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ABSTRACT

Cyber-physical systems (CPSs) have stringent requirements for size,
power, cost, and reaction time. Fault protection mechanisms nega-
tively impact some or all of these considerations. We introduce a
software-only framework that leverages the modular and robust de-
sign of CPSs to allow more flexibility in detecting and recovering
from transient faults. We describe an implementation of this frame-
work that adheres to the POSIX specification, with the exceptions
of architecture specific timers, CPU pinning, and a mechanism to
walk the pages of a process. The system is evaluated with a set of
micro-benchmarks, simulated failure injection campaign, and with
simulated tasks performed by an example CPS.

1. INTRODUCTION

Transient faults in cyber-physical systems (CPS) such as satellites
may be caused by electrical noise [20] and ionizing radiation [10].
Also known as single event upsets (SEUs), these faults manifest
as “bit-flips” and may cause data corruption, computational errors,
and execution faults. Hardware based double and triple modular re-
dundancy (DMR and TMR) [11] are the primary mechanisms for
detection and recovery. Specialized hardware can protect against
some sources of transient faults, but are more expensive than non-
redundant commodity hardware and require more power and space.

Small, standardized satellites such as CubeSats [7] are becoming
increasingly popular [23]. CubeSats, designated by the number of
103cm “units” of volume that they occupy (eg. a 6U CubeSat mea-
sures 10cm x 20cm x 30cm), have a more limited budget in terms
of cost, volume, and power than traditional satellites. CubeSats typ-
ically rely on hardware watchdog timers to power cycle commodity
processors in case of an SEU induced lock up [17]. Software-based
radiation mitigation has the potential to improve fault tolerance for
CubeSats and other non-critical space applications that can not af-
ford hardware-based solutions.

We present Scalable System Support for Reliable Embedded Soft-
ware (S°RES), a framework for component-based systems that de-
tects and recovers from faults with software-based redundancy that
may be scaled on a per-component basis from TMR, DMR, to no
redundancy. S’RES is a user-space approach that uses POSIX in-
terfaces as much as possible to replicate, monitor, and replace com-
ponents. The unit of validation is a component, as defined by CPS
middlewares such as NASA’s core Flight Executive (cFE) [5] and
ROS [15]. Each component is encapsulated as a set of processes, as
in the work of Shye [21] and Débel [2]. Because CPSs interact with
the environment, their components must adhere to strictly bounded
execution times: S’RES provides predictable timing for fault detec-
tion and recovery. S®RES is meant to protect applications against
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uncorrelated single bit upsets in registers and main memory; it does
not address faults in kernel space or in the voting mechanisms.
This paper makes the following contributions:
1. Introduce the design and implementation of S*RES, a fault tol-
erant middleware infrastructure with predictable recovery.
2. Explore the use of the POSIX interface by such a system.
3. Evaluate the system performance through micro-benchmarks and
fault tolerance through a simulated failure injection campaign.

2. RELATED WORK

Mukherjee, Kontz, and Reinhardt [13] use the redundant hard-
ware cores of commodity Symmetric Multiprocessing (SMP) ar-
chitectures to implement hybrid transient fault protection. Soft-
ware threads were duplicated across multiple hardware threads us-
ing hardware queues and buffers to duplicate 1oad instructions and
vote on store instructions before committing. Later work demon-
strated that small losses in fault tolerance could lead to greater per-
formance gains [14], however Mukherjee et al. acknowledge that
small hardware changes are difficult to make due to the complicated
design of SMP architectures. Quest-V [12] and Maestro [24] target
multi-core platforms with software-only mechanisms. Quest-V is a
chip-level distributed system which uses a hypervisor to maintain re-
dundant virtual machines (VM) and calculates hashes of VM mem-
ory to check for consistency. Maestro implements a form of process
level redundancy on TILE64 processors that spawns replicas on file
open operations and votes upon close. S’RES is a software-only
framework which is suitable for single and multi-core architectures.

