration of the
simulations (i.e. every point in each graph), we generate 1000
random systems and report average results.

A. Overhead-aware Assignment Algorithm

To investigate the impact of the assignment algorithm,
without the impacts of system overheads, Figure 6 compares:
(1) PST – the resource augmentation bound for fixed-priority
scheduling in the the Parallel Synchronous Task model [6],
(2) PSCPS – the resource augmentation bound of the Parallel
Scheduling for Cyber-Physical Systems from [1], (3) Naive –
a simple worst-fit strand assignment, (4) SA-RTA – our socket-
aware assignment algorithm (Section VII) that attempts to
prevent tasks from crossing socket boundaries, and (5) RTA
– the same as the previous, except that it ignores socket
boundaries. For the first two algorithms, any task set within
their shaded areas is schedulable.

Discussion. We confirm previous results [7] that show that
naive assignments for fork/join tasks results in disappointing
schedulability. However, the RTA significantly increases in
power when combined with this paper’s assignment algo-
rithm. When compared to stronger theoretical results such
as PST and PSCPS, our assignment algorithm paired with the
RTA provides significantly higher, practical schedulability for
random task sets.

The gap between the RTA and SA-RTA demonstrates a trade-
off. To avoid taking system overhead benchmarks for all per-
mutations of threads spread between cores, and to minimize
the particularly detrimental overhead of cross-socket thread
interaction, we avoid socket crossings until a task is assigned
to all cores on a socket. This adds some pessimism seen
here, but enables the further overhead-aware analysis without
unrealistic numbers of overhead measurements for all possible
thread assignments, and practically results in systems with
increased schedulability.

B. Overhead-aware Schedulability Evaluation

Figure 7 displays the effect of the system overheads of
FJOS and Linux on system schedulability. The main fac-
tors that affect system schedulability with respect to system
overheads are (1) system total utilization, (2) per-strand
execution time (relative to system overheads), and (3) per-task
utilization (PTU). The former alters the impact of overhead on
schedulability, and the latter will increase system overheads
as threads are spread across more cores. This requires that
system overheads be derived from values for larger core
numbers in Figure 4. Note that in all of these results, the
“spin” versions use spin-based implementations except in one
case: they use blocking when multiple tasks share a core
to avoid undue interference between them. However, for the
“blocking” results all implementations solely use blocking.

Discussion. As expected, the general trends are that it is
more difficult to schedule tasks that either have a higher per-
task utilization, or that have a higher ratio of task execution
time to overhead. Generally, we can see that the overheads
affect system schedulability in predictable ways. The only
system that can schedule larger (PTU = 6) tasks with a 1ms
WCET is FJOS-spin, given its small spinning overheads. On
the other hand, for smaller tasks (PTU = 3), with an execution
time of 10ms, all systems provide significant schedulability,
even LinuxRT-block. Notably, FJOS-blk is as effective as
LinuxRT-spin. In all cases, FJOS-spin is close to the schedu-
lability without considering taking overheads. In summary,
both FJOS implementations dominate (in our results) the
comparable mechanisms in GOMP, and provide predictable



fork/join for tasks with small execution time, and with large
utilizations.
Impact of Per-Task Utilization (PTU) and Per-Task Execution
Time (PTET). Whereas Figure 7 explores the effects of chang-
ing both per-task utilization, and task size (thus indirectly
modifying the strand execution time), this subsection does
separate parameterizations for each of these dimensions.
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Figure 8 plots the different implementations for differing
per-task utilizations when per task execution time is 25ms.
This effectively assesses how the overheads of the different
implementations scale, and how that affects schedulability.
Note that the measurement at PTU = 18 includes one task
with average size 18, and another smaller task to consume
the desired 24 total utilization.
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Figure 9 plots the fork/join implementations for differing
task execution lengths when per task utilization is 3. This
indirectly impacts the ratio of fork/join overhead to strand
execution time. Thus, as the task execution time decreases,
so does system schedulability as overheads begin to dominate.

Discussion. The low overhead of the FJOS-spin implemen-
tation is reflected in the system’s schedulability. Surprisingly,
the FJOS-block implementation strongly tracks the LinuxRT-
spin implementation (Figure 8). This is significant as it has
the benefits of blocking, thus enabling other tasks to share
the core, to do best-effort processing and to conserve power,
while maintaining high performance and predictability.

