
1

eWASM: Practical Software Fault Isolation for
Reliable Embedded Devices

Gregor Peach, Runyu Pan, Zhuoyi Wu, Gabriel Parmer, Member, IEEE,
Christopher Haster, Ludmila Cherkasova, Member, IEEE

Abstract—As we connect more microcontrollers to the Internet
and employ them to control the physical world around us,
their reliability and security is increasingly important. Many
microcontrollers provide limited facilities for hardware isolation,
and real-time OSes offer custom APIs, that require coupling
applications into the ecosystem and abstractions of that specific
OS to leverage isolation.

This paper investigates the use of software sandboxing of
applications to support isolation for resource constrained devices.
Toward this, we detail the design of eWASM, a processes abstrac-
tion that adapts a popular sandbox, Wasm, for microcontrollers.
eWASM provides a runtime to constrain memory accesses and
control flow, enabled by our aWsm Wasm compiler. We discuss
and evaluate its multiple implementations that effectively trade
time and space, optimizing for the constraints of embedded
systems. This enables popular languages (e.g., C) to be effectively
sandboxed by software. We demonstrate performance within
40% of native C on Polybench. We believe this is a practical
and compelling result for many IoT domains, and it represents
the first compiled sandboxing environment for microcontrollers.
We show that restrictions of the current Wasm specification lead
to significant memory consumption and provide suggestions for
the creation of an embedded-specific Wasm variant.

Index Terms—Web Assembly, Software Fault Isolation,
Control-Flow Integrity, Embedded Systems, Sandboxing

I. INTRODUCTION

Industry 4.0 and the Internet of Things are driving the inte-
gration of microcontrollers into IoT networks that effectively
interconnect sensors and actuators to provide useful context
about the environment. Arm believes that a trillion new IoT
devices will be produced by 2035 [1]. At the same time as
embedded systems are increasingly exposed to a network con-
nection, their complexity is significantly increasing. Network
connections open the embedded systems to malicious intents,
meaning that even a single buggy line of code can lead to
compromise, threatening the controlled physical assets, and
potentially human safety.

Unfortunately, current microcontroller software stacks are
complicated to use in trustworthy embedded systems. These
stacks generally lack strong facilities for isolation. Lacking
isolation, compromises or faults can allow malicious code
to alter parameters (e.g., replacing a and b in memset(a, 0,
b) with SRAM BASE, and SRAM SZ), or hijack control flow.

Gregor Peach, Runyu Pan, Zhuoyi Wu, and Gabriel Parmer are
with the Dept. of Computer Science, George Washington University,
Washington, DC e-mails: peachg@gwmail.gwu.edu, {panrunyu,
zhuoyiw1,gparmer}@gwu.edu.

Christopher Haster and Ludmila Cherkasova are with Arm Research, USA
e-mails: {Christopher.Haster,Ludmila.Cherkasova}@arm.com

For example, a buffer overflow in telnet can corrupt UAV
flight software [2]. Isolation mechanisms decompose code and
data into separate protection domains, each of which can only
access the resources within that domain. Short of full system
verification, defense-in-depth practices motivate constraining
the effects of any errant or compromised behavior, so they
impact a controlled subset of the system.

Hardware support is often used to isolate applications
from each other and the OS from applications. Dual-mode
protection enables the kernel code to be inaccessible from
applications, at the cost of requiring mode transitions. In ad-
dition, Memory Protection Units (MPUs), which are common
in microcontrollers, enable the partitioning of memory into
subsets, each accessible by separate applications. MPUs are
limited in that they can only protect a finite (small) number of
memory regions, and some implementations have significant
alignment constraints on those regions. Despite this, research
has used them to provide an isolation infrastructure based on
VMs [3], to protect user-level applications [4], and, when
interwoven into code, to inline the protection switches [5].
MPUs require OS, hardware, and build-system support, thus
tend to require integration between OS and application (i.e.,
the application to use custom OS abstractions). Unfortunately,
the uptake of hardware memory isolation has been limited in
microcontrollers.

As one alternative, software techniques for type safety
and for memory safety are promising avenues to provide
isolation without relying on hardware features nor OS support.
Languages, that provide type safety, ensure that all memory
accesses adhere to the proper type of the data being accessed.
Thus, memory accesses are constrained only to memory
provided by the language runtime, and are prevented from
corrupting other applications and OS data. The popularity
of scripting languages including javascript, python, and lua
(through duktape, micropython, and the lua interpreter,
respectively) demonstrates the appeal of a safe programming
environment.

As a second alternative, Software Fault Isolation (SFI [6])
techniques provide memory safety, in which loads and stores
are constrained to a sandbox. When this data sandboxing is
paired with control flow integrity (CFI) [7] – which ensures
that execution can only follow paths intentionally generated
by the compiler – the application’s execution and memory
accesses are constrained to the sandbox. Unlike in systems that
use type safety, sandboxed environments allow the application
to freely access any memory within the sandbox. This property
enables legacy, widely deployed, and unsafe code written in

languages such as C to execute with the benefits of isolation.
There is a long history of research into SFI sandboxes [6],

[8], [9], [10], [11], [12], [13], and they have been broadly
deployed in web browsers [11]. There has been less research
into sandboxes on microcontrollers [13], [14], despite their
potential to increase isolation in an environment, where limited
resources encourage legacy and unsafe code. SFI approaches
ensure memory safety by inserting software checks on load
and store instructions to bounds-check their target addresses.
To ensure CFI, indirect function call invocations (through
function call pointers) have their target address and function
types validated when invoked. Additionally, the return address
saved in the invocation stack must be protected from buffer
overflow attacks, often by separating out a control stack to
save these addresses, and a data-stack to pass variables [13].
Unfortunately, the overheads of performing the necessary SFI
checks are a concern, given the limited resources of micro-
controllers [15]: ”The [...] pure software mechanism based on
Software Fault Isolation [6] would be too expensive for our
embedded applications because it requires that all memory
operations in a program are masked”. Memory consumption
is an additional concern for SFI sandboxes: all checks require
additional instructions, increasing ROM size. Thus, in this
paper, we design various sandboxing implementations and
analyze their trade-offs in computation and memory. We
believe this shows the practicality of SFI and its ability to
provide strong isolation in resource constrained systems.
SFI standardization: WebAssembly (Wasm). There has been
a popular effort to standardization of SFI in WebAssembly [16].
Despite the name, Wasm is a general sandboxing standard
applicable beyond web browsers. It defines an intermediate
assembly language (Wasm) and a semantics for that language.
Different implementations exist for Wasm, and interpreters are
gaining popularity on microcontrollers (see Wasm3 [17]). The
Wasm standard has the significant benefits that it has created a
strong community, an expansive set of tools for managing and
debugging Wasm, and broad language support for compiling
to Wasm (many LLVM [18]-supported languages).

Motivated by the strengths of standardization, this paper
introduces eWASM– a Wasm compiler1 and runtime for
embedded devices. In addition to providing a Wasm runtime,
eWASM enables an evaluation of various generic mechanisms
for memory bounds checking and exploration of the trade-offs
between the processing efficiency and memory consumption.
The research questions we aim to answer include the following
ones:
• How should memory bounds checks within a sandbox be

designed to provide effective resource usage and strong
isolation?

• What performance can be achieved relative to native code
and a Wasm interpreter?

• What adaptations to the Wasm standard are needed to
support and optimize for the embedded systems?

Contributions. The paper offers the following contributions:

1Our Wasm compiler is called aWsm and is open-sourced along with
eWASM at www.github.com/gwsystems/awsm/.

• We detail the design and implementation of eWASM: an
efficient sandbox for strong SFI targeting Arm Cortex-M
microcontrollers.

• We investigate various mechanisms for sandbox memory
isolation and demonstrate their trade-offs in CPU and
memory efficiency. This analysis leads us to a solution
that supports the fastest sandbox for microcontrollers (to
the best of our knowledge).

• Finally, we investigate and analyze these mechanisms to
identify the aspects of the Wasm specification that are ill-
suited for using the limited resources of microcontrollers
and provide the suggestions for creating an embedded-
specific Wasm variant.

II. RELATED WORK

Type safe languages. There is long history of using safe
languages in embedded systems. TinyOS’ nesC [19] used a
type-safe environment, paired with a component-based sys-
tem composition style to program deeply embedded systems.
Tock [4] uses the Rust language to enable type-safe capsules
in the kernel to extend system functionality, while using the
MPU to isolate user-level applications. Both rely on cooper-
ative scheduling for components/capsules. eWASM provides
a process model with preemptive scheduling, and focuses on
providing a secure application sandbox more-so than system
extensibility.

