
©Copyright 2012 by the authors

OSPERT 2012

Proceedings of the 8th annual workshop
on

Operating Systems Platforms for
Embedded Real-Time applications

Pisa, Italy
July 10, 2012

In conjunction with:
The 24th Euromicro Conference on Real-Time Systems (ECRTS 2012)

July 10-13, 2012

Edited by Gabriel Parmer and Andrea Bastoni

Copyright 2012 The George Washington University.
All rights reserved. The copyright of this collection is with The George
Washington University. The copyright of the individual articles remains
with their authors.

Contents

Message from the Chairs 3

Program Committee 3

Keynote Talk 4

Program 5

Parallelism in Real-Time Systems 6

Time Management in the Quest-V RTOS
Richard West, Ye Li, and Eric Missimer 6

Operating Systems for Manycore Processors from the Perspective
of Safety-Critical Systems
Florian Kluge, Benot Triquet, Christine Rochange, Theo Un-
gerer . 16

PRACTISE: a framework for PeRformance Analysis and Testing
of real-time multIcore SchEdulers for the Linux kernel
Fabio Falzoi, Juri Lelli, Giuseppe Lipari 21

Real-Time System Potpourri 31

CoS: A New Perspective of Operating Systems Design for the
Cyber-Physical World
Vikram Gupta, Eduardo Tovar, Nuno Pereira, Ragunathan
(Raj) Rajkumar . 31

Efficient I/O Scheduling with Accurately Estimated Disk Drive
Latencies
Vasily Tarasov, Gyumin Sim, Anna Povzner, Erez Zadok . . 36

A Dataflow Monitoring Service Based on Runtime Verification for
AUTOSAR OS: Implementation and Performances
Sylvain Cotard, S’bastien Faucou, Jean-Luc B’ chennec . . . 46

2

Message from the Chairs

We aimed to continue the interactive emphasis for this 8th workshop on
Operating Systems Platforms for Embedded Real-Time Applications. To-
ward this, we will have two discussion-based sessions. One is a discussion
about the interface of real-time research and smartphones led by a panel
of four experts: “Smartphone and Real-Time: Innovation or yet another
Embedded Device?”. Additionally, the conference will commence with a
keynote by Paul E. McKenney who will discuss the challenges of maintain-
ing low response times at scale. OSPERT this year accepted 5 of 7 peer
reviewed papers, and we have included an invited paper on a operation sys-
tem structured for predictable and reliable multi-core execution. We have
also included a new category of papers this year based on forward-looking
ideas, to focus on innovation in the area of real-time systems. Given the
quality and controversial nature of the papers, we expect a lively OSPERT.

We’d like to thank all of the people behind the scenes that were involved
in making OSPERT what it is. Gerhard Fohler, and ECRTS chairs who have
made this workshop possible, and we appreciate the support and venue for
the operating systems side of real-time systems. The program committee has
done wonderful work in fastidiously reviewing submissions, and providing
useful feedback.

Most of all, this workshop will be a success based on the community
of operating systems and real-time researchers that provide the excitement
and discussion that defines OSPERT.

The Workshop Chairs,
Andrea Bastoni
Gabriel Parmer

Program Committee

Björn B. Brandenburg, Max Planck Institute for Software Systems
Gernot Heiser, The University of New South Wales
Shinpei Kato, Nagoya University
Jim Anderson, University of North Carolina at Chapel Hill
Thomas Gleixner, Linutronix, Germany
Steven Rostedt, Red Hat
John Regehr, University of Utah
Roberto Gioiosa, Barcelona Supercomputing Center

3

Keynote Talk

Real-Time Response on Multicore Systems:
It Is Bigger Than You Think

Paul E. McKenney
IBM Distinguished Engineer

Five years ago, I published a Linux Journal article entitled “SMP and
Embedded Real Time” (http: // www. linuxjournal. com/ article/ 9361)
stating that SMP systems could in fact support real-time workloads. This
article was not well-received in all segments of the real-time community,
but there are nevertheless quite a few SMP real-time systems in use today
offering scheduling latencies of a few tens of microseconds.

So perhaps you can imagine my surprise when in early 2012 I received
a bug report stating that the Linux kernel’s RCU implementation was caus-
ing 200-microsecond latency spikes. The root cause? I simply hadn’t been
thinking big enough. This talk tells the story of the ensuing adventure.

Biography:
Paul E. McKenney has been coding for almost four decades, more than

half of that on parallel hardware, where his work has earned him a reputation
among some as a flaming heretic. Over the past decade, Paul has been an
IBM Distinguished Engineer at the IBM Linux Technology Center, where he
maintains the RCU implementation within the Linux kernel, dealing with a
variety of workloads presenting highly entertaining performance, scalability,
real-time response, and energy-efficiency challenges. Prior to that, he worked
on the DYNIX/ptx kernel at Sequent, and prior to that on packet-radio
and Internet protocols (but long before it was polite to mention Internet
at cocktail parties), system administration, business applications, and real-
time systems. His hobbies include what passes for running at his age along
with the usual house-wife-and-kids habit.

