
Component-based OS Design for
Dependable Cyber-Physical Systems

Gabriel Parmer, Runyu Pan, Yuxin Ren, Phani Kishore Gadepalli, Wenyuan Shao
The George Washington University

{gparmer,panrunyu,ryx,phanikishoreg,shaowy}@gwu

ABSTRACT

Cyber-Physical Systems (CPSes) require the difficult combination

of both high levels of code assurance and significant software com-

plexity. Conventional software systems are designed either for high

assurance ś RTOSes and the minimal software of traditional em-

bedded systems, or feature-rich complexity ś POSIX and general

purpose programming environments with package management

systems to control complexity. Our ability to consolidate these con-

flicting demands will impact the security, reliability, and predictabil-

ity of the systems that tightly control and expand the capabilities

of our physical world.

Though many systems have focused on completely isolating

the most critical functionality from that which is feature-rich, we

propose a more nuanced approach to enabling high-assurance.

Functionality and isolation properties are explicitly designed via

component selection and dependency resolution. A shared set of

components enables strong code sharing and hardening, thus bol-

stering system assurance. To accomplish this, a system foundation

is required that is compositional across components with respect to

the non-functional concerns of security, reliability, predictability,

and scalability. We outline the requirements for such a system, and

discuss an existence proof of many of the necessary features.

1 BACKGROUND AND MOTIVATION

Existing Operating System (OS) designs have taken us very far.

Linux is the de-facto OS in almost every application domain, with

the exception of deeply embedded systems. However, software is in

the process of crossing an important threshold, from being a binding

agent between people and between ideas, to directly controlling

most aspects of the physical world. Engineering disciplines that

are comparably responsible for the safety of the physical world

(for example, civil and mechanical engineering) must adhere to

strict standards, certifications, and regulation. Unfortunately, this

development methodology is counter to the software development

methodologies that have given rise to the most complex software

ecosystems, often iconified by Facebook’s motto to łmove fast and

break thingsž.

We posit that a next-generation software infrastructure is re-

quired that can address the challenge of marrying software of im-

mense complexity, with trustworthy control of the physical envi-

ronment, while scaling in resource consumption from one to many

cores. First, we’ll investigate the risks and shortcomings of current

software structures (ğ1.1 and ğ1.2), then we’ll discuss the necessary

properties of future OSes (ğ2 and ğ2.1), and the inroads that have

already been made (ğ3).

1.1 Beyond POSIX

The POSIX standard has stood the test of time as an enduring foun-

dation for application development. Whereas previous attempts to

łfixž POSIX such as Plan 9 update the system’s core underlying ab-

stractions, its constant extension and expansion has demonstrated

that the abstractions and mechanisms that underlie POSIX are insuf-

ficient for modern systems. Though Linux has served as an adapt-

able sub-straight for the deployment of most computational tasks,

this ad-hoc extension over time has only increased its complexity.

From the size of its code base, to its API surface area, to its extensive

configuration, the Linux kernel is a difficult and moving target for

high-confidence systems. While older Linux deployments are often

more trustworthy as they are łbattle-testedž, they are plagued by

a constant stream of bugs and security compromises which are

challenging in intermittently connected embedded deployments.

Through the real-time patches, Linux has been adapted to exhibit

very low interrupt response times by removingmost operations that

disable interrupts. However, POSIX and all of the Linux extensions

make it difficult to have confidence that every possible execution

path exhibits this behavior, partially due to the complexity of the

kernel’s interactions and large testing surface. Importantly, the

focus on interrupt response time ignores unbounded library and

kernel paths for most system services that are necessary for high-

functionality, multi-processes applications.

Discussion. The economy of making monolithic POSIX systems

dependable is challenging: a single buggy line of code can lead to

a compromise or fault; a single bit-flip in the large-footprint data-

structures can cause erroneous behavior; a single unbounded execu-

tion path can cause unpredictable behavior; and a single cache-line

bouncing between cores can prevent reasonably bounded coordina-

tion. In extremely complex code-bases, these factors are almost by

definition untestable, thus leading to inevitable failures in systems

deployed for decades.