Type-safe languages such as javascript, lua, and python
(through duktape, lua, and micropython, respectively) have
proven to be popular programming environments for IoT
devices. They enable a safe programming environment in a
high-level language that is used to dynamically extend device
functionality. In contrast, eWASM leverages the language-
independent Wasm environment to execute a large array of
languages in a safe sandbox with performance that is both
better and more predictable than a comparable interpreter.
Memory safe runtimes. Software sandboxing techniques have
a long history [6], [8], [9], [10], [11], [12], [13], [14]. Some
focus on the verification of the sandbox [12], [13], while others
only focus on CFI [14].

Most of these efforts focus on non-resource-constrained sys-
tems and microprocessors. In contrast, ARMor [13] provides
a verified sandbox for microcontrollers, but does not constrain
loads. By not limiting the loads, this approach does not
provide confidentiality as all memory can be accessed. This is
particularly dangerous on microcontrollers as devices are often
memory mapped, thus safety is dependent on each device’s
semantics. ARMor does not focus on, nor extensively evaluate
performance (between 10% and 240% slowdowns despite
unconstrained loads). Walls [14] find that CFI alone on mi-
crocontrollers imposes a 30% slowdown. In contrast, eWASM
imposes on average a 40% slowdown (§VI-A) when providing
both CFI and strong memory safety (for both loads and stores).
eWASM evaluates how various implementations of memory
safety for SFI trade efficiency and memory consumption This
includes a novel software page-table mechanism that enables
non-contiguous, fine-grained memory allocations. Importantly,
using a safe intermediate representation (Wasm), enables the

www.github.com/gwsystems/awsm/

elision of some memory safety tests (e.g., by lifting them out
of loops), and lays the foundation for language-independent
binaries that can be retargeted between microcontrollers and
more capable hardware (e.g., in the cloud).
Hardware isolation mechanisms. In contrast to these soft-
ware techniques, past research has investigated using hardware
to provide isolation. Systems have explicitly leveraged hard-
ware to increase isolation: from virtual machine abstractions
using MPUs [3], to Cortex-M Trustzone [20], to fine-grained
switching between modes inlined into code [5]. Others have
used compiler and static analysis techniques to provide CFI
checks on sensitive instructions using dual mode execution
hardware [15], and to automatically separate system code into
MPU-isolated compartments [21], [22]. These approaches do
not provide strong isolation within a compartment, instead
attempting to reduce CFI threats. These works differ from
eWASM in the following ways: (1) eWASM provides strong
CFI within the sandbox, while also preventing access to mem-
ory or control outside of the sandbox. (2) eWASM focuses
on sandboxing a subset of code, while these other approaches
attempt to provide stronger isolation for all microcontroller
code (e.g., including the RTOS). (3) eWASM has no hardware
isolation dependencies, thus avoids conflicting with how the
RTOS or surrounding software use the MPU. This enables the
use of eWASM in existing software systems by linking with
the sandbox at compile time.
Wasm runtimes. Wasm interpreters (including [23], [17])
focus on debuggability and interpreter performance. These
runtimes are often between 14 and 25 times slower than native
C (as we show in §VI-D). Though useful for dynamically
updating system code and debugging, interpreted code is not
applicable for code that must be predictable and/or efficient.
We find that when performance is increased to within a factor
of 2x native C, the mechanisms for memory sandboxing are
a dominant factor in determining performance and memory
consumption. A focus of this paper is to closely examine
existing and novel mechanisms for this.
eWASM summary. This paper presents the first SFI sandbox
for microcontrollers that targets performance and memory
consumption that suffer only a relatively small degradation
compared to C. eWASM investigates various memory isola-
tion mechanisms, and applies them to an existing SFI standard
(Wasm). We focus on Wasm to pragmatically leverage its
extensive existing software ecosystem.

III. WASM BACKGROUND

This paper investigates the use of WebAssembly
(Wasm) [16] to provide memory and control sandboxing
of embedded code. Wasm is a portable, language-agnostic,
low-level bytecode paired with a runtime semantics, which
provides a memory-light sandbox for untrusted execution
based on software fault isolation [6] and control flow
integrity [7]. Despite being driven by web standards bodies,
the specification has been designed to work outside the
browser as well, and there are numerous implementations
for non-Web environments. No efficient implementation
exists for deeply embedded system on microcontrollers with

performance and predictability on par with native code. This
paper investigates mechanisms for efficient sandboxing on
microcontrollers, evaluating their trade-offs, and providing
suggestions for a version of the Wasm standard customized
for embedded systems. This section focuses on the existing
Wasm standard, and its properties, and does not discuss this
work’s contributions.

The key features of Wasm include the following:
• Efficiency. WebAssembly targets near native speed while

only assuming common hardware capabilities.
• Safety. WebAssembly describes a memory-safe, sandboxed

execution environment based on restricted memory access
and control flow. Wasm sandboxes, despite the name, may
be linked into non-Web programs.

• General execution environment. Unlike language-specific
bytecodes that define typed object layouts and differentiate
between memory containing pointers and memory contain-
ing integer values, Wasm exposes access only to an untyped
(yet bounded) array of bytes. This enables the execution of
low-level languages such as C within the sandbox.

• Open and debuggable. WebAssembly provides a human-
readable textual format [24] to simplify learning, debug-
ging, and optimization tasks.

Memory-safety. Code execution within the Wasm sandbox
is only able to access memory within a contiguous linear
memory region. Each Wasm memory access addresses linear
memory at an offset from the base, L, of the linear memory.
Thus, there is some amount of address virtualization as an
address N in the sandbox is located at L + N in physical
memory (assuming linear memory is laid out contiguously).
Additionally, accesses are only allowed within linear memory,
i.e., accessing an address beyond the linear memory’s size
generates a sandbox violation. Thus, the Wasm runtime is re-
sponsible for translating linear memory accesses, and bounds-
checking them to prevent accesses outside the sandbox. These
checks are a foundation for the Wasm sandbox’s isolation.

Linear memory is dynamically sized. It is extended in incre-
ments of a 64KiB page size, when asked to expand memory.
The bounds checking logic is correspondingly updated.
Control-flow integrity. Sandboxing untrusted execution re-
quires control-flow integrity (CFI) [7], which constrains exe-
cution to a safe control flow graph, considered by the compiler.
Wasm achieves this using two mechanisms: a data stack and
a validated function pointer dispatch.

Wasm code’s execution stack must be protected from a
potentially malicious logic within the Wasm code. This is
required to prevent stack smashing attacks that overwrite func-
tion return address values. Thus, the execution stack should
be outside of linear memory. Unfortunately, this complicates
passing pointers to stack-allocated variables. To prevent these
pointers from accessing the stack arbitrarily, Wasm separates
the execution stack into (1) the execution stack tracking func-
tion calls and local variables external to linear memory (2) a
data stack within linear memory containing stack-allocated
variables.

Wasm dynamically ensures that only valid function pointers
are called by sandboxed code. This is ensured by requiring

Sandbox

Linear Memory

Compiled Code Indirect Call Table

Constant
Global Data

Execution StackRuntime Code

ROM

Data Stack Heap
Mutable

Global Data

Fig. 1: The layout of the Wasm sandbox.

all function pointers (including C++ vtable dispatch) be not
pointers, and rather offsets into a runtime table of valid
function entry points. When a function pointer is invoked,
the Wasm runtime (1) validates they point to valid function
addresses, and (2) validates that the type of the caller matches
those of the function. Similarly, function entry-points into the
sandbox, and calls out of the sandbox to functions explicitly
provided by the runtime, are indexed and type-checked using
runtime function pointer tables.

We depict the key mechanisms of a Wasm sandbox in
Figure 1. Memory safety depends on constraining loads
and stores to linear memory that contains the sandboxed
global and heap data. Control-flow integrity requires both the
separation of the execution stack (that tracks function call
return addresses) from the data stack – in linear memory – used
to hold data referenced by pointers, and type and control flow
checks on function pointer calls through an indirect function
call table. Runtime code for interacting with the RTOS, and
requesting memory are the main means to exit the sandbox.

A. Opportunities for Wasm on Embedded Systems

The Wasm standard has a number of features that make it
appealing for embedded devices.
• Broad support. Wasm is supported in all major browser

vendors. There is a large ecosystem of vendors, tools, and
languages providing Wasm support. With the ability to
leverage Wasm, the embedded system community would
benefit from a broader ecosystem.

