JOINFS: a Semantic File System for Embedded Systems

Matthew Harlan

Gabriel Parmer

Computer Science Department
The George Washington University

Washington, DC
{mharlan, gparmer}@gwu.edu

Abstract

Hierarchical file systems are the de-facto abstraction for
storing information on modern computing systems. Though
they are useful for providing structure for categorical data,
their failings are most pronounced on consumer embedded
devices. The limited interface for organizing a directory hi-
erarchy, and abundant structured, network-accessible data
complicate the management of the hierarchy.

JOINES attempts to enhance the tradition hierarchical
file system abstraction by marrying it with an efficient query
system. Special dynamic directories are populated not by a
rigid hierarchy, but by an active matching of query terms
to meta-data associated with the files in the system. Hier-
archical dynamic directories provide the novel concept of
categorizing semantics, rather than the data itself. These
dynamic directories are exposed as normal filesystem direc-
tories, thus enabling applications and scripts to harness the
querying power of JOINFS with negligible effort. JOINFS
maintains file-system performance on normal files and di-
rectories, has a small footprint, and is implemented as a
modular addition to traditional file-systems.

1 Introduction

File systems provide a hierarchical name-space enabling
the organization of system data into separate directories.
Though pervasive, this abstraction is increasingly inappro-
priate with the steady increases in hard-drive/SSD size,
amount of data stored, and the constrained interfaces used to
access and organize embedded systems and consumer elec-
tronics. All of these trends make it more difficult to organize
larger amounts of data. For example, cell phones and other
personal embedded systems often do not provide a natural
file-system interface for users to use to organize their data,
yet the amount of data available to such systems is vast.
Current mobile systems rely on individual applications to
manually manage their own data. The static organization of
directories seems unable to scale to vast amounts of com-
plex data a system is exposed to, even on devices as small
a cell-phones. The web is a collection of data with little

(global) coordination and classification, and is naturally or-
ganized by search. Fundamentally, complex data often has
no single natural category, and instead has many attributes,
any one of which might be useful as a discriminator for a
user or program.

Others have claimed that “hierarchical file systems are
dead”[6], and that search-based data-access should be the
dominant form of organization. Indeed, commodity operat-
ing systems have integrated search functionality in the form
of Windows search [9] and Apple Spotlight [7]. Such con-
cepts are not new: twenty years ago, the semantic filesys-
tem [3] was proposed in which directories are organized by
attributes, and in *93 the Inversion FS implemented a file
system on top of a data-base [4] while exposing querying
functionality. JOINFS is motivated by this shared goal of
enabling semantically-aware access (i.e. that is aware of the
meaning of the contents of files) to vast amounts of data.
However, we also focus on the implementation of a prac-
tical system with low resource requirements, that is fully
backwards compatible, and study its performance impact
on modern hardware.

To provide a semantic, search-based interface to tradi-
tional FSs, JOINFS provides dynamic directories. Dynamic
directories appear as file system directories, but are popu-
lated with either files or directories that semantically match
some a predicate associated with the directory. Each file has
a set of meta-data associated with it, and dynamic directory
predicates are used to match this meta-data, thus present-
ing only those files relevant to the search. Importantly, we
maintain the hierarchical structure even in dynamic direc-
tories: JOINFS enables dynamic directories to nest inside
other dynamic directories, effectively returning the inter-
section of the result set for the parent and child dynamic
directories. Thus, the normal manual organization possible
in the hierarchical name-space can also be used in dynamic
directories.

JOINFS design goals. We designed JOINFS with a
number of goals in mind. These include:

e Dynamic directories. Fundamental to JOINFS is the
concept of dynamic directories that are populated dynami-
cally with content with meta-data that matches a predicate
associated with the directory. This enables search at the

.jfs_sub_query/

_jfs_query="artist=
bach/ ———
beethoven/
mozart/——

Music_beethoven/ ——— #i.mp

Music/
_jfs_query="format=mp3"

/joinfs

.jfs_sub_query/

_jfs_query="album="
2nd_concerto/——— ‘:.mp3
5th_concerto/ ——— .. -MP3

_jfs_query="format=mp3,artist=beethoven"