1.2 Beyond RTOSes

In contrast to complex POSIX environments, Real-Time Operating

Systems (RTOSes) often provide simple APIs with light hardware

abstraction layers for devices, and compile-time specialization to

minimize overheads andmemory consumption. Traditional RTOSes

are static and monolithic: applications and OS are compiled into a

single binary, often with no isolation. This design decision is often

based on simplicity, and on minimizing the maximum overhead

for handling interrupts. However, it complicates system security,

update, and flexibility.

Additionally, a lack of effective, built-in multi-core support is a

significant challenge for RTOSes. Adapting existing code-bases to

parallel execution is challenging, and maintaining both predictable



NGOSCPS ’19, April 15 2019, Montreal Canada Parmer et al.

and efficient execution in the face of ever-increasing core counts,

is often impossible for conventional lock-based systems.

Discussion.CPSes with significant functionality ś thus complexity

ś require means to mitigate compromises, reduce fault propagation,

and efficiently use all available resources, including multiple cores.

Traditional RTOSes focus on simplicity at the cost of functional-

ity, which makes them a complicated foundation for feature-rich

requirements.

2 COMPONENT-BASED OS DESIGN

For a future OS infrastructure to scale from small microcontrollers,

up to multi-core processors, and from simple control loops, to

machine-learning, computer vision, and cloud collaboration, we

posit that a more flexible organization is required that gracefully

adds functionality only when required, and customizes the resource

management policies, system abstractions, and isolation boundaries

to system requirements. This will enable the code-reuse and iso-

lation necessary to scale in complexity, while specializing system

behavior to the specific system requirements.

Package management. Software dependency managers are the

de-facto technology to manage the complexity of massive modern

software environments. They exist for OSes (apt, brew, and rpm),

and for modern languages (pip, npm, and cargo). An application

that wishes to use a functionality need only specify it as a depen-

dency, and the package management system resolves the required

transitive dependencies.

Standards. Standards serve the roles of enabling applications to

program to a specific assumed OS behavior, and of enabling certifi-

cation of OSes with respect to some standards. Such specifications

include the AUTOSAR set of standards for automotives, ARINC 653

(the Avionics Application Standard Software Interface), DoD’s Fu-

ture Airborne Capability Environment (FACE), NASA’s core Flight

System (cFS), and middle-ware environments such as TAO.

Component-based OS (CBOS) design. CPS OSes require the vi-

brant eco-system of functionality provided by packagemanagement

systems, combined with the ability to certify their code against well-

defined standards. Component-based system design is focused on

composing functionality out of components. Components are units

of code and data that explicitly export a functional, polymorphic

interface, and specify a set of interface dependencies. Components

are units of potential isolation, thus pairing a system’s functional

building blocks with memory protection barriers. This partitioning

of data-structures, along with the control-flow integrity provided by

defined interface entry points, ameliorates many of the challenges

with existing monolithic systems.

CPSes require strict non-functional constraints such as timely

processing of control loops and planners, and strict memory limits.

As system functionality and policies are built up explicitly from

components, OSes should scale from microcontrollers to massively

multi-core systems. Standards are specified on a subset of the com-

ponent interfaces, and components are managed like packages.

We identify two requirements to enable the utility of CBOSes in

CPSes: (1) Component-definition of all system policies. Functional

and non-functional properties of the system should be configurable

as components. (2) Non-functional Cross-Cutting Concerns (CCCs).

Non-functional constraints must be maintained as a system is cre-

ated from constituent components. Of particular interest are CCCs

such as security, predictability, reliability, and scalability.

2.1 Design for Cross Cutting Concerns

Non-functional Cross-Cutting Concerns (CCCs) are desirable sys-

tem attributes that are the product of all code that is executed by

and for an application. As such, any line of code can compromise a

CCC. CCCs we’ll consider include:

• Predictability. For an application to exhibit predictable execution,

all code executed from interrupt arrival, to I/O output must

execute within a bounded, known amount of computation. As

such, all software that implements the system’s abstractions

and resource management policies leveraged by an application

impact its predictability.

• Security. The security of a system depends on both the correct-

ness and exposure to external inputs of each line of system code.

The vulnerability of an application, then, is dependent on all

code it relies on.

• Dependability. Software bugs and hardware errors (e.g. due to

single-event upsets) can cause system failures that can impact

correct CPS control. All code that is relied on by a specific

application represent it’s surface area of failure risk.