• Wasm as a portable IR. Wasm is a platform-independent
Intermediate Representation (IR). It can be generated for
different source languages (e.g., a Wasm back-end for
LLVM works for C, C++, and Rust), and can run on many
platforms (our compiler runs on 32-bit and 64-bit x86,
Arm64, and Arm Thumb/Cortex-M architectures). Solving
how to effectively run Wasm on microcontrollers opens
the possibility to sandbox existing code, regardless if it
executes on a microcontroller, or in the cloud.

• No mandatory garbage collection. Many broadly used lan-
guage runtimes such as javascript, lua, or python (through
duktape, lua, and micropython, respectively) cannot
provide predictable execution and often require more mem-
ory, or are slower. The most popular implementations are
all interpreters, which emphasizes their utility as extension
mechanisms to embedded system. The Wasm sandbox’s
linear memory is managed by the program. It can use
garbage collection, but can also use manual or static
memory allocation.

• Lightweight runtime. Wasm mandates only a small number
of runtime features around maintaining memory sandbox-
ing and CFI (see above). They also provide a simple
specification for the runtime to safely invoke functions from
the runtime, into the sandbox, and vice-versa. These light
requirements show promise in an embedded adaptation.

B. SFI Challenges on Embedded Systems

Currently, only interpreted Wasm environments exist for
Cortex-M processors. Though Just-In-Time (JIT) compilers
exist on larger systems, their size, complexity, and unpre-
dictability make them untenable on microcontrollers. In gen-
eral, running SFI on resource constrained microcontrollers
presents a number of challenges. Despite the long history of
SFI approaches [6], [8], [9], [10], [11], [12], [13], multiple
specific aspects of microcontrollers complicate their adoption
in embedded systems. Zhao et al. [13] focus on formally
verifiable SFI, and do not report extensive evaluations nor
study memory isolation mechanisms beyond condition-based
bounds checking.
• Memory consumption. Wasm’s 64 KiB pages are too large

for microcontrollers that often have between 16-256 KiB
SRAM. Additionally, it is not clear, how SFI approaches
are impacted by the separation of system memory into read-
write SRAM and read-only flash, that supports execute-in-
place program execution.

• Performance. Though the bounds checking on linear mem-
ory and the indirect checking of function pointer invoca-
tions are necessary for proper isolation, they add overhead
over non-sandboxed code. On out-of-order architectures
with intelligent dynamic branch predictors, these checks
will likely have less of an impact than on a simple 3-
6 stage, in-order pipeline with limited dynamic branch
prediction.

• Assumed ISA features. Wasm specifically is a 32-bit virtual
architecture. A common technique [16] to optimize away
linear memory bounds checks on 64-bit MMU-based sys-
tems by devoting 232 bytes of contiguous virtual memory
to linear memory, thus preventing any access beyond the
32 bits available to Wasm. Unfortunately, without virtual
memory support and with Cortex-M’s 32 bit architecture,
this optimization is not possible. Additionally, Wasm also
supports floating point, but not all Cortex-Ms do. In such
cases, floating-point emulation is broadly deployed.

Given the specific constraints and limitations of microcon-
trollers, the extensive past SFI research is not sufficient to offer
a practical solution for embedded software isolation.

IV. EWASM DESIGN

We introduce the eWASM system that integrates the aWsm
Wasm compiler, a microcontroller Wasm runtime, and a RTOS
to provide strong software-provided isolation for reliable
embedded systems. We discuss the implementation of the
Wasm sandbox, then integration into FreeRTOS to provide
a software processes abstraction.

A. Control-Flow Integrity

The Wasm specification ensures strong control flow integrity
such that code inside the sandbox can only execute code gener-
ated to maintain the sandbox protection. Wasm’s emphasis on a
structured control flow lets us easily ensure the generated code
does not branch to unexpected locations. eWASM implements
the Wasm standard’s CFI mechanisms in a straightforward
manner, but we discuss the design here for completeness. The
design of CFI in Wasm considers three main control structures:
Direction function calls. The compilation process is con-
strained by structured control flow based on conditionals,
loops, and function calls. We statically ensure that all direct
branches are to valid targets, thus the only way to violate
control flow is to jump indirectly. In C environments, control
flow is typically compromised with either indirect function
calls (e.g., heap smashing) and stack corruption (e.g., stack
smashing).
Indirect function calls. Indirect functions calls are caused by
function pointer invocations, for example, through virtual func-
tion tables or function arguments (e.g., qsort’s comparator
argument). The Wasm specification strictly controls indirect
function calls. It forces all indirect calls to go through a global
table of function pointers. This table is statically initialized
with the valid addresses of functions and their types. At
runtime, the invoked function pointer is replaced with an offset
into this table, and the call-site of the function pointer includes
the expected type. The runtime looks up which funtion is
stored at the offset into the table, and verifies that the type of
the function matches that expected by the call-site. Only then
does the runtime perform the dynamic branch. If the signature
does not match, or there is not a valid address in the table
slot, a sandbox exception is generated.
Stack-based execution tracking. The other way the program
could violate control-flow integrity is through stack smashing
– that is, maliciously overwriting function return addresses on
the stack. The data stack, which is used to pass arguments and
do function-local allocations, is allocated in linear memory.
Corrupting this stack cannot violate control flow integrity –
the runtime does not trust it. We use the native execution stack
for executing sandboxed code. This stack is inaccessible from
within the sandbox, thus preventing the corruption of its return
addresses.

B. Memory Safety

To prevent Wasm code from accessing and potentially cor-
rupting memory outside of the sandbox, loads and stores must
only be performed in linear memory. The Wasm specification
gives no guidance on the mechanisms to be used for con-
straining or responding to illegal memory accesses. eWASM
explores four implementations for validating linear memory
accesses that make different trade-offs between isolation,
performance, memory usage, and standards conformance.
• No isolation. To establish a baseline, this does no safety

checks on loads or stores. To execute an instruction under
this model, the runtime simply adds the offset to the address
of the start of linear memory, then dereferences the address.
This does not provide memory safety, but is useful as a

baseline to separate eWASM overheads for linear memory
access checking, and the other mechanisms (e.g., those
required for CFI).

• Condition-based bounds-checking. This approach inserts a
naive bounds check on each load and store, based on the
size of linear memory. This provides memory safety, but
necessitates an extra branch every time data is loaded or
stored. This implementation is specification compliant. This
is a straightforward implementation of bounds checking
and is also used in [13].

• Masking-based sandboxing. To increase performance and
avoid branches, eWASM includes an implementation,
based on masking offsets into linear memory. On each
load and store, the runtime applies a bitmask to offsets to
ensure that they fall within the bounds of linear memory.
This has no effect on in-bounds accesses, but causes out
of bounds accesses to wrap around (using modulo arith-
metic). This approach generates branch-free code that is
faster than condition-based code. Unfortunately, an efficient
version of masking-based sandboxing requires power-of-
two sized linear memory, which can waste memory due to
internal fragmentation. This approach does not detect and
trap on accesses beyond linear memory, instead wrapping
within it. Due to this, it is not strictly Wasm standard-
conforming. Note, that languages such as C define out-
of-bounds accesses as undefined behavior, similar to this
masking approach. Regardless, masking maintains strong
isolation as linear memory accesses are still confined to
the sandbox.

• Software page-tables. The previous implementations have
the shortcoming that linear memory must be contiguous.
This is appropriate for many embedded systems where
maximum application memory consumption should be
known statically, but where dynamic allocation is neces-
sary, contiguous memory is restrictive as microcontrollers
do not provide address virtualization (i.e., they have a
MMU). Inspired by hardware MMUs, we design a soft-
ware page-table implementation. In this implementation,
all offsets are split into a n-bit page number and a 10-
bit page offset. The runtime maintains a single-level page-
table, tracking how pages are mapped to backing memory.
On access, it simply looks up the page corresponding to
the linear memory address, and then loads or stores from
there. If the access spans two pages, then the eWASM
runtime does two loads and reconstructs the final value.
This approach tends to be slow, but is extremely flexible.
It allows sandboxed programs to be given limited access to
arbitrary pieces of memory. As linear memory is expanded,
pages can be separately and non-contiguously allocated
with the RTOS’s malloc.