4

Program

Tuesday, July 10th 2011

8:30-9:30 Registration
9:30-11:00 Keynote Talk: Real-Time Response on Multicore Systems: It Is Bigger

Than You Think
Paul E. McKenney

11:00-11:30 Coffee Break
11:30-13:00 Session 1: Parallelism in Real-Time Systems

Time Management in the Quest-V RTOS
Richard West, Ye Li, and Eric Missimer

Operating Systems for Manycore Processors from the Perspective of Safety-
Critical Systems

Florian Kluge, Benot Triquet, Christine Rochange, Theo Ungerer

PRACTISE: a framework for PeRformance Analysis and Testing of real-
time multIcore SchEdulers for the Linux kernel

Fabio Falzoi, Juri Lelli, Giuseppe Lipari

13:30-14:30 Lunch
14:30-16:00 Panel Discussion: Smartphone and Real-Time: Innovation or yet another

Embedded Device?
Panel members: Wolfgang Mauerer, Claudio Scordino, Heechul Yun, and Paul

E. McKenney

16:00-16:30 Coffee Break
16:30-18:00 Session 2: Real-Time System Potpourri

CoS: A New Perspective of Operating Systems Design for the Cyber-
Physical World

Vikram Gupta, Eduardo Tovar, Nuno Pereira, Ragunathan (Raj) Rajkumar

Efficient I/O Scheduling with Accurately Estimated Disk Drive Latencies
Vasily Tarasov, Gyumin Sim, Anna Povzner, Erez Zadok

A Dataflow Monitoring Service Based on Runtime Verification for AU-
TOSAR OS: Implementation and Performances

Sylvain Cotard, S’bastien Faucou, Jean-Luc B’ chennec

18:00-18:30 Discussion and Closing Thoughts

Wednesday, 11th - Friday, 13th 2011

ECRTS main proceedings.

5

Time Management in the Quest-V RTOS ∗

Richard West, Ye Li, and Eric Missimer

Computer Science Department

Boston University

Boston, MA 02215, USA

{richwest,liye,missimer}@cs.bu.edu

Abstract

Quest-V is a new system currently under development

for multicore processors. It comprises a collection of sep-

arate kernels operating together as a distributed system on

a chip. Each kernel is isolated from others using virtual-

ization techniques, so that faults do not propagate through-

out the entire system. This multikernel design supports on-

line fault recovery of compromised or misbehaving services

without the need for full system reboots. While the system is

designed for high-confidence computing environments that

require dependability, Quest-V is also designed to be pre-

dictable. It treats time as a first-class resource, requir-

ing that all operations are properly accounted and handled

in real-time. This paper focuses on the design aspects of

Quest-V that relate to how time is managed. Special atten-

tion is given to howQuest-V manages time in four key areas:

(1) scheduling and migration of threads and virtual CPUs,

(2) I/O management, (3) communication, and (4) fault re-

covery.

1 Introduction

Multicore processors are becoming increasingly popu-

lar, not only in server domains, but also in real-time and

embedded systems. Server-class processors such as Intel’s

Single-chip Cloud Computer (SCC) support 48 cores, and

others from companies such as Tilera are now finding their

way into real-time environments [18]. In real-time systems,

multicore processors offer the opportunity to dedicate time-

critical tasks to specific processors, allowing others to be

used by best effort services. Alternatively, as in the case of

processors such as the ARM Cortex-R7, they provide fault

tolerance, ensuring functionality of software in the wake of

failures of any one core.

∗This work is supported in part by NSF Grant #1117025.

Quest-V is a new operating system we are developing for

multicore processors. It is designed to be both dependable

and predictable, providing functionality even when services

executing on one or more cores become compromised or be-

have erroneously. Predictability even in the face of software

component failures ensures that application timing require-

ments can be met. Together, Quest-V’s dependability and

predictability objectives make it suitable for the next gener-

ation of safety-critical embedded systems.

Quest-V is a virtualized multikernel, featuring multiple

sandbox kernels connected via shared memory communica-

tion channels. Virtualization is used to isolate and prevent

faults in one sandbox from adversely affecting other sand-

boxes. The resultant system maintains availability while

faulty software components are replaced or re-initialized in

the background. Effectively, Quest-V operates as a “dis-

tributed system on a chip”, with each sandbox responsible

for local scheduling and management of its own resources,

including processing cores.

In Quest-V, scheduling involves the use of virtual CPUs

(VCPUs). These differ from VCPUs in conventional hy-

pervisor systems, which provide an abstraction of the un-

derlying physical processors that are shared among sepa-

rate guest OSes. Here, VCPUs act as resource contain-

ers [3] for scheduling and accounting the execution time

of threads. VCPUs form the basis for system predictabil-

ity in Quest-V. Each VCPU is associated with one or more

software threads, which can be assigned to specific sand-

boxes according to factors such as per-core load, interrupt

balancing, and processor cache usage, amongst others. In

this paper, we show how VCPU scheduling and migration is

performed predictably. We also show how time is managed

to ensure bounded delays for inter-sandbox communication,

software fault recovery and I/O management.