The OSEK compliant embedded RTOS dOSEK [8] is a software-
only approach that uses static techniques to reduce the amount of
code vulnerable to transient faults: live kernel state is minimized,
loops are unrolled to prevent control flow errors, and system calls are
inlined to prevent return address problems. These instruction level
techniques and others such as duplicating variables and checking
control flow have also been applied to application source code [16].
These techniques may complement S’RES well: process replication
protects components, but instruction level mechanisms would pro-
vide a way to protect the code used to vote on replica outputs.

Microkernels have been shown to offer some degree of transient
fault tolerance by virtue of their design alone: CuriOS [1] recovers
from over 80% of arbitrary bit flips injected into system services,
without the aid of voting mechanisms. Fiasco.OC [2] is a microker-
nel that achieves higher fault tolerance through software redundant
multithreading using a minimized reliable computing base. Song
and Parmer [22] have extended the Composite component-based OS
to detect and recover from latent faults in system services by check-
ing that messages produced by components conform to a system
model. S*RES only provides protection for user-space applications
and does not attempt to protect system services. Pairing S’RES with
a fault tolerant OS may increase overall system reliability.

Shye, Blomstedt, Moseley, et al. [21] introduced PLR, which
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Figure 1: Protected
component  using
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replicates computation at a process level using system call emulation
to run single threaded applications as three replica processes and a
figurehead process. The authors show that 10% to 65% of SEUs (de-
pendent on workload) do not impact the output of the replicas, and
are thus benign. Their PLR implementation detects 100% of non-
benign faults injected, and fork is proposed as a recovery mecha-
nism. S’RES does not use system call emulation; instead the input
and output channels of software components are redirected to a user-
space voter process. This matches the component based approach
employed by CPSs and allows redundancy to be scaled based on the
function of individual components. S’RES is also able to maintain
real-time guarantees and implements recovery using fork(), the
implications of which we explore here.

3. DESIGN

The goal of S’RES is to explore scalable modular redundancy
in CPSs at a component level, within the POSIX specification and
with real-time constraints. Components are a unit of software, typ-
ically a process, which runs continuously and communicates pri-
marily through message passing. The faults considered are SEUs
which result in execution errors (i.e. segmentation fault), control
flow errors, silent data corruption (SDC), or are benign. Scaling
redundancy for components allows system designers to make trade
offs between task performance, resource requirements, and fault tol-
erance. We choose a component based approach because:

1. The concept of a component is pervasive in the CPS domain.
Many middlewares provide for some form of component with
message passing capabilities.

2. Coarse grained units of replication have been shown to be more
efficient due to lower false positive rates [21].

3. Components are designed to be modular and interchangeable
with well defined interfaces, providing a natural boundary to test
for faults and to prevent error propagation. They are often the
unit of fault isolation in systems, supported by hardware mem-
ory isolation mechanisms and threads for temporal isolation.

We model the architecture of middleware frameworks such as
ROS and cFE, which construct CPSs as graphs of communicat-
ing components. Each component encapsulates some functionality,
such as a path planner, and communicates through message passing.
We refer to these units as replicas, which constitutes a sphere of
replication [13] in S*RES. To create a protected component, S°RES
creates multiple replica instances and a voter that maintains consis-
tency between the replicas, detects faults, and facilitates recovery.

In order to interact with the physical world a CPS must stay re-
sponsive to changes in its environment: the components of the sys-
tem must be able to respond predictably. A subset of these real-time
components are reactive: they compose the most safety critical con-
trol loop of the system and are assumed to run once per control loop
period. Reactive components may only produce one message for
each outgoing pipe per control loop, simplifying the voter. This is
intended to decrease voter surface area and ease hardening measures
to be explored in future work. Real-time, non-reactive components
and non real-time components may output multiple messages per
pipe and may run at different rates than the reactive control loop.