C. eWASM-based Process Abstraction

A primary benefit of using a software approach to provide
isolation is that it avoids requiring hardware support, and also
avoids interfering with the system outside of the sandbox.
Many microcontrollers do not have MPUs, thus must use
software means for isolation. When available, MPUs might

(module
 (table 0 anyfunc)
 (memory $0 1)
 (data (i32.const 16) "\08 ")
 (export "memory" (memory $0))
 (export "fn" (func $fn))
 (func $fn (; 0 ;) (param $0 i32)
 (param $1 i32) (result i32)
 (i32.add
 (i32.load8_u
 (i32.add (get_local $1) (i32.const 16)))
 (i32.load8_u
 (i32.add (get_local $0) (i32.const 16)))
)))

uint8_t arr[2] = {8, 32};
int fn(int x, int y) {
 return arr[x] + arr[y];
}

Wasm

asm

fn: ; x in r0, y in r1
 ; r2 = address lin mem
 ldr r2, .linear_mem
 adds r2, r2, #16 ; arr
 ; load r0 = arr[x]
 ldrb r0, [r2, r0]
 ; load r0 = arr[y]
 ldrb r1, [r2, r1]
 ; add arr[x] + arr[y]
 adds r0, r0, r1
 bx lr ; return r0
.linear_mem:
 .long memory

C source

Rust
...
C++
...
JS
...

SRAM

Flash

data
stack

linear mem

heap

global data

RTOS

RTOS

asm

Exec Stack

eWasm Runtime
wrapping

none
sw pgtbl
conditional}

Indirect Call Table
Service functions:

- expand_memory
- RTOS calls
- ...

eW
A

SM

R
u

n
ti

m
e

aWsm
CompilerLLVM

Service
Functions

Indirect call tbl

Fig. 2: The compilation pipeline and execution in eWASM. Languages compile to Wasm (LLVM provides strong support for this), and
eWASM provides the compiler and the runtime to sandbox the execution for microcontrollers. eWASM consists of the aWsm compiler,
and the runtime, which includes bounds-checks to ensure sandboxed memory accesses. The yellow boxes emphasize memory accesses which
carry through the C, to the Wasm, and to the assembly. The assembly on the right offsets loads and stores into linear memory (yellow in
SRAM), but does not bounds check: it implements the “no isolation” (none) policy.

be used by the RTOS, or the programming environment,
preventing their use to specific sandbox and application. In
this way, SFI approaches are complementary to, and can co-
exist with hardware techniques.

We pair the sandboxing facilities of Wasm, with the tem-
poral isolation properties of an underlying RTOS to provide
a process abstraction for the execution of lower-assurance or
untrustworthy code.

Even if control-flow integrity and memory safety are as-
sured, the system is of limited use without temporal isolation.
An infinite loop within the sandbox could preclude fairness
and predictability. Thus, we focus on using the Wasm sandbox
as a means for isolating an application, and executing each
sandbox in a separate RTOS thread. We use FreeRTOS as
our RTOS. As FreeRTOS uses preemptive, priority-driven
scheduling, sandboxes are prevented from monopolizing the
CPU and causing unpredictability in other, higher-priority
tasks.

The Wasm runtime and generated code runs on a sepa-
rate thread from the non-sandboxed parts of the program.
To interact with sandboxed code, one can use FreeRTOS
message passing channels to coordinate between tasks. Note
that messages passed to the sandbox must be copied into its
linear memory. In our design, communication into the sandbox
is possible with no more overhead than a simple function call,
copying the message. This leaves the door open for different
approaches for cross thread coordination, depending on the
application. Though we focus on providing temporal isolation
via threaded execution, the Wasm code could be integrated
into existing threads, or interrupt handlers.

V. EWASM IMPLEMENTATION

eWASM consists of three different components: (1) our
ahead-of-time compiler, aWsm, that takes Wasm code and
generates sandboxed Arm Cortex-M executable code, (2) the

Wasm runtime, that maintains sandboxed isolation and pro-
vides a set of functions (e.g., syscall emulation) to be called
from the sandbox, and (3) integration into an RTOS to provide
a runtime process abstraction. Below, we discuss each one in
detail.

A. eWASM Compilation Pipeline

Programs go through a multi-step compilation pipeline
before being ready to execute in the sandbox, as depicted in
Figure 2. We leverage existing support in the LLVM compiler
infrastructure [18] to generate the Wasm code for a source
language. An LLVM backend for Wasm enables it to generate
Wasm for any of the (many) languages that use LLVM.

During this step, we compile the application with a custom
fork of musl libc that directs all system calls to the eWASM
syscall handler. Our current implementation supports a small
number of system calls, including writes to standard out and
error, and memory allocation requests (via an emulated mmap).
In this way, we support the legacy code that uses our restricted
set of system calls.

The generated Wasm file specifies the logic for a well-typed,
stack-based architecture. Figure 2 gives a simple example of a
Wasm program which calculates a variable offset into an array
(located at offset 16 in linear memory), and dereferences that
value. It does this twice and adds both values, returning the
result. The Wasm file is fed into our ahead-of-time compiler,
aWsm, which translates the Wasm into LLVM IR. aWsm
performs a number of operations: (1) It translates from a
stack machine (Wasm) to a register machine (LLVM IR).
The types of data on the stack are always statically known,
which eases the transition to a SSA form. (2) It maps most
Wasm instructions (e.g., for arithmetic) to an equivalent se-
quence of LLVM IR instructions. (3) However, for specific
instructions integral to the sandbox isolation properties, aWsm
generates an invocation to a pluggable function, which we

Listing 1: No protection
i16 get i16 (u32 offset) :
; offset stored in r0
; char∗ address = &memory[offset];

movw r1 , #memory addr low
movt r1 , #memory addr high

; return ∗(i16 ∗) address;
ldrsh r0 , [r1 , r0] ; array access
bx lr

Listing 2: Conditional bounds checking
i16 get i16 (u32 offset) :
; offset stored in r0

push {r4, r5 , r7 , lr}
sub sp , #40

; assert (offset <= memory size − sizeof(i16)) ;
movw r1 , #memory size addr low
movt r1 , #memory size addr high
ldr r1 , [r1] ; load memory size
subs r1 , #2
cmp r1 , r0 . ; do bounds check
bhs #40 <get i16+0x3e>

; [Fault handling logic omitted ...]
...

; char∗ address = &memory[offset];
movw r1 , #memory addr low
movt r1 , #memory addr high

; return ∗(i16 ∗) address;
ldrsh r0 , [r1 , r0] ; array access
add sp , #40
pop {r4, r5 , r7 , pc}

Listing 3: Wrapping
i16 get i16 (u32 offset) :
; offset stored in r0
; return ∗(i16 ∗) &memory[offset % MEM SIZE];

movw r1 , #memory addr low
movt r1 , #memory addr high
bfc r0 , #18, #14.
ldrsh r0 , [r1 , r0] ; bitmask , array access
bx lr

define in the C runtime rather than emitting the corresponding
LLVM instructions. This enables an efficient interface to the
eWASM runtime, and allows us to easily update, validate,
and test different bounds checking implementations (see the
integration of bounds logic from the runtime into the assembly
in Figure 2). A focus of this paper is on the impact of
various bounds checking implementations, thus enabling the
configurable coupling of the runtime sandboxing logic into the
application logic is essential. We heavily rely on LLVM to
optimize the resulting code and inline the runtime operations,
thus removing any overhead of the separate functions.

Then we use LLVM/clang to combine this bytecode with
our runtime, written in C which defines the bounds checking
mechanism. We use LLVM’s link time optimization (LTO) to
ensure that these mechanisms are efficiently inlined into the
application. Once this process is done, we are left with a self-
contained, sandboxed object file ready for deployment onto
the target platform. Our infrastructure makes it easy to create
new pluggable functions, allowing custom communication
protocols to develop between the sandboxed code and code
outside of the sandbox. We use these to interface with the
RTOS The aWsm compiler is currently 3500 lines of code
written in Rust and is open source.

B. eWASM Sandboxing Runtime

The eWASM runtime consists of a number of functions that
are directly invoked from the Wasm sandbox. These include:
• linear memory accesses, that include the bounds-checking

logic,
• function pointer invocation indirection tables and type-

checking,
• the implementations of select system calls by pulling in a

modified musl libc for backwards compatibility, and
• service functions to expose the underlying RTOS’s func-

tionality, where appropriate (e.g., message passing based
communication, or APIs for accessing I/O devices).