Figure 1. Example dynamic directory hierarchies created by specific search terms to demonstrate JOINFS usage.
Though we use music in this example, dynamic directory hierarchies can be applied to any files and directories with

any type of meta-data.

file-system level. Additionally, we marry this search capa-
bility with the hierarchical model by enabling hierarchical
dynamic directories, thus enabling the manual categoriza-
tion of the desired semantics of data, rather than the data
itself.

e Transparent Application Enhancement. As JOINFS is
implemented at the actual file-system level, and not in the
shell or as a separate indexing program, any application can
benefit from its functionality. For example, an image view-
ing program can get a succinct list of all images in the sys-
tem by simply creating (or using an existing) an appropri-
ately configured dynamic directory. Indeed this increases
the power of even lowly shell scripts.

o Backwards compatibility. We strive for not only func-
tional compatibility with traditional hierarchical systems,
but also architect JOINFS as an extension on a normal file
system. This means that a traditional FS is still used, and we
maintain performance compatibility with previous systems.

o Low resource requirements. As appropriate for em-
bedded devices including consumer electronics such as cell
phones, we focus on minimal resource utilization including
both CPU and memory. JOINFS uses only technologies and
libraries that are appropriate and commonly found in these
environments, and does not require — through also does not
preclude — a kernel-level implementation.

Contributions. This paper makes the following con-
tributions: 1) it introduces the concept of dynamic direc-
tories that marry semantic search and hierarchical catego-
rization to enable hierarchical categorization on semantics,
not data, 2) it details a practical user-level implementation
of JOINFS that builds on commonly available technolo-
gies, and 3) empirically evaluates the system to measure its
performance characteristics. JOINFS provides a practical
and powerful solution to the data management problem and
is tailored for use not only on conventional desktops and
server, but also embedded and mobile systems.

The rest of this paper is organized as follows: Section 2
discusses how JOINFS is harnessed by applications and
users. Section 3 outlines JOINFS’s implementation, and
Section 4 discusses its experimental validation. Section 5
covers the related work while Section 6 concludes.

2 JOINFS Interface and Use

Much of the novelty of JOINFS is in the interface of the
semantic search with the file system, and in hierarchical dy-
namic directories. JOINFS must associate queries with di-
rectories to populate dynamic directories. For this purpose,
and to store the meta-data associated with each file, we use
POSIX extended attributes. Many modern file-systems en-
able the storage of meta-data in the form of untyped strings
in extended attributes associated with a file.

Dynamic directories. The simplest example usage sce-
nario for JOINFS use is to create a dynamic directory hold-
ing file matching a search. We use the setfattr com-
mand to associate a named attribute with its value. For
this paper, we will describe setting attribute n to value v
on file £ as (£,n,v). Given a file system with a num-
ber of file types, we can search for all of the mp3 files
by creating a directory Music, and setting a fixed at-
tribute name _jfs_query to a list of key=value pairs:

(Music, "format=mp3"). The directory will be popu-
lated with all mp3 music files. Queries can be more specific,
for example, (Music_beethoven, "format=mp3,
artist=beethoven"), in Music_beethoven will
contain all mp3s with music by Beethoven. Dynamic di-
rectories is dynamically updated with changes in the file
system. If new mp3s are added to the file system, or ex-
isting ones are removed, they will appear or disappear from
the dynamic directory, respectively.

Hierarchical dynamic directories. JOINFS not only
adds semantic search to the file system interface; it also
maintains a hierarchical file system interface. This en-
ables the simple categorization of search data. To en-
able hierarchical dynamic directories, each dynamic di-
rectory can optionally include a .jfs_sub_query di-
rectory. In this case, the parent dynamic directory’s
query will result in directory results, rather than files.
The . jfs_sub_query directory can have queries asso-
ciated with it similar to the parent dynamic directory:

(Music/.Jjfs_sub_query, "artist="). Intuitively,
this says that the dynamic directory Mus ic should be pop-
ulated with a number of directories, each with the name

JoinFS Process Processes
e 0
_ . - -
S’Ftrlbtjte/[g/nahmm ifs_db_op
irectory Cache thread
4 pool SQLite
dynamic? *
A type of access
native?
l v A A
user—level

kernel-level I

Figure 2. The high-level JOINFS design. The kernel buffers file data, and JOINFS passes file requests on to the native
file system. Dynamic directories are handled by the logic and SQLite backend.

of one of the artists (i.e. the directories names are the
unspecified values associated with given key). Each of
these directories includes that artist’s mp3 files. Adding
Music/.Jjfs_sub_query/.jfs_sub_query and the
attribute (Music/.jfs_sub_query/
.jfs_sub_query, "album="), will now create an or-
ganization where within Music, there is a directory for
each artist, in each of those directories, there is a subdi-
rectory for each album for that artist, and in that directory
are the actual mp3 files by that artist and in that album.