An overview of the Quest-V design is described in the

next section. This is followed in Section 3 by a description

of how Quest-V guarantees predictability in various sub-

systems, including VCPU scheduling and migration, I/O

6

management, communication and fault recovery. Finally,

conclusions and future work are described in Section 4.

2 Quest-V Design

Quest-V is targeted at safety-critical applications, pri-

marily in real-time and embedded systems where depend-

ability is important. Target applications include those

emerging in health-care, avionics, automotive systems, fac-

tory automation, robotics and space exploration. In such

cases, the system requires real-time responsiveness to time-

critical events, to prevent potential loss of lives or equip-

ment. Similarly, advances in fields such as cyber-physical

systems means that more sophisticated OSes beyond those

traditionally found in real-time domains are now required.

The emergence of off-the-shelf and low-power proces-

sors now supporting multiple cores and hardware virtual-

ization offer new opportunities for real-time and embedded

system designers. Virtualization capabilities enable new

techniques to be integrated into the design of the OS, so that

software components are isolated from potential faults or

security violations. Similarly, added cores offer fault toler-

ance through redundancy, while allowing time-critical tasks

to run in parallel when necessary. While the combination

of multiple cores and hardware virtualization are features

currently found on more advanced desktop and server-class

processors, it is to be anticipated that such features will ap-

pear on embedded processors in the near future. For exam-

ple, the ARM Cortex A15 processor is expected to feature

virtualization capabilities, offering new possibilities in the

design of operating systems.

Quest-V takes the view that virtualization features

should be integral to the design of the OS, rather than pro-

viding capabilities to design hypervisors for hosting sepa-

rate unrelated guest OSes. While virtualization provides the

basis for safe isolation of system components, proper time

management is necessary for real-time guarantees to be met.

Multicore processors pose challenges to system predictabil-

ity, due to the presence of shared on-chip caches, memory

bus bandwidth contention, and in some cases non-uniform

memory access (NUMA). These micro-architectural fac-

tors must be addressed in the design of the system. Fortu-

nately, hardware performance counters are available, to help

deduce micro-architectural resource usage. Quest-V fea-

tures a performance monitoring subsystem to help improve

schedulability of threads and VCPUs, reducing worst-case

execution times and allowing higher workloads to be admit-

ted into the system.

2.1 System Architecture

Figure 1 shows an overview of the Quest-V architec-

ture. One sandbox is mapped to a separate core of a mul-

ticore processor, although in general it is possible to map

sandboxes to more than one core 1. This is similar to

how Corey partitions resources amongst applications [7].

In our current approach, we assume each sandbox kernel

is associated with one physical core since that simplifies

local (sandbox) scheduling and allows for relatively easy

enforcement of service guarantees using a variant of rate-

monotonic scheduling [12]. Notwithstanding, application

threads can be migrated between sandboxes as part of a load

balancing strategy, or to allow parallel thread execution.

A single hypervisor is replaced by a separate monitor for

each sandbox kernel. This avoids the need to switch page ta-

ble mappings within a single global monitor when accessing

sandbox (guest) kernel addresses. We assume monitors are

trusted but failure of one does not necessarily mean the sys-

tem is compromised since one or more other monitors may

remain fully operational. Additionally, the monitors are ex-

pected to only be used for exceptional conditions, such as

updating shared memory mappings for inter-sandbox com-

munication [11] and initiating fault recovery.

Figure 1. Quest­V Architecture Overview

Quest-V currently runs as a 32-bit system on x86 plat-

forms with hardware virtualization support (e.g., Intel VT-x

or AMD-V processors). Memory virtualization is used as

an integral design feature, to separate sub-system compo-

nents into distinct sandboxes. Further details can be found

in our complementary paper that focuses more extensively

on the performance of the Quest-V design [11]. Figure 2

shows the mapping of sandbox memory spaces to physical

memory. Extended page table (EPT 2) structures combine

with conventional page tables to map sandbox (guest) vir-

tual addresses to host physical values. Only monitors can

change EPT memory mappings, ensuring software faults or

security violations in one sandbox cannot corrupt the mem-

ory of another sandbox.

1Unless otherwise stated, we make no distinction between a processing

core or hardware thread.
2Intel processors with VT-x technology support extended page tables,

while AMD-V processors have similar support for nested page tables. For

consistency we use the term EPT in this paper.

7

Figure 2. Quest­V Memory Layout

The Quest-V architecture supports sandbox kernels that

have both replicated and complementary services. That is,

some sandboxes may have identical kernel functionality,

while others partition various system components to form

an asymmetric configuration. The extent to which function-

ality is separated across kernels is somewhat configurable

in the Quest-V design. In our initial implementation, each

sandbox kernel replicates most functionality, offering a pri-