We investigate different implementations of the bounds
checking mechanism for linear memory that in many cases
trade efficiency for memory consumption. For reference, List-
ing 1 shows the logic for doing a load of a 16-bit value from
linear memory. It offsets the address into the linear memory
(memory) using ldrsh to perform an array load. Note that
Arm inlines the address for memory into the code by splitting
it into its higher- and lower-order bits across instructions.
Similarly, the assembly in Figure 2 performs 8-bit loads using
comparable instructions.

As eWASM provides isolation of sandboxed execution,
the other bounds checking mechanisms ensure access is con-
strained to within linear memory. The straightforward con-
ditional checking mechanism is detailed in Listing 2. This
mechanism (1) compares the address (+ 16) to the maximum
linear memory size (memory size), (2) produces a sandbox
exception if the access is beyond the bounds, and (3) offsets
into memory. In contrast, Listing 3 elides the condition and
error handling code by simply wrapping the address within
a power-of-two, static sandbox size (i.e., by masking off the
higher order bits), and then offsets into memory.

The software page-table implementation is not shown here.
It uses a single-level page-table and a page size of 1kB. It must
check if a memory access crosses between page boundaries,
and splits it up the access across pages (later recombining
the memory), if necessary. Thus, this mechanism is relatively
complex, and generates a fair amount of code for each memory
access.

The eWASM runtime is 1200 lines of C code. The relative
simplicity of this runtime is important: it enables us to have
heightened confidence that the sandboxing of each application
is properly provided.

C. eWASM RTOS Integration

The sandboxed application object (ELF object) is linked
into the surrounding RTOS, and executed as a single thread
inside of it. This provides the temporal isolation provided
by the preemptive, priority-driven scheduling of FreeRTOS.
Message queues can link normal FreeRTOS tasks to the sand-
boxed application, and vice-versa. The runtime is activated
directly by function calls, so we avoid all mode switching
and hardware protection domain switching overheads (e.g.,
of writing to the MPU registers). Stronger temporal isolation
could be provided if FreeRTOS implemented rate-limiting
servers [25]. For this work, we focus on decoupling the

memory and control isolation from the RTOS implementation
to leverage the facilities it provides for temporal isolation.

D. Practical Considerations and Limitations

• Unaligned memory accesses. The Wasm specification does
not allow us to assume that loads and stores are aligned.
This means we must account for that, and make memory
operations and bounds checking mechanisms work with
unaligned addresses. A prototype version of eWASM –
that converted unaligned accesses to a set of aligned smaller
access – has large slowdowns, so eWASM currently relies
on activating unaligned accesses in the microcontroller
(supported by all but the smallest of Cortex-M processors).

• Statically-sized backing memory. With limited memory and
without virtual memory support, growing large contigu-
ous allocations is challenging. Thus, conditional bounds
checking and wrapping use a statically-sized allocation. In
contrast, software page-tables are exceptional in that they
do allow non-contiguous expansion of linear memory by
performing address virtualization in software.

• Read-only memory. Wasm does not differentiate between
read-only and read-write memory. This has a significant
impact on eWASM memory usage. Read-only memory can
be stored and directly accessed on flash in microcontrollers.
As the flash often is larger than SRAM, applications are
commonly designed to have large lookup tables in read-
only memory. eWASM must then copy that read-only
memory from flash into SRAM when constructing a sand-
box. This is sub-optimal because (1) read-only memory
consumes both SRAM and flash resources, and (2) SRAM
consumption can significantly increase. This is what we
feel is the single Wasm specification nuance that has the
most friction with embedded systems. In § VII, we discuss
a set of suggested extensions to Wasm for embedded
systems.

• Expanding linear memory. Dynamic allocation is a com-
mon requirement, and we implemented it in our modified
musl libc. Wasm specifies that the sandbox should expand
memory by 64KiB chunks, which is not granular enough
for constrained embedded systems. Thus, the libc malloc
requests heap expansions by making a system call to the
runtime, allowing it to allocate with 1KB granularity.

• Undefined behavior in C. Since our compiler pipeline
uses optimizations, undefined behavior in the underlying
C program can cause unexpected results. Some legacy C
programs with undefined behavior make assumptions about
the underlying machine that do not hold in Wasm. These
include assuming that specific addresses have semantic
meaning, or that different structs have the same bitwise
layout. In practice, eWASM caught undefined behavior in
several programs we tested, although none in the programs
we used for our final benchmarks.

• Stack overruns. The execution stack is outside of the
Wasm sandbox, thus stack overflows are a potential hazard.
We require the stack to be guarded with the MPU. The
shadow stack is in linear memory, so overruns due to, for
example, large stack-allocated data-structures, are protected

by the existing bounds checks. For embedded systems,
applications must often be profiled to ascertain stack usage.
eWASM applications are no exception, but insufficient
stack sizes will be detected and properly faulted.

• Libc replication. Libc is compiled into the code of each
sandbox. This provides strong protection as even the libc
code is sandboxed. Unfortunately, it also means that the
libc code is replicated in the sandboxes. This increases the
code-size for the sandboxed code, but we err on the side
of strong isolation.

VI. EVALUATION

Hardware and software configuration. We use
STM32F767ZIT6, a Cortex-M7 based microcontroller
for evaluation of eWASM. It runs at 216 MHz, has a 6-stage
pipline that is dual-issue, and has a dynamic branch predictor.
It has a 16k/16k I/D cache, 512kB SRAM, and 2MB Flash
with the ability to execute code directly from Flash (aided by
a prefetcher). We believe that the results from this evaluation
should generalize to other processors in the Cortex-M family.
We would expect that on systems without dynamic branch
prediction, the results for bounds checking will be worse.

All evaluations use the FreeRTOS V9.0.0 operating system.
The base system is compiled with GCC 8.2 using the Musl C
library. The interpreter we tested wasm3 [17] is built with this
toolchain as well. All benchmarks and applications are built
with Clang-LLVM, both WASM and C native. All graphs in
this section depict averaged measurements.
Benchmarks. The benchmark suite used in the original Wasm
paper is Polybench [26]. It has some relevance to embedded
systems: it includes common matrix operations and statistical
operations.
Applications. We use a number of applications to evaluate
eWASM. The applications we analyzed are:
• CMSIS-NN V1.0.0 (nn)- A neural network library designed

for microcontrollers that is used to perform image catego-
rization.

• Arduino PID library (pid) - A typical Proportional, Inte-
gral, Derivative controller used for physical control.

• TinyEKF Kalman filter (kalman)- Used for sensor fusion
and state estimation.

• TinyCrypt (crypto) - A small library of crypto primitives.
For CMSIS-NN, we do image recognition using a CIFAR-

10 configuration that has three convolution layers, then ReLU
activation and max pooling layers, finally followed by a fully-
connected layer. The input to the network is a 32x32 pixel
color image which is classified to one of ten categories.
For the Arduino PID library, we run the official ”Adaptive
Tunings” example. For TinyEKF Kalman filter, we use the
official Fuser benchmark. TinyCrypt is a crypto library for
resource constrained devices, and it is run with its own
standard benchmarking suite, with several tests that use too
much memory (for even the C code to run) elided.

A. Benchmark Evaluation
To investigate the overheads of different WASM bounds-

checking methods and the architectural effects to these over-

heads, we leverage the Polybench benchmark suite which is
commonly used in Cortex-M performance profiling. We eval-
uate both the execution efficiency and the memory footprint
of WASM binaries against their native counterparts.

Execution efficiency. We first evaluate the execution efficiency
of the benchmarks. We ran each Polybench benchmark for
10000 times, and registered their total running time for all four
bounds-checking methods. We followed the same procedure
for the native C code. Figure 3 plots the results. All execution
times are normalized to native code. We run these tests and
report the results in a manner consistent with the evaluation
in [16].
Discussion. We see that the execution time of all WASM
binaries are higher than that of the directly compiled native
binaries (native). The “no bounds checking” (none) Wasm
binaries lack any security properties but are almost as fast as
native in some benchmarks. The “wrapping bounds check-
ing” (wrapping) mode offers security and those binaries are
only 1.5x slower than native, however this mode is not
fully standards compliant. The “conditional bounds checking”
(cond) mode is 2x slower than native but uses standard
compliant bounds-checking. If the system needs to run WASM
on non-contiguous memory blocks, “software page table”
(swpgt) is required; this approach is even 2x slower than
cond but does not require the linear memory to be contiguous.
For most embedded systems, wrapping can be applied to
maintain security while close to native performance, shrinking
the bounds checking overheads.