This example demonstrates how JOINFS enables the cat-
egorization using hierarchical structures of not the data it-
self, but of the semantics of interest. Dynamic directories
are created for semantic concepts, not data, and JOINFS
automatically populates the directory with the appropriate
data.

2.1 Metadata Generation

Though the previous example involved mp3 files,
JOINFS is generic in that any file can be annotated with
metadata specific to its semantics. This annotation is be-
yond the scope of JOINFS. We currently use shell scripts to
parse id3 tags for music files, but similar programs could
insert semantically relevant metadata for other forms of data
such as images, video, or source code.

3 JOINFS Design and Implementation

JOINFS uses a number of existing technologies to avoid
recreating the wheel. We implement JOINFS on Linux,
and use FUSE [1] to integrate with the file system names-
pace. FUSE is “File systems in USEr-space”, and enables
the implementation of file systems as separate user-level
processes. Though FUSE has some performance disadvan-

tages [5] compared to native, kernel file systems, it is ap-
propriate for prototyping advanced file system functionality.
With FUSE, file system operations and requests are trans-
lated into inter-process communication (IPC) with the file
system process.

JOINFS makes use of a data-base backend to track file
system files and meta-data. For this, we use the SQLite [8]
database. Though SQL1ite does not typically provide com-
petitive write performance compared to more complex data-
bases, it is widely accepted on embedded platforms and is
deployed, for instance, in the Android mobile platform. We
find in our evaluation (Section 4) that its performance is not
prohibitive, and its memory consumption is appropriate for
a somewhat capable embedded platform.

links metadata_values metadata_keys
inode # value key

path fk_key key_key

native path L fk_fs_obj

key_fs_obj ‘—r

Figure 3. The database schema for JOINFS. Bold
items are primary keys; arrows are foreign keys.

The database has a simple schema, and includes
only three tables: links, metadata_values, and
metadata_keys. The relations between these tables are
depicted in Figure 3. The path is the complete path
through the file system namespace exported by JOINFS to
the actual file identified by filename.

3.1 Normal File System Operations

A key design decision in JOINFS is to minimize the in-
volvement of the database in normal file operations. Due
to this, we do not maintain all file data in the database, and

instead use the native file system for holding file data. This
means that critical read and write performance are not sub-
stantively effected by JOINFS, thus taking JOINFS off of
a critical path. In fact, as much functionality as possible
is handed off by JOINFS to the native file system. This
includes permission checking, real path lookup, hard-link
reference counting, and file I/O.

When a request to open, or read a directory is made,
JOINFS must determine if the access is made to a dynamic
directory and it should be handled via data-base accesses,
or to a native file object and it is passed to the native file
system. The JOINFS file system is mirrored on the native
file system with the exception of the contents of dynamic
directories. To determine if a file system request is for dy-
namic contents, JOINFS simply executes a stat on the
object in the native file system. This does impose the over-
head of an additional system call on each file access that
reaches JOINFS (i.e. requests that aren’t satisfied by the
Linux buffer cache). This is a relic of our implementation
on FUSE and this overhead would be diminished if JOINFS
were implemented in the kernel.

JOINFS does impose overhead on some normal file op-
erations. Namely, creating, deleting, and adding attributes
to file system objects. File system object creation and dele-
tion do entail some overhead as the file must be inserted into
or removed from the 1inks table, and attribute operations
have overheads as they are stored in the metadata tables.
We study this effect in Section 4.