3.1 The Voter

The voter coordinates a scalable number of replicas and arbitrates
between them and the rest of the CPS. To the rest of the system, a

protected component is identical to an unprotected one in all aspects
except reliability and timing properties. Figure 1 shows a protected
component with one incoming and one outgoing channel. The voter
interposes upon the communication channels: incoming messages
are copied and passed to each replica while outgoing messages from
the replicas are buffered and compared for consistency by the voter.
This allows the voter to detect SDC.

The voter tracks response time to detect control flow and execu-
tions errors. A control flow error (that does not become an SDC and
is not benign) will result in the replica being halted for exceeding its
timeout period. An execution fault triggers a hardware exception,
which the voter detects indirectly by the replicas failure to respond.

The number of replicas dictates the capabilities of the voter. With
one replica, the voter is limited to detecting execution and control
flow errors while SDCs go undetected. Recovery losses component
state, as no healthy replica is available. With two replicas, execution
and control flow errors can be recovered from by replacing the failed
replica with a copy of the remaining healthy replica. SDCs can be
detected, but the voter will not be able to tell which replica the fault
occurred in. With at least three replicas an SDC can be detected and
recovered from by the voter.

The replica recovery process when no healthy replica exists is the
same as initial startup. When a healthy replica is available, the voter
coordinates with a healthy replica to create a replacement:

1. The Voter detects that a fault has occurred, identifies the faulty
replica, Ry, and selects a healthy replica, Rp,.

2. Ry, creates a new copy of itself, R,,.

3. R, establishes communication with the Voter.

4. The Voter cleans up Ry, updates its state related to R, and Rj,.

3.2 POSIX

The choice of the widely supported POSIX interface gives our
system a large potential user base and allows us to leverage POSIX
defined functionality in existing OSes. The steps of the recovery
process dictate in part the S*RES design requirements: table 1 lists
the POSIX interfaces which we rely on. Voters and replicas are pro-
cesses, which use fork / exec for initial startup. These processes
are scheduled using SCHED_RR except in the case of non real-time
components, and the voter uses sched operations to control the exe-
cution of replicas by manipulating priority. Communication is done
through pipes, which the voter monitors using select with a time-
out to detect control flow and execution errors The voter detects
SDC by comparing replica outputs.

Once a fault has been discovered, the voter sends SIGKILL to
the faulty replica and a user defined signal to a remaining healthy
replica. The healthy replica’s signal handler uses fork to create a
replacement replica from the healthy replica’s state. Upon starting,
a replica uses mlockall with the flag MCL_FUTURE followed by a
page walk with fake writes to ensure that all pages have been copied
over and are resident. In the case of SMR, no healthy replica is
available so exec is used to restart the replica. The Voter will also
use waitpid in the case of SMR to reap the dead process so that
zombie processes do not accumulate.

To reestablish communication with the voter, a replica connects to
it through a Unix Domain Socket (UDS) that the Voter has opened
at a known location. The voter shares the file descriptors of new
pipes with the newly created replica (which may not be related to
the Voter). The replica uses getpid to retrieve its pid, which it
sends to the voter through the same UDS. The pid is used by the
voter to signal the replica during future recoveries.

S’RES attempts to conform to the POSIX interface, but several
exceptions were made. The interface lacks a way to pin processes
or threads to a specific CPU core; S’RES uses the Linux specific
sched_setaffinity to prevent core migration from impacting tim-
ing. Linux uses the copy-on-write optimization on calls to fork,



Table 1: POSIX Compliance: * POSIX.1-2001, {POSIX.1-2001 and POSIX.1-2008, 1Not POSIX compliant

Interface Command S°RES Use and Comments

Process exect, fork*, getpidf, waitpid* Initial component startup, replica recovery, and reap SMR replicas.

Memory mlock* Ensuring memory isolation between replicas after fork with MLOCKALL
Pipe pipe*, read*, write*, close* Data flow between and within components.

sched_setaffinity}

Sched |sched_setschedulerf, setpriorityf | Used to set policy (SCHED_RR) and priority.
Set core affinity.