Memory consumption. We evaluate the memory footprint of
all benchmarks. The (read-write) RAM and ROM usage is
obtained by static analysis of the generated binaries before
they are loaded into FreeRTOS. The dynamic RAM usage
is detected with hooks to malloc and free. Figure 4 shows
the ROM usage of the Wasm binaries in flash, compared with
native C, while Figure 5 shows the RAM consumption.
Discussion. The ROM consumption for Polybench is fairly
consistent across all benchmarks. Most benchmark code is
small, and the main contributor to the ROM size is the
Polybench library. We expect that ROM consumption will
increase in eWASM due to three reasons: (1) The bounds
checking and function pointer indirection mechanisms provide
sandboxing, but require additional code to be generated for
the checks. (2) Additionally, libc is compiled in with each
Wasm object including copies of the functions used by the
applications. (3) Last, initialization data for the linear memory
and function lookup table are stored in ROM, consuming
around 32kB. Due to these factors, we notice in Figure 4 that
the code ROM size bloats for none, wrapping and cond, and
results in around a 4x increase in ROM consumption over C.
The difference in memory consumption between no bounds
checking, and the other eWASM approach is due entirely to
the increased code size due to memory safety. The main outlier
here is the software page-tables. The inlined software page-
table walking code causes significant increases in the binary’s
code.

As discussed in §V-D, the Wasm standard does not differen-
tiate read-only and read-write memory. This means that what

would be ROM (and placed in flash) in C, must be copied
into the initial image of the linear memory in Wasm. Thus, the
ROM is represented in both ROM and RAM measurements.
This effect is particularly pronounced in benchmarks like
jacobi-1d that include very little read-write memory.

eWASM’s additional RAM consumption is due to runtime
structures including the shadow stack, and the function lookup
table. Though the shadow stack could be tweaked to be no
larger than a specific application requires, we allocate it a
constant 32kB. We do not report the execution stack RAM
consumption (which is larger for C as it is used for stack
allocations).

RAM consumption for wrapping is higher than the other
bounds checking approaches as the linear memory must be
statically sized to be the next higher power-of-two over the
maximum heap usage. This leads to a maximum 100% RAM
linear memory wastage (and 50% on average) due to internal
fragmentation. It should be noted that industry practice is to
often pad application memory for future firmware or applica-
tion updates.

Note that we under-estimate the RAM consumption for
native C in two ways: (1) We do not measure memory re-
quirements for the runtime execution stack. eWASM generally
needs less memory for this as local allocations that can be
referenced are allocated in the shadow stack in linear memory
instead of on the runtime stack. In practice, this means that
stack allocations in C are not counted in these numbers,
and appear in linear memory RAM (and ROM) consump-
tion in eWASM. (2) We measure all memory committed to
linear memory in eWASM. In native C, we only record the
maximum of all active malloc requests. This means we do
not measure RAM consumption for malloc meta-data (e.g.
headers), nor internal or external fragmentation. Thus, our
comparisons with eWASM favor C.

B. Low-end Evaluation with M4

We re-run Polybench using eWASM on a Nordic
nRF52840, which is a Cortex-M4F, with 1MiB Flash and
256KiB SRAM. We ran without floating point enabled (thus
using emulation) to emulate an M3 without the floating point
support, that Wasm assumes. The code and SRAM consump-
tion are close to the results for the M7, thus we omit them here.
We execute each benchmark 100 times, and observe deviation
from the average for each run of less than our measurement
resolution (±1 nanosecond).

The average slowdown of the code over native C:

Microcontroller none wrapping cond swpgt
Cortex-M7 (from Fig.3) 1.238 1.402 1.675 3.964
Cortex-M4 1.227 1.249 1.519 1.628

Discussion. As floating point emulation is used, the relative
cost of different memory sandboxing approaches is smaller
than on the M7. Regardless, the results show that even
for hardware that does not support features of Wasm (e.g.,
floating point), performance of the various memory protection
mechanisms is consistent and reasonable.

 0

 1

 2

co
rr

el
at

io
n

co
va

ri
an

ce

ge
m

m

ge
m

ve
r

ge
su

m
m

v

sy
m

m

sy
r2

k

sy
rk

tr
m

m

2m
m

3m
m

at
ax

bi
cg

do
itg

en

m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu

lu
dc

m
p

tr
is

ol
v

de
ri
ch

e
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i

fd
td

-2
d

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d

se
id

el
-2

d

av
er

ag
e

 N

o
rm

a
liz

e
d
 (

v
s

N
a
ti

v
e
)

B
e
n
ch

 T
im

e

 2

 4

 6

 8 none wrapping cond swpgt

10.56

Fig. 3: Polybench benchmark execution time for different bounds-checking methods. The horizontal axis is the different benchmarks, while
the vertical axis is the execution time, normalized to C.

 0
 20
 40
 60
 80

 100
 120
 140
 160

co
rr

el
at

io
n

co
va

ri
an

ce

ge
m

m

ge
m

ve
r

ge
su

m
m

v

sy
m

m

sy
r2

k

sy
rk

tr
m

m

2m
m

3m
m

at
ax

bi
cg

do
itg

en

m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu

lu
dc

m
p

tr
is

ol
v

de
ri
ch

e
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i

fd
td

-2
d

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d

se
id

el
-2

d

 P

o
ly

b
e
n
ch

 R
O

M
 S

iz
e
 (

K
iB

)

 200
 300
 400
 500
 600
 700
 800
 900

 1000
native none wrapping cond swpgt

Fig. 4: Polybench benchmark ROM footprints for different bounds-checking methods. The horizontal axis is the different benchmarks,
while the vertical axis is the memory size.

 0

 20

 40

 60

 80

co
rr

el
at

io
n

co
va

ri
an

ce

ge
m

m

ge
m

ve
r

ge
su

m
m

v

sy
m

m

sy
r2

k

sy
rk

tr
m

m

2m
m

3m
m

at
ax

bi
cg

do
itg

en

m
vt

ch
ol

es
ky

du
rb

in
gr

am
sc

hm
id

t lu

lu
dc

m
p

tr
is

ol
v

de
ri
ch

e
flo

yd
-w

ar
sh

al
l

nu
ss

in
ov ad

i

fd
td

-2
d

he
at

-3
d

ja
co

bi
-1

d

ja
co

bi
-2

d

se
id

el
-2

d

 P

o
ly

b
e
n
ch

 R
A

M
 S

iz
e
 (

K
iB

)

 80
 120
 160
 200

native none wrapping cond swpgt

Fig. 5: Polybench benchmark RAM footprints for different bounds-checking methods. The horizontal axis is the different benchmarks,
while the vertical axis is the memory size.

C. Application Evaluation

In this section, we present real-world application evaluations
using the four applications detailed above, nn, pid, kalman
and crypto. We measure both the application’s running time
as a metric of execution efficiency and memory footprint.
Execution efficiency. We first evaluate the execution efficiency
of the applications under all four bounds checking methods
and compare this with that of native C binaries directly
compiled from C source. We report the execution for a single
run of crypto, and the average of 1000 runs for the other
applications.
Discussion. For all four applications, we can see that native
binaries are faster than WASM binaries. This is expected due
to bounds checking and shadow stack maintenance. Even none
is slower as it must translate addresses into linear memory.

As with Polybench results, none is faster than wrapping,
wrapping is faster cond, and swpgt is still the slowest. For all

applications, the running time of wrapping and cond is within
between 1.5x and 3x when compared to native binaries, and the
running time of swpgt is with in 6x. Even the software page-
tables are significantly faster than an interpreter (see §VI-D).

Memory consumption. We then evaluate the memory foot-
print of all applications. The code ROM size and the RAM
size are obtained as in the Polybench results and depicted in
Figures 7 and 8, respectively.

Discussion. The none and wrapping mechanisms maintain
ROM sizes within a factor of four of C. The same is generally
true of cond, while kalman is an outlier at around 10x.
As with Polybench, the page-table approach results in very
large binaries due to the per-memory access paging logic.
The same logic around increased memory consumption for
eWASM sandboxes as introduced for Polybench is true here,
and the same trends present themselves. The software page-
table mechanism vastly expands ROM consumption, while

 0

 1

 2

 3

nn pi
d

ka
lm

an

cr
yp

to

 N

o
rm

a
liz

e
d

 (
v
s

N
a
ti

v
e
)

E
xe

c
Ti

m
e

 4

 6

 8 none
wrapping

cond
swpgt

Fig. 6: Application execution time for dif-
ferent bounds-checking methods. The hori-
zontal axis is the different applications, while
the vertical axis is the execution time.