3.2 Dynamic Directories and SQL Generation

When a request is made to read the contents of a direc-
tory (e.g. via readdir), and JOINFS finds that it does ex-
ist in the native file system, it must determine if it is a dy-
namic directory. To do this, JOINFS checks if the attribute
_jfs_query exists for that directory. If the attribute has
a value, the directory has dynamically generated contents.
Attributes are cached, so this check can often be performed
while avoiding data-base interaction. To return the contents
of the dynamic directory based on the query, JOINFS im-
plements a lightweight cache of pathnames used to save the
resulting files generated from a data-base query. This tech-
nique enables the results of expensive SQL query synthesis,
data-base queries, and parsing of the return values, to be
saved for future access.

Our experiments demonstrate that the memory overhead
for these caches is minimal. These caches serve the impor-
tant functions of avoiding database accesses when possible.

If the results of listing a dynamic directory are not
cached, the SQL query is formed from the key value pairs
of all nested hierarchical dynamic directories. They intu-
itively equate to the intersection (or conjunction) of each
of the terms. For each level of dynamic directories, an

SQL sub-statement is constructed that matches the cur-
rent metadata value of the parent directory (e.g. if in
the “Beethoven” directory, it matches key=artist and
value=Beethoven), and returns the set of file identifiers
(database keys). The intersection of these keys is used to
compose the queries of multiple levels of dynamic directo-
ries. When the final level of dynamic directories is found,
and it is time to generate files, thus a SQL statement takes
the file identifiers generated through this process, and re-
turns file information that JOINFS uses as the return values
for the readdir call.

3.3 Database Interaction

SQLite provides a fairly standard database interface.
However, for performance, we added a thread pool, and
an extra caching layer. All interactions with the database
are done using a jfs_db_op structure. This API provides
functions for creating queries, synchronizing processes with
the multithreaded SQLite query engine that actually exe-
cutes the database operations, and cleans up database oper-
ations once they finish. The API essentially acts as a layer
between JOINFS and the database, enabling the migration
away from SQLite in the future if desired. JOINFS uses
SQLite as it has a low footprint, has acceptable perfor-
mance, and is widely available for many embedded and mo-
bile platforms.

Thread pool for increased concurrency. In order to en-
able fast concurrent database reads, JOINFS makes use of a
thread pool. This thread pool initially starts with the same
number of threads as FUSE, but can expand and shrink as
necessary. The SQL interface adds all database read oper-
ations to a job queue. The read pool grabs jobs from this
queue, executes them, and returns the results. The thread
pool then wakes up the thread that added the job so that they
can continue processing. JOINFS prevents write operations
from taking place by restricting all database connections to
read-only for all reader threads.

The thread pool has the additional benefit of enabling
database connection caching with SQLite. Without the
thread pool, a database connection would have to be made
for each database operation which significantly degrades
performance.

JOINFS handles writes separately because SQLite does
not support concurrent write operations. JOINFS instead
uses a single writer thread with its own job queue to per-
form all database writes. JOINFS also supports executing
multiple writes at once as a transaction. This enables more
complex inserts without having to repeatedly attain an ex-
clusive lock on the database file.

Caching to avoid database access. Even though
databases often cache their results in memory, it is desir-
able in certain situations to have an additional caching layer

Seconds

S Mey; L
Mayy /:,'Ies ed/llm Fi/esar Qe Fil@s

Figure 4. Overheads of transferring a directory hier-
archy into JOINFS.

in JOINFS to avoid data-base interaction all-together. Thus,
JOINFS caches pathnames and metadata for the contents of
dynamic directories to avoid having to query the data-base
again.

3.4 Hybrid Directories

As JOINFS marriages file systems with database con-
cepts, there are interesting interplays between the two ab-
stractions. For example, a natural question is what happens
when a file is created inside a dynamic directory? In such
cases, JOINFS stores the file or directories created in the
dynamic directory’s native backing store !. Any files cre-
ated in these directories will appear in the contents of the
dynamic directory. In the future, we will support automat-
ically generating metadata for files placed into dynamic di-
rectories. This metadata will be determined by the metadata
search terms of the dynamic directory.

4 Experimental Results

To evaluate the performance impact of JOINFS, we use
a machine with a 3.3GHz Core 17-920, Intel processor with
6GB of RAM, and a 7200 rpm Western Digital Caviar Black
1 TB SATA drive. We use Ubuntu 10.04 LTS configured to
use the ext3 file system and the Ubuntu version of Linux,
kernel-2.6.32-30-generic.