Select select®

Voter uses to multiplex pipes with a timeout.

Signal sigaction* kill*

Clean up failed replicas (SIGACTION) and to initiate recovery (User defined).

Socket sendmsg*, bind*, acceptt, listen*

Re-establishing Voter / Replica communication. Uses PF_UNIX.

which we circumvent by using /proc/self/maps (not specified
by POSIX) to walk the process’s pages, as discussed in Section 4.3.
To track time in the voter, we decided to use architecture specific
time stamp functions (Section 4.2). POSIX provides timers through
timer_create, however on Linux the user must raise the priorities
of ktimersoftd threads to avoid priority inversions between repli-
cas and voters. The time stamp functions used add less than 20 lines
of code, so this solution was deemed preferable to using nanosleep
which would require additional processes to communicate with the
voter.

4. IMPLEMENTATION

Here we detail both how S®RES is implemented and the steps
required for it to be used in a CPS. We assume that the CPS consists
of executable programs that communicate through message passing
via pipes. Each executable runs as a single process. S’RES adds
functionality to executables by building them with custom signal
handlers and an initialization function to set up the signal handlers.
The executable must call the added initialization function, and the
signal handlers must have access to the replica’s pipe information.

At system startup, a bootstrap program sets up the pipes that
will connect unprotected and protected components together. Un-
protected components are launched directly, with pipe information
passed as command line arguments. The bootstrap program also
launches the voter for each protected component which then launches
the specified number of replicas, passed through command line ar-
guments. The voter creates the replicas, duplicates pipes for each,
and shares pipe file descriptors with the replicas via the same mech-
anism used during recovery (described in Section 4.4).

4.1 User Requirements

The bootstrap program requires the user to provide a description
of the CPS. This description shall list the executable components
that of the system, replication level, priority, and communication
channels with associated timeout periods. The level of replication
may be none, in which case communication channels do not have a
timeout period as the component will be run without a voter. Other-
wise, the specified voter process will be executed.

The bootstrap program itself accepts two file descriptors when
launched: one for the input to the system and one for the output. In
our test setup, a benchmarking process is used to translate between
the simulation environment and the CPS that we have constructed,
and this process creates the input / output pipes and launches the
bootstrap program. In practice, hardware interaction would be done
through unprotected components that generate input for and accept
output from the rest of the system. S’RES does not yet have any pro-
visions to protect components that directly interact with hardware.

The system designer is responsible for the choice of OS and val-
idating that the POSIX implementation chosen is sufficient. S’RES
only addresses faults at the application layer: an OS that is robust
to transient faults may increase overall fault tolerance. The designer
must validate that the OS’s POSIX implementation is suitable for
transient fault tolerance. Section 3.2 describes these issues as well
as non-POSIX functionality that S*RES requires.

The user must assign each component a priority, taking into ac-
count the control loops of their system and avoiding overlapping
priority. An unprotected component runs at the specified priority,
while a protected component runs the voter at the specified priority
and replicas at lower priorities. The priorities should follow the or-
der of execution of the safety critical control loop: the components
dealing with input have the highest priority, with each successive
link in the control loop having a lower priority. Care must be taken
with communication between components to avoid priority inver-
sion [19]: If a high priority component blocks while communicat-
ing with a low priority component, the system could fail if a medium
priority component starves the lower priority component.

4.2 Fault Detection

The first step of the recovery process, discovering that a fault oc-
curred, consists of two main tasks: detecting the fault and discov-
ering the faulty replica. SDC is the most straightforward case: all
outgoing messages from replicas are compared for consistency. If
there is a discrepancy, the replica which sent the minority output is
considered faulty. This requires three replicas, however faults can
be detected with two replicas. Latent faults may occur if the output
from a replica does not completely reflect its health.