 0

 20

 40

 60

 80

 100

nn pi
d

ka
lm

an

cr
yp

to

 A

p
p

lic
a
ti

o
n
 R

O
M

 S
iz

e
 (

K
iB

)

 200
 400
 600
 800

 1000
 1200
 1400
 1600

native
none

wrapping
cond

swpgt

3905

Fig. 7: Application ROM footprints for dif-
ferent bounds-checking methods. The hori-
zontal axis is the different applications, while
the vertical axis is the memory size.

 0
 0.5

 1

nn pi
d

ka
lm

an

cr
yp

to

 A

p
p

lic
a
ti

o
n
 R

A
M

 S
iz

e
 (

K
iB

)

0
.0

1
2

 50

 100

 150

 200

 250

 300
native
none

wrapping

cond
swpgt

Fig. 8: Application RAM footprints for dif-
ferent bounds-checking methods. The hori-
zontal axis is the different applications, while
the vertical axis is the memory size.

wrapping remains with a factor of 4x in ROM consumption.
The RAM consumption is dominated by pages statically-
allocated for use as linear memory.

D. Comparison to Interpreter

Interpreted execution environments are common on IoT
devices. We selected wasm3 as a well established interpreter
for Wasm on the Cortex-M, with a reputation for strong
performance. To assess the properties of the wasm3 interpreter,
we ran our four ”real-world” application benchmarks on it.
wasm3 struggles to run crypto, taking more than two hours

to complete a single run, thus we judge it to have timed
out. pid is run for 100 rounds and the other two application
benchmarks are run for 10 rounds given their long runtimes.

We present the normalized running time (exec) and
ROM/RAM usage (rom and ram) of those applications, for
both wasm3 and eWASM (wrapping).

App wasm3 ewasm

exec rom ram exec rom ram

nn 67.11 254.4KiB 176.8KiB 2.56 385KiB 136KiB
pid 30.17 94.4KiB 148.8KiB 1.26 35.6KiB 136KiB
kalman 26.43 96.4KiB 167.4KiB 1.78 80.2KiB 136KiB
crypto timeout 363.4KiB timeout 1.33 486KiB 264KiB

TABLE I: The wasm3 interpreter versus eWASM wrapping.

Discussion. For these applications, interpreter performance is
more than an order of magnitude worse than that of native
code. The design of wasm3 necessitates using RAM to store
the intermediate representation it uses to achieve relatively fast
interpretation. The interpreter itself is complex and large which
leads to significant ROM usage. This culminates in RAM and
ROM usage that is larger by an order of magnitude than native.
eWASM performs better than wasm3 for all bounds checking
mechanisms. Notably, wrapping executes at least an order of
magnitude faster that wasm3 on all the benchmarks we tested.
eWASM’s memory usage is also superior to wasm3, even in
the relatively RAM hungry wrapping mode.
Conclusions. The different memory sandboxing approaches
represent different trade-offs in time and space, which we will
summarize here. Wrapping-based approaches have the best
performance (within 40% of C on Polybench), has the lowest
ROM usage of any isolation approach, but requires significant
RAM consumption due to the power-of-two size requirement.
Conditional-based bounds checking increase the ROM size due

to the overhead of error paths, and decreases performance
compared to wrapping. However, its RAM consumption is
relatively tight to that required by the application, increasing
in 1kB increments as the heap is expanded. Software page-
tables impose significant overheads in terms of performance
(though still significantly less overhead than the interpreter),
and in ROM usage (due to inlined page-table translation
code). However, it shares the RAM efficiency of condition-
based checking, and is unique in that it performs address
virtualization. Thus linear memory can be non-contiguously
allocated. This is useful if an application has unknown maxi-
mum memory requirements. We show that all approaches have
a significant limitation which is a side effect of the Wasm
specification: read-only memory must be allocated in linear
memory, thus read-write RAM.

VII. LESSONS LEARNED AND RECOMMENDATION FOR
WASM STANDARDS

Configurations of eWASM that perform best on micro-
controllers are not compliant with the Wasm standard. They
maintain sandboxing, but do so by loosening some of the
guarantees provided by the standard. This section discusses
the specific ways the standard either leads to inefficiencies
on microcontrollers, and argues for an embedded variant of
the Wasm standard. Note, that all suggestions maintain strong
sandboxing properties.
• Page-size, and initial memory allocation. The Wasm page

size is 64KiB. This was chosen as the least common
multiple of common hardware page sizes. On embedded
systems, especially microcontrollers, a 64KiB page a major
limitation. On many M series microcontrollers, there is be-
tween around 16 and 128KiB of usable read-write memory.
Our implementation departs from the standard by allowing
byte-granularity, 1 KiB page-granularity, or static allocation
of linear memory for conditional, software page-table, or
wrapping bounds checks. The initial image of the linear
memory would normally be placed in a single 64KiB page,
but we instead size the initial allocation to the actually
required memory. To optimize for memory, we recommend
that a Wasm embedded variant allow expanding memory by
a significantly smaller granularity, both in the initial linear
memory and for dynamic allocations.

• No separate allocation of read-only memory. As touched
on in the previous section, all Wasm linear memory is read-
write. On embedded systems, it is common to have large
read only data, such as lookup tables, and to store them
in the, often larger, flash memory. The Wasm specification
does not provide facilities for separate, read-only memory.
Thus, our implementation copies read-only data into the
linear memory, causing significant SRAM consumption.

• Exceptions on Out of Bounds (OOB) accesses. The Wasm
specification requires that a load to a linear memory address
greater than the current size of linear memory should fault.
A naive approach to this is bounds checking, but as we have
shown, this has overhead, especially on embedded systems
with limited branch prediction.
We have shown the benefit of a wrapping-based approach
to sandbox memory accesses. This behavior is not specifi-
cation conforming, but does give a significant speedup.
We recommend that a specialized embedded Wasm spec-
ification optionally allow undefined behavior of memory
accesses outside of the sandbox, so that the runtime can
use wraparound to efficient provide sandboxing.

Failed design: MPU-assistance. We attempted a co-design
of the linear memory OOB checking using the hardware
Memory-Protection Unit (MPU). We could not make this
work. In retrospect, it is clear to see why we would inevitably
fail. There is a conflict between the goals: (a) generated code
needs fast access to the execution stack and the linear memory,
and (b) code in the sandbox must not be able to access the
execution stack. A single static MPU configuration cannot
accommodate this, so fine-grained switching, potentially on
each access to the execution stack, would be necessary. The
overhead of this [3] led to us abandoning attempts to use the
MPU.

VIII. CONCLUSIONS

This paper introduces eWASM that provides a software
sandbox with temporal and spatial isolation for legacy code
on resource constrained microcontrollers. eWASM consists of
an ahead-of-time compiler, aWsm, and a runtime to safely
execute even typically unrestricted code such C in what we
believe is the first compiled, sandboxed environment for mi-
crocontrollers. We compare various mechanisms for ensuring
that sandboxed code cannot access memory outside of the
sandbox, and find that they all represent interesting time/space
trade-offs. Though eWASM shows performance within 40% of
C, we also find that the Wasm specification has a few friction
points with an effective microcontroller implementation. We
make specific recommendations that might further increase
the capabilities of strong sandboxing in resource-constrained
devices.

The eWASM and aWsm source is publicly available at
www.github.com/gwsystems/awsm/.

ACKNOWLEDGMENTS

We’d like to thank the reviewers of this paper that provided
immensely valuable feedback that has improved the presenta-
tion of the research. We’d like to thank the support from the

NSF through awards CNS-1815690 and CPS-1837382, and
from ARM and SRC through Task 2911.001.

REFERENCES

[1] Philip Sparks, “The route to a trillion devices; the outlook
for IoT investment to 2035,” Online, 2017, https://learn.arm.com/
route-to-trillion-devices.html.

[2] M. Hooper, Y. Tian, R. Zhou, B. Cao, A. P. Lauf, L. Watkins, W. H.
Robinson, and W. Alexis, “Securing commercial wifi-based uavs from
common security attacks,” in MILCOM 2016 - 2016 IEEE Military
Communications Conference, 2016.

[3] R. Pan, G. Peach, Y. Ren, and G. Parmer, “Predictable virtualization on
memory protection unit-based microcontrollers,” in RTAS, 2018.