4.1 Data Transfer

In this section, we wish to investigate the overheads of
JOINFS for normal file operations (not to dynamic directo-
ries) such as creation, and population of file data. JOINFS is
not designed to make these operations faster, and is instead
meant to minimize the overheads to these operations.

'Each dynamic directory and . jfs_sub_query are stored on the na-
tive file system. The query results that populate those directories dynami-
cally are not.

Figure 4 plots the amount of time it takes to transfer
files from an ext3 file system mount point into a mount
point for 1) JOINFS using a normal directory, 2) NULLFS
the FUSE file system that simply passes all file system op-
erations on to the Linux file system (in this case ext3),
and 3) ext 3, the default Linux file system. We include the
results for ext 3 only as a lower-bound on performance.
FUSE imposes some overhead, especially on transfers for
small files [5], so we compare more directly to NULLFS.
We transfer three different classes of files: 1) small files
— the Linux source code directory which includes 37,998
comparably small files totaling 400.3 MB (10.5 KB each on
average), 2) medium files — a set of 209 music files totaling
1.4 GB, and 3) large file — 1 movie file totaling 1.4 GB. In
Figure 4, we plot the average of 5 runs for each of the file
systems.

For small files, we see that there is some overhead both
for NULLFS, and JOINFS, and that JOINFS has an over-
head over NULLFS of 48% (14.24 seconds vs 9.59 seconds).
Though this overhead is not insignificant, as the file opera-
tions become dominated by reads and writes instead of file
creation (for medium and large files), we see that all tech-
niques are roughly equivalent (this echos results from [5]).
For devices such as mobile phones and embedded systems
where the focus is on data consumption rather than creation,
we believe these overheads are acceptable.

l Filesystem \ Memory consumption ‘
NULLFS 6.9 MB
JOINFS 9.8 MB

| JOINFS Overhead | 75 B per file |

Table 1. Memory consumption of JOINFS after cre-
ation of 38,208 files.

Table 1 plots the memory usage of JOINFS and NULLFS.
Memory consumption of the system is an important factor
in analyzing its acceptability in many consumer electronics
and embedded applications. We find that JOINFS imposes
some overhead due to the data held in the 1inks table of
75 bytes per file. Even in memory-constrained devices, we
deem this to be acceptable.

4.2 Dynamic Directory Performance

In this section, we investigate the performance of the
dynamic directory implementation in JOINFS. We wish to
study the basic costs of doing a readdir in dynamic di-
rectories that queries the meta-data for all files, and pro-
duces the resulting directory contents. We study the effects
of changing the number of files returned by the query, and
the depth in the hierarchy of dynamic directories of the re-
sults.

ext3 mm—

nullFS ===

JoinFS: depth 1
0.04 - JoinFS: depth 2 _

0.05 r

JoinFS: depth 3 ===
K JoinFS: depth 4 —
c 0.03 M
o
2 |
? 002 [
0.01
0 L L

100 200 400 800
Number of files

Figure 5. Latency for listing a variable number of
files from a directory hierarchy. For JOINFS, we vary
the depth of the hierarchy of dynamic directories, and
measure query latency.

Figure 5 plots the latency for completing an 1s com-
mand in a directory for 1) JOINFS, 2) NULLFS, and
3) ext 3. For JOINFS, we plot the latency in a sub-directory
of a variable depth into the hierarchy of dynamic directories.
The other file systems do not use nested directories. For all
file systems, we plot the latency for a varying number of
files in the directory. Again, we plot the average of 5 runs.

JOINFS for a dynamic directory at a depth of 1 is within
a factor of 5 of the latency for all numbers of query re-
sults to NULLFS. As we have nested dynamic directories,
the overheads grow as complicated queries are synthesized
along the path of directories, and the SQL queries generated
increase in complexity. We don’t believe these overheads
are significant enough to discourage the use of nested dy-
namic directories for a categorical organization of semantic
results.

l Filesystem ‘ Memory consumption ‘
NULLFS 0.42 MB
JOINFS 2.8 MB

| JOINFS Overhead | 396 B per file |

Table 2. Memory consumption of JOINFS for 6000
files in dynamic directories.