To detect execution and control flow errors, the voter uses a time-
out to detect when replicas fail to send output before their timeout
period expires. We track time using rdtscll for x86 systems and
with performance monitor unit commands for ARM, which are not
POSIX compliant. For our tests we disabled clock scaling, although
many architectures provide speed independent timers. Voters set the
timeout for select() calls as the difference between the elapsed
time since input received and the component’s timeout period. The
timeout period is related to pairs of pipes: an input pipe and output
pipe for which each incoming message generates a response. These
pairs are specified in the system startup script used for initialization.
Input pipes do not have to be associated with an output, so a replica
may execute without the voter being able to monitor it. In such cases
the voter will not be able to detect a fault until the next input from
a timed pipe. The voter has a higher priority than its replicas so it
will be able to run even if a faulty replica is hogging the CPU. The
component that generates the input for the faulty replica must also
have a higher priority or it will be starved, resulting in deadlock. For
timed input pipes that generate multiple output messages, the order
of output messages should not be assumed: for cross core communi-
cation, the order in which pipes are written to may be different than
the order in which they are available to be read from.

When a message arrives on an input pipe of a reactive component
on a single core system the voter sends the message to replicas one
at a time while setting the current replica to have the highest pri-
ority. The timeout is set per replica and if it expires, the currently
running replica is determined to be faulty. For multi-core systems
the timeout is for all replicas: the voter sends to all replicas at once
and does not manipulate priorities of replicas on different cores. If
the timeout expires, the voter determines the replica that has not yet
responded to be the faulty replica. During recovery in single core
systems the voter will have to ensure that all replicas have a chance




Figure 2: If a fault
occurs in replica b,
replica a will be or-
phaned.

to finish running (this is not an issue with multiple cores).

For non reactive and non real-time components, components with
one to one relationships between input and output messages may
send bursts of outputs. This is because the period of these compo-
nents is not tied to the critical safety loop: multiple input messages
may be buffered and then sent together, as the voter does not have
knowledge of message size. To deal with this, the voter gives the
highest priority to the replica that has output the least number of
bytes on all pipes and will stop processing new inputs until all repli-
cas are in sync. If a timeout occurs, the replica that is lagging behind
the most is considered the faulty replica. This is a best effort mea-
sure for non real-time processes: replica priority (in our implemen-
tation, Linux niceness values) do not guarantee run order. Tracking
CPU usage directly would be difficult, as the voter may not be re-
lated to the replicas (precluding the use of rusage, for example).

4.3 Replication

New replicas are created with fork, which copies almost the en-
tire state of the replica into a brand new process, with exceptions
such as signal masks and memory locks. So long as the copied pro-
cess is healthy, the new process will be as well. However, many
systems implement copy-on-write to make fork / exec calls more
efficient. While copy-on-write is a known problem for real-time sys-
tems due to the possibility that it will result in unpredictable page
faults, it invalidates the assumption that replicating a process can
provide redundancy. For example, a process could fork, experi-
ence an SEU which modifies memory which is then read by the
child process. The memory, which was not copied because neither
process attempted to write to it, is now incorrect for both processes.
To remedy this situation, when a new replica is created mlockall is
called with MCL_FUTURE. S*RES walks that process’ memory using
/proc/self/maps, making dummy writes to each page, ensuring
that the page is copied over and is resident.

Leveraging fork to replace replicas has a troublesome conse-
quence: replicas may become orphaned. This occurs when a replica,
Ry, is forked to create another replica, R,. R, is now a child of Ry,
so R, will be orphaned if R; experiences a fault. Figure 2 shows
a component after it has experienced a fault. This leads to an un-
common use case for Linux: children routinely outlive their parent
processes, for multiple generations. Anonymous memory pages,
such as used for a process’ stack and heap, are maintained in an
anon_vma_chain structure, which grows by one with each gener-
ation. Upon the original parent’s exit, in this case the voter, the
structure is cleaned up. While the mainline fix was applied in Jan-
uary 2015, older kernels require a short patch [4], which prevents
chains longer than five from being copied during a fork.