[4] L. Amit, C. Bradford, G. Branden, G. Daniel, P. Pat, D. Prabal, and
L. Philip, “Multiprogramming a 64 kB computer safely and efficiently,”
in Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP), 2017.

[5] D. Danner, R. Muller, W. Schröder-Preikschat, W. Hofer, and
D. Lohmann, “SAFER SLOTH: efficient, hardware-tailored memory
protection,” in 20th IEEE Real-Time and Embedded Technology and
Applications Symposium, (RTAS), 2014.

[6] T. A. R. Wahbe, S. Lucco and S. Graham, “Software-based fault
isolation,” in Proceedings of the 14th SOSP, Asheville, NC, USA,
December 1993.

[7] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti, “Control-flow
integrity,” in Proceedings of the 12th ACM Conference on Computer
and Communications Security (CCS), 2005.

[8] M. Castro, M. Costa, and T. Harris, “Securing software by enforcing
data-flow integrity,” in OSDI’06: Proceedings of the 7th conference on
USENIX Symposium on Operating Systems Design and Implementation.
Berkeley, CA, USA: USENIX Association, 2006, pp. 11–11.

[9] Y. Mao, H. Chen, D. Zhou, X. Wang, N. Zeldovich, and M. F. Kaashoek,
“Software fault isolation with api integrity and multi-principal modules,”
in Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles (SOSP), 2011.

[10] B. Ford and R. Cox, “Vx32: lightweight user-level sandboxing on the
x86,” in USENIX 2008 Annual Technical Conference. Berkeley, CA,
USA: USENIX Association, 2008, pp. 293–306.

[11] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Orm, S. Okasaka,
N. Narula, N. Fullagar, and G. Inc, “Native client: A sandbox for
portable, untrusted x86 native code,” in Proceedings of the 2009 IEEE
Symposium on Security and Privacy, 2009.

[12] G. Morrisett, G. Tan, J. Tassarotti, J.-B. Tristan, and E. Gan, “Rocksalt:
better, faster, stronger sfi for the x86,” in Proceedings of the 33rd
ACM SIGPLAN conference on Programming Language Design and
Implementation (PLDI), 2012.

[13] L. Zhao, G. Li, B. De Sutter, and J. Regehr, “Armor: Fully verified
software fault isolation,” in Proceedings of the Ninth ACM International
Conference on Embedded Software (EMSOFT), 2011.

[14] R. J. Walls, N. F. Brown, T. L. Baron, C. A. Shue, H. Okhravi, and B. C.
Ward, “Control-Flow Integrity for Real-Time Embedded Systems,” in
31st Euromicro Conference on Real-Time Systems (ECRTS), 2019.

[15] A. A. Clements, N. S. Almakhdhub, K. Saab, P. Srivastava, J. Koo,
S. Bagchi, and M. Payer, “Protecting bare-metal embedded systems with
privilege overlays.” in IEEE Symposium on Security and Privacy (S&P),
2017.

[16] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer, M. Holman,
D. Gohman, L. Wagner, A. Zakai, and J. Bastien, “Bringing the
Web Up to Speed with WebAssembly,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’17, 2017.

[17] “Wasm3. A high performance WebAssembly interpreter written in C,
https://github.com/wasm3/wasm3,” 2019.

[18] “The LLVM Compiler Infrastructure, https://llvm.org/,” 2019.
[19] D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler,

“The nesc language: A holistic approach to networked embedded
systems,” in Proceedings of the ACM SIGPLAN 2003 Conference on
Programming Language Design and Implementation (PLDI), 2003.

[20] S. Pinto, H. Araujo, D. Oliveira, J. Martins, and A. Tavares, “Virtual-
ization on trustzone-enabled microcontrollers? voil!” in IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS), 2019.

[21] A. A. Clements, N. S. Almakhdhub, S. Bagchi, and M. Payer, “Aces:
Automatic compartments for embedded systems,” in Proceedings of the
27th USENIX Conference on Security Symposium (CSS), 2018.

www.github.com/gwsystems/awsm/
https://learn.arm.com/route-to-trillion-devices.html
https://learn.arm.com/route-to-trillion-devices.html

[22] C. H. Kim, T. Kim, H. Choi, Z. Gu, B. Lee, X. Zhang, and D. Xu, “Se-
curing real-time microcontroller systems through customized memory
view switching.” in Network and Distributed System Security Symposium
(NDSS), 2018.

[23] R. Gurdeep Singh and C. Scholliers, “Warduino: A dynamic webassem-
bly virtual machine for programming microcontrollers,” in Proceedings
of the 16th ACM SIGPLAN International Conference on Managed
Programming Languages and Runtimes (MPLR), 2019.

[24] “Webassembly Specification.” Online, 2019, https://webassembly.github.
io/spec/core/, Release 1.0.

[25] B. Sprunt, L. Sha, and J. P. Lehoczky, “Aperiodic task scheduling for
hard real-time systems,” Real-time Systems, vol. 1, pp. 27–60, 1989.

[26] “PolyBench/C: the Polyhedral Benchmark suite, https://web.cse.ohio-
state.edu/ pouchet.2/software/polybench/,” 2019.

Gregor Peach recently graduated with a B.S. in
Computer Science from The George Washington
University as part of the class of 2020. Currently he
is working at Amazon as a Software Engineer. His
research interests include: virtualization, software
sandboxing, embedded systems, garbage collection,
as well as language design and implementation.

Runyu Pan is a Computer Science PhD Candidate
supervised by Prof. Gabriel Parmer at The George
Washington University. His research interests mainly
incoporates embedded systems, real-time software
stacks, and capability-based microkernels. This in-
cludes microkernels on microcontrollers (MoM),
real-time virtualization and development of modular,
secure and robust IoT software infrastructures. His
current research are conducted on the Composite
operating system deployed on microcontrollers.

Zhuoyi Wu got his undergraduate degree in Com-
puter Science from University of California, Irvine
in 2018, and completed his Masters degree at The
George Washington University in 2020. His interests
span Operating Systems, Networking, Artificial In-
telligence, Machine Learning, Security, Algorithms,
and Embedded Software. He will start to work
for Amazons AWS department from August 2020.
His future research directions will investigate the
integration of AI and Operating Systems.

Gabriel Parmer is an Associate Professor of Com-
puter Science at The George Washington University.
His research interests encompass operating systems,
real-time and embedded systems, and scalable par-
allel systems. This includes the development of
a new operating system, Composite, that aims to
enable component-based design of low-level sys-
tem software, while optimizing for end-to-end, non-
functional goals such as security, predictability, and
scalability. He is a member of the IEEE.

Christopher Haster is a senior software research
engineer at Arm Research, Austin, USA. His focus
is software development on resource constrained
devices, with an interest in non-traditional systems,
languages, and execution models. His past work
includes LittleFS, a power-resilient RAM bounded
filesystem designed to enable external storage on
devices with very little internal memory, as well
as contributions to Mbed OS around high-level lan-
guages and non-RTOS composition strategies.

Lucy Cherkasova is a principal research scientist at
Arm Research, San Jose, USA, since 2018. Before
that for 20+ years she was a principal scientist at
Hewlett Packard Labs and led to success multiple
RD projects, with prototypes, algorithms, or features
implemented in HP products. Her current research
interests are in developing quantitative methods for
the analysis, design, and management of distributed
systems (such as emerging Smart environments,
Edge computing, Big Data processing, and next gen-
eration datacenters). She is the ACM Distinguished

Scientist and is recognized by multiple Certificates of Appreciation from
Usenix and IEEE Computer Society.

https://webassembly.github.io/spec/core/
https://webassembly.github.io/spec/core/

	Introduction
	Related Work
	WASM Background
	Opportunities for Wasm on Embedded Systems
	SFI Challenges on Embedded Systems

	eWASM Design
	Control-Flow Integrity
	Memory Safety
	eWASM-based Process Abstraction

	eWASM Implementation
	eWASM Compilation Pipeline
	eWASM Sandboxing Runtime
	eWASM RTOS Integration
	Practical Considerations and Limitations

	Evaluation
	Benchmark Evaluation
	Low-end Evaluation with M4
	Application Evaluation
	Comparison to Interpreter

	Lessons Learned and Recommendation for Wasm Standards
	Conclusions
	References
	Biographies
	Gregor Peach
	Runyu Pan
	Zhuoyi Wu
	Gabriel Parmer
	Christopher Haster
	Lucy Cherkasova