Table 2 plots the memory overhead after the queries
(i.e. readdirs) have completed for all number of files
(1500 in total), for all dynamic directory depths (thus, 6000
files listed in total). The overhead above NULLFS per file
queried is 396 bytes per file. This includes index overheads
in SQLite, and the overhead of JOINFS data-structures.
We believe that an overhead of 2.8 MB is not insignificant,
but is acceptable for queries that return 6K files.

5 Related Work

Multiple operating systems have investigated incorpo-
rating relational concepts into the file system [2, 10]. We
are unaware of any previous system that has aggressively
mixed a relational data-base with a file system while en-
hancing both categorical hierarchical structures with search
and search with categorical, hierarchical structure. Dy-
namic directories provide not only a file-system represen-
tation of search, but nested dynamic directories enable the
categorical, hierarchical organization of not data, but se-
mantic information.

Semantic search and database file systems. [6] pro-
claims that hierarchical file systems are dead. JOINFS takes
a more nuanced approach in which we still support hierar-
chical file systems, but integrate in a novel way dynamic
directories into a hierarchical structure. [3] provides an im-
plementation of semantic search in a file system, but does
not provide nested semantic searches. As JOINFS is imple-
mented on a modern OS, we provide valuable insights into
its applicability in embedded and mobile systems. [4] im-
plements a file system interface on top of a data-base. Un-
like this approach, JOINFS focuses on backwards compati-
bility where possible by relying on a traditional file system
for data-storage and hierarchical organization while provid-
ing dynamic directories as an extension.

Data indexing on top of the file system. Many modern
systems use search applications on top of an existing file
system to index data and enable search [9, 7]. Even the
lowly 1ocate command is implemented in this fashion.

6 Conclusions

This paper presents the design and implementation of
JOINFS. JOINFS integrates semantic search on top of a
hierarchical file system structure in a manner that enables
the continued use of optimized, existing file system, while
adding dynamic directories that are populated by a search
term. In integrating the hierarchical namespace with se-
mantic search, JOINFS provides the novel concept of nested
dynamic directories. Each sub-directory enables the refine-
ment of the parent directory’s search. In such a way, the
results of a search can include not only files, but dynamic
directories themselves. This enables the normal hierarchi-
cal techniques for categorization to be applied not to the
data itself, but to the semantic searches.

In integrating search in a natural way with hierarchical
file-systems, the power of semantic search is made available
to any application without any additional code. A mobile
application for displaying pdf files can easily access all
pdfs in the system by listing a dynamic directory. Even
shell scripting is enhanced.

We have shown that the processing overheads imposed
by JOINFS are acceptable for a great many applications,
and that the memory overheads are generally acceptable for
a variety of embedded and consumer electronics applica-
tions.

The JOINFS source is located at
http://github.com/mharlan/joinFS.

References

[1] Filesystem in user space: http://http://fuse.sourceforge.net/,
retrieved 4/1/11.
[2] D. Giampaolo. Practical File System Design with the Be File

System. Morgan Kaufmann, 1999.
[3] D. K. Gifford, P. Jouvelot, M. A. Sheldon, and J. W. O’Toole,

Jr. Semantic file systems. In Proceedings of the thirteenth
ACM symposium on Operating systems principles, pages 16—

25, 1991.
[4] M. Olson. The design and implementation of the inversion

file system. In Proceedings of the USENIX Winter 1993 Tech-

nical Conference, 1993.
[5] A. Rajgarhia and A. Gehani. Performance and extension of

user space file systems. In Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC *10, 2010.

[6] M. Seltzer and N. Murphy. Hierarchical file systems are dead.
In Proceedings of the 12th conference on Hot topics in oper-
ating systems, 20009.

[7]1 Apple spotlight: http://www.apple.com/macosx/what-is-
macosx/spotlight.html, retrieved 4/1/11.

[8] SQLite: http://www.sqlite.org/, retrieved 4/1/11.

[9] Windows search: http://www.microsoft.com/windows/
products/winfamily/desktopsearch/default.mspx.

[10] WinFS: http://blogs.msdn.com/b/winfs/, retrieved 4/1/11.