A final concern for orphaned processes: the voter will not be no-
tified of their exit unless set as a sub-reaper with prctl(). This
feature is only available in Linux for kernels 3.4 and newer and is
not specified by POSIX. S’RES does not depend on being notified
of a replica’s exit; the voter detects exits in the same manner as un-
responsive replicas. Orphaned replicas are reaped by the init pro-
cess, except for SMR protected component in which the voter must
call waitpid() to prevent zombie processes from accumulating.

4.4 Communication

Once a new replica is created, it must establish communication
with the voter. This is done through a Unix Domain Socket (UDS),
which allows file descriptors to be shared between unrelated pro-
cesses. The voter creates the UDS at a location known to the replicas

during initialization. During recovery, the voter signals and raises
the priority of Ry, so that it is higher than the other replicas for that
voter. The voter then blocks on an accept call, at which point Ry,
will receive the signal from the voter, call fork and return. The new
replica, R, connects to the UDS to receive the file descriptors for
the pipes. A string of meta data is also sent for each of the pipes;
this data is not used by the voter, but is specified in the system de-
scription. Our example CPS uses this data to describe the type of
messages sent over a pipe.

The pipes used for communication between the voter and replicas
may have data buffered in them, but this data is not copied when
a process is forked. This means that the voter must store a file de-
scriptor for both the read and write ends of pipes that provide input
to a replica. The voter must steal whatever is buffered by the pipes
supplying input to R, by reading them, and then write the data to
both Rj and R, once the new replica is forked. This ensures that
both replicas have identical data.

The voter maintains a buffer of outputs from replicas, so this state
must be copied over from this buffer for R, when a new replica
is created (for reactive components, the buffer only stores the last
message sent). Normally these outputs are voted on and then written
to the corresponding voter output pipe, but during recovery the data
is assumed to be consistent under the assumption that the fault inter-
arrival time is greater than the recovery time.

5. EVALUATION

Two sets of hardware were used to evaluate S’RES; a BeagleBone
Black ARM v7A locked at 1Ghz with 512MB of RAM and a com-
puter with an Intel i7 quad-core processor with hyper-threading dis-
abled, clock speed locked at 1.2Ghz, and 8GB of RAM. Three con-
figurations of this hardware were used for benchmarks: 1Ghz ARM,
1.2Ghz x86_64 with a single core utilized, and 1.2Ghz x86_64 with
all four cores utilized. Failure injection tests were performed on
the ARM and x86_64 quad-core configurations. Both systems use
the Linux kernel v4.4.3 with RT-Preempt patch rt9 configured to be
fully preemptable. For micro-benchmarks, components were tested
in isolation and either run with no voter (NMR), or with a voter and
one, two or three replicas (SMR, DMR, and TMR respectively). To
test the failure detection and recovery behavior, we implemented a
component-based control system for a two-wheeled robot in a simu-
lated 2d grid based maze using the Player/Stage robot simulator [6].
The simulator models the physics of the real world, in real-time,
giving us a repeatable environment for testing actual control system
code. The robot must navigate from one corner of the maze to the
other without hitting any obstacles using its global location and six-
teen distance sensors arranged in a uniform ring. The simulator was
run on a separate computer on a local ethernet network.

5.1 Micro-Benchmarks

To evaluate the voter and measure the overheads it introduces,
we ran a controller which echoes back incoming messages with a
variety of voter configurations. Figure 3 shows the response times
for the controller with four component configurations (NMR, SMR,
DMR, and TMR) and the three hardware configurations. Each bar
represents approximately 8000 round trip messages.

With each increase of redundancy level, the system has to send
/ receive one additional message. The size of the message is also
varied from 8 bytes to 4096 bytes. The costs of message passing
are high for the ARM system, and they appear to scale poorly as
well. The quad-core x86_64 configuration performs less well than
its single core counterpart for NMR, SMR and DMR setups, im-
plying that the cross-core communication costs will outweigh the
benefits of parallel processing for short running components.