• Scalability. The ability to efficiently and predictably use an in-

creasing number of cores is dependent on the scalability of

all code executed. A single lock, and in some cases, a single

cache-line that is shared across cores can significantly harm

performance.

Given that a single line of code can significantly harm each CCC,

system software must be viewed as the Trusted Computing Base

(TCB) in secure systems. From this perspective, including only

necessary components based on dependencies minimizes this TCB.

3 NEXT-GENERATION FOUNDATIONS FOR
CPS OSES

In our view, next-generation OSes for CPSes must fulfill the require-

ments of component-based design, and enable system design that is

optimized to satisfy each of the non-functional CCCs. We identify

the core challenges for OS design and implementation to include:

• Efficient isolation. Resource partitioning constrains the propaga-

tion of faults and compromises. This benefits security and relia-

bility, and generally alters the fundamental economics around

the CCCs by constraining the scope of impact of any single line

of code. However, isolation isn’t free. Memory isolation requires

inter-protection domain communication; temporal isolation re-

quires scheduling, context switch, and interrupt overheads; and

I/O isolation requires device multiplexing. Reasonable isolation

overheads are required for a dependable, CBOS.

• Policy Customization. CPSes require both tight control over

the non-functional properties of the system, and the ability to

have confidence in the correct functioning of the entire soft-

ware system. Thus the policies and total amount of necessary

code must be component-defined and configurable. As mod-

ern CPSes require both high confidence and high functionality

code to coexist, different policies and abstractions for different

applications must coexist.



Component-based OS Design for Dependable CPSes NGOSCPS ’19, April 15 2019, Montreal Canada

• Composability. Two separate components that provide strong

guarantees with respect to a CCC, when attached together via

a functional dependency, must compose with respect to the

CCC. The assurance of an application depends entirely the

composition of components it depends on.

To understand the complexities behind these challenges, but also

past successes, a few examples:

Inter-Process Communication (IPC). µ-kernels strive to pro-

vide efficient isolation bymovingmany services to user-level łserversž

that use IPC for coordination. The detailed mechanisms behind this

IPC have a significant impact on the composability of the system.

Asynchronous IPC between threads (e.g. POSIX pipes) requires

dependency-aware schedulability analysis, and complex buffer-size

analysis. In contrast, IPC via synchronous rendezvous between

threads has proven to be very fast [4], but has challenging inter-

actions with security [7] and predictable execution [6]. Two pre-

dictable components, functionally bound via IPC, might no longer

be predictable, or might suffer degraded latency bounds. Alter-

natively, IPC via thread migration [1] decouples scheduling and

execution context, and flows a single scheduling context across

components. In this way, timing properties persist across compo-

nents, thus compose. Even in this case, thread migration requires

careful execution context management [11]. Correspondingly, syn-

chronous rendezvous models have been moving toward thread

migration [5, 8, 9] to address this challenge.

Kernel synchronization. Inter-component coordination is often

mediated by the kernel. Thus the scalability properties of the kernel,

and especially of the IPC path, impact the composability of com-

ponents with respect to scalability: the ability of multiple scalable

components to compose into a scalable system is threatened by

kernel side-effects spanning from locks, to IPI-based coordination

that can cause livelock [3]. In fact, we posit that only a kernel that

is entirely wait-free enables the requisite composition with respect

to scalability [10].

Timing policy. As the timing properties of the system are integral

to the correctness of CPSes, they must be component-defined and

configurable. Further, the system must support the co-existence

and cooperation between multiple mutually untrusting schedulers.

Composition of timing properties has been studied in two ways:

hierarchical scheduling theory determines if multiple schedulers,

when composed, can meet task timing constraints; and temporal

capabilities [2] enable schedulers to explicitly coordinate while

maintaining temporal invariants.

Kernel simplicity. An open question is to what extent a kernel

that enables composability of CCCs, and component-definition of

policy can exist without drastically increasing the TCB. There rea-

son for optimism: the Composite kernel’s architecture-independent

code is less than 6K Lines of Code (LoC). For context, FreeRTOS’s

(version 10.2) architecture-independent code is over 9.4K LoC.