IX. RELATED WORK

Fork/join. While other fork/join analyses [1], [5], [6] provide
augmentation bounds for restricted forms of fork/join paral-
lelism, our results demonstrate that a response-time analysis
paired with an optimized and predictable implementation and
a system overhead-aware assignment algorithm can signifi-
cantly raise system utilization. Others [8] approach the prob-
lem of dynamic work distribution for tasks with utilization
less than 1 to decrease lateness for soft real-time systems.

On the implementation-focused side, [3] provide a static
assignment algorithm, and an implementation of the per-core
scheduler (including synchronization). Their overheads mirror
that of the LinuxRT results in Section IV, and in FJOS, we
provide an execution environment customized for efficient,
practical fork/join computation.

We utilize the resource time analysis provided by [7], but
find that it must be paired with an intelligent assignment
algorithm to provide high system utilizations.
Dependent-task frameworks. Asynchronous frameworks
that can exploit pipelined, and graph-driven parallelism via
streaming between separate tasks with explicit dependen-
cies [17], [18], [19]. This research requires the fork/join
model, a much more constrained version of parallelism, but
one that is popular and well-supported. Future work includes
extending the efficient and predictable system support pro-
vided by FJOS to more general and unrestricted forms of
parallelism.

X. CONCLUSIONS

This paper introduces FJOS for practical, predictable, and
efficient intra-task parallelism. We review an existing fork/join
system and introduce the design and implementation of FJOS
that is optimized for predictable, efficient fork/join computa-
tion. Results show that FJOS has significantly less overhead
than GOMP for both spinning and blocking implementations
– 2.5 and 5x smaller worst-case overhead at 40 cores,
respectively. Surprisingly, blocking in FJOS is competitive
with GOMP’s spinning implementation – despite having
context switching and IPI overheads – when a task crosses
socket boundaries. Schedulability analysis tests demonstrate
that our assignment algorithm increases system utilization
for random task sets by more than a factor of 3 over an
existing RTA. When system overheads are accounted for,
results show that FJOS is particularly useful either with
tasks with a high ratio of the number of stages to the
total execution time, or for tasks with large utilizations, thus
requiring the use of many cores. We conclude that FJOS
provides a strong foundation for predictable, real-time intra-
task parallelism. Find the system’s and simulation’s source
code at http://composite.seas.gwu.edu/.
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APPENDIX

A. COMPOSITE Background and FJOS Details.

Scheduling in COMPOSITE. Scheduling policies are defined
in user-level components in COMPOSITE [10]. COMPOSITE
attempts to avoid the overhead of switching to the scheduler
protection domain for interrupts, including IPIs. When a
thread that subsequently blocked on acap wait is activated
by an IPI from acap trigger, the interrupt handler routine
parses structured tables shared between the scheduler and

the kernel, and determines if the currently active thread
has a lower priority than the activated thread. If so, the
thread is context switched without invoking the scheduler.
The scheduler must fill in these tables appropriately given its
own policies. When a thread calls acap wait on a capability
for an event that has not been triggered, it must block. If no
other threads have been woken up, or activated since it was
activated, the system knows it can directly switch back to
the thread it preempted, thus avoiding a scheduler invoca-
tion. Otherwise, the thread is made to invoke the scheduler
component. The scheduler will then update its structures, and
block the thread (i.e. remove it from the runqueue). For more
details on how interrupts interact with user-level schedulers
in COMPOSITE, see [10].
Inter-component fork/join. COMPOSITE focuses on enabling
the encapsulation of a component’s functionality behind its
interface, thus enabling multiple, competing implementations.
If one of a specific implementation uses OPENMP paral-
lelism, and it is invoked by other components that also use
OPENMP, then nested parallelism is essentially required.
The benefit of this form of inter-component fork/join in
COMPOSITE is that any component (ranging from image
processing services, all the way to memory managers) can
use OPENMP. The PARMGR transparently supports this inter-
component fork/join by tracking only the fork/join structure
of the system, and not the specific components. A global
policy that statically determines the allocation of computation
to cores for different segments must still guide the PARMGR’s
creation of ACAPs and threads, and a global analysis of the
system’s timeliness is still required.
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