Figure 4 shows the mean (with standard deviation) and observed
WCET in microseconds for restarting components of various sizes.
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Each bar represents approximately 1500 restarts. The smallest size,
256Kb, is representative of the components used in our test setup.
An empty component occupies approximately 216Kb when exe-
cuted. In the four core configuration, the restarted replica was pinned
to a different core than the replica it was created from. The results
are similar across the single and quad-core configurations, suggest-
ing that there is not a significant cost to migrating cores relative to
overall restart costs. As one would expect, the 1GHz ARM proces-
sor takes longer to restart replicas.

5.2 Failure Injection

Figure 5 shows the components of the system used for the maze
navigation task that we evaluated. The reactive components (sensor
and local navigator) deal with sensor input and generate actuation
commands. These components are responsible for detecting and
avoiding obstacles, and are run at higher priorities than the rest of
the system. The nominal rate for these components to run is 10Hz,
triggered by input sensor data from the simulator. The next two
components (mapper and A* path planner) map the environment and
generate waypoints for the local navigator. These four components
constitute the core system that we evaluate for fault tolerance by
varying their level of redundancy from NMR to TMR together.

The final two components are used to measure the system and are
exempt from failure injection. The logger component records the
location and speed of the robot to a file. The pedestrian component
runs the libccv [9] implementation of the Integral Channel Features
pedestrian detection algorithm [3] repeatedly on a test image. This
will serve as a computation bound background task for use in future

work. Memory leaks in libccv forced us to run the component using
SMR: the single replica calls exit () once finished and a modified
voter is notified using waitpid() to start a new replica.

The priority of components is the same throughout all tests and
configurations. The RT_Preempt patch allows for real-time priori-
ties (from 1 to 99, lowest to highest) to guarantee execution order. A
benchmarker component, which serves as the interface to the sim-
ulator as well as where we track system response times, runs at a
priority of 98. The reactive layer components are the next highest:
the sensor has a priority of 40 and the local navigator a priority of
30. The mapping component has a priority of 20, and the logging
component a priority of 15. Finally, the path planner was run at a
priority of 10. For protected components, the Voter runs with the
stated priority, and replicas are run at a slightly lower priority. For
example, the local navigator’s voter has a priority of 30, and its three
replicas have priorities of 28, 27, and 26. The pedestrian component
is an exception: its voter has a priority of 1, and its single replica
is run as a non real-time process with a niceness value of -11 (on
a scale of 19 to -20, lowest to highest) to guide the scheduler. The
components have priorities less than 50, because that is the priority
at which interrupt handlers run at by default.

We simulate failures with signals to evaluate the fault detection
and recovery characteristics of S°’RES. SIGTERM signals are used
for execution errors, a signal handler that corrupts the next outgoing
message for SDC, and a signal handler that causes to the replica to
enter into an infinite loop for control flow errors. When injecting a
failure, a signal is sent to a randomly selected replica. This does not
simulate the relative exposure of each component, but is sufficient
to evaluate how well the system recovers from faults. For the TMR
configuration, all three types of failures were tested. Since DMR
alone can not recover from SDC, only execution and control errors
are injected for the DMR configuration. Failures were not injected
into the SMR and NMR configurations: SMR loses component state
during recovery causing the robot to become trapped in deadends of
the maze and NMR crashes when any failure is injected.