3.1 Design Principles

What are the principles that underlie the creation of a system that

addresses these core challenges? Liedtke [4] provides guidance

for µ-kernel design: ł...a concept is tolerated inside the µ-kernel

only if moving it outside the kernel, i.e. permitting competing

implementations, would prevent the implementation of the system’s

required functionality.ž In this vain, we propose two additional

design principles for CPS CBOSes.

Design Principle #1. Component-based customization of all sys-

tem services is fundamental to the design:

Kernel mechanisms must enable the definition of resource man-

agement policies in user-level components, and the additive

construction of high-level behaviors from components.

Design Principle #2. The CCCs must be explicitly accommodated

in the system’s design:

The kernel should include minimal but strong facilities for

component-centric resource isolation, while enabling CCC-

constrained composability.

4 CONCLUSIONS AND FUTUREWORK

CPSes require the challenging combination of significant function-

ality with high assurance, predictable execution. To address this

challenge, we propose the use of component-based system develop-

ment which enables effective code-reuse combined with the com-

position of components to create complex behaviors with effective

isolation. However, the success of such a system requires a CBOS

designed for compositional behaviors with respect to predictability,

security, dependability, and scalability.

Acknowledgments. This material is based upon work supported by the

National Science Foundation under Grant No. CNS-1815690, and by ONR

Awards No. N00014-14-1-0386, ONR STTR N00014-15-P-1182 and N68335-

17-C-0153. Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do not necessarily

reflect the views of the NSF nor ONR.

REFERENCES
[1] Bryan Ford and Jay Lepreau. 1994. EvolvingMach 3.0 to a migrating thread model.

In Proceedings of the Winter 1994 USENIX Technical Conference and Exhibition.
[2] Phani Kishore Gadepalli, Robert Gifford, Lucas Baier, Michael Kelly, and Gabriel

Parmer. 2017. Temporal Capabilities: Access Control for Time. In Proceedings of
the 38th IEEE Real-Time Systems Symposium.

[3] Phani Kishore Gadepalli, Gregor Peach, Gabriel Parmer, Joseph Espy, and Zach
Day. 2019. Chaos: a System for Criticality-Aware, Multi-core Coordination. In 25th
IEEE Real-Time and Embedded Technology and Applications Symposium (RTAS).

[4] J. Liedtke. 1995. On Micro-Kernel Construction. In Proceedings of the 15th ACM
Symposium on Operating System Principles. ACM.

[5] Anna Lyons, Kent McLeod, Hesham Almatary, and Gernot Heiser. 2018.
Scheduling-context Capabilities: A Principled, Light-weight Operating-system
Mechanism for Managing Time. In Proceedings of the Thirteenth EuroSys Confer-
ence (Eurosys).

[6] Sergio Ruocco. 2008. A Real-Time Programmer’s Tour of General-Purpose L4
Microkernels. In EURASIP Journal on Embedded Systems, Vol. 2008.

[7] Jonathan S. Shapiro. 2003. Vulnerabilities in Synchronous IPC Designs. In SP ’03:
Proceedings of the 2003 IEEE Symposium on Security and Privacy. IEEE Computer
Society, Washington, DC, USA, 251.

[8] Udo Steinberg, Alexander Bottcher, and Bernhard Kauer. 2010. Timeslice Dona-
tion in Component-Based Systems. In OSPERT.

[9] Udo Steinberg, Jean Wolter, and Hermann Hartig. 2005. Fast Component Interac-
tion for Real-Time Systems. In ECRTS.

[10] Qi Wang, Yuxin Ren, Matt Scaperoth, and Gabriel Parmer. 2015. Speck: A Kernel
for Scalable Predictability. In Proceedings of the 21st IEEE Real-Time and Embedded
Technology and Applications Symposium (RTAS).

[11] Qi Wang, Jiguo Song, and Gabriel Parmer. 2011. Stack management for hard
real-time computation in a component-based OS. In Proceedings of the 32nd IEEE
Real-Time Systems Symposium (RTSS).


	Abstract
	1 Background and Motivation
	1.1 Beyond POSIX
	1.2 Beyond RTOSes

	2 Component-based OS Design
	2.1 Design for Cross Cutting Concerns

	3 Next-Generation Foundations for CPS OSes
	3.1 Design Principles

	4 Conclusions and Future Work
	References