Table 2 shows the error rate for the system in different configu-
rations while performing the maze task. Injecting failures into the
complete system as it performs a task is a more accurate measure-
ment of the system’s fault tolerance: injecting failures into isolated
components masks communication dependent errors. Data was col-
lected for fifty maze runs in each ARM configuration, and 100 for
x86_64 Quad. The number of faults injected varied given task com-
pletion time, injection rate (2Hz for all except CFE injection on
ARM), and task failures. The injection rate was based off the inter-
arrival time of 500ms as calculated by Song [22] for which there is a
very high probability for any place on earth that faults will not occur
with a smaller inter-arrival latency. This rate had to be reduced to
0.2Hz for injecting control flow errors on the ARM system, which
was unable to run reliably with the higher rate. The target pid of
each injected failure was recorded, and then compared to the recov-



ARM x86_64 Quad

Config Injected | % Error | F Pos. | Injected | % Error | F Pos.
SMR No 0 NA 0 0 NA 0
DMR No 0 NA 0 0 NA 70
TMR No 0 NA 6 0 NA 48

DMR Exec| 17248 | 0.2841 | 10 | 35171 | 0.0313 | 34
DMR CFE | 1814 |[2.0397 | 28 | 29986 | 0.7637 | 453
TMR Exec | 14380 | 0.4033 | 38 | 36599 | 0.0710 | 25
TMR CFE | 1739 |4.8879 | 57 | 24471 | 1.0870 | 239
TMR SDC | 15070 | 0.5839 | 54 | 33034 | 0.5176 | 916

Table 2: Failures injected, percent of failures resulting in errors,
and false positives for each configuration. Failure types: execution
(Exec), control flow (CFE), and silent data corruption (SDC).

ARM x86_64 Quad
Fault | NMR | SMR | DMR | TMR | NMR | SMR | DMR | TMR
None | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100

Exec - - 96 84 - - 93 96
CFE - - 39% | 42% - - 81 54
SDC - - - 99 - - - 81

Table 3: Successful runs out of 100 under different failure injec-
tion models and configurations for the ARM single core and x86_64
quad-core systems. *Only 50 control flow error injections were run
with errors injected at a rate of 0.2Hz.

ery messages from the Voters to generate the error count. When a
voter initiated the recovery of a replica that had not been selected by
the failure injector, a false positive was counted. Control flow errors
proved most difficult to recover from, especially on the ARM plat-
form, and the quad-core injection results reveals issues with false
positives. Even so, the failure rates for all configurations was below
5% with many significantly lower, showing potential for improved
overall system reliability in the presence of SEUs.

Table 3 shows task outcome: the number of successful maze runs
out of 100 runs with varied failures injected and replication levels.
Each run lasts about 160 seconds and is considered successful only
if the robot finishes the maze in under 200 seconds without hitting
any walls. Failure injection was performed in the same manner as
described above. The system performs fairly well when injecting
execution faults and SDC, but control flow errors proved problem-
atic for both ARM and x86_64 Quad. For ARM, only 50 CFE runs
were performed for DMR and TMR: failed recovery often resulted
in the system deadlocking making the tests difficult to automate.
Even though recovery was not successful 100% of the time, each
successful run recovered from approximately 320 failure injections.

6. CONCLUSIONS AND FUTURE WORK

This work presents a real-time application level framework for
cyber-physical systems in which the redundancy of components may
be scaled individually. We explore the use of POSIX features to
implement the framework, such as using fork for recovery, and
the difficulties in using the POSIX interface, such as ancestry is-
sues, copy-on-write, and lack of CPU-pinning in the specification.
Finally, we injected failures into an example system attempting to
complete a maze navigation task to evaluate the fault tolerance of
the system. The results show the potential of the approach: the
highest failure rate measured was less than 5% and the system was
able to complete the simulated task in the majority of runs, most of
them with an 80% success rate despite failures being injected into
replica processes at a rate of 2Hz.

In future work we intend to further explore the question of how
to best scale redundancy for a CPS. Of interest are the trade-offs
between task level performance, level of redundancy, and fault tol-
erance. This is a complicated problem as the fault tolerance of

a system may be negatively impacted by fault protection mecha-
nisms [18], is workload dependent, and depends on the tolerance
of every part of the system. S’RES provides a platform to explore
these issues.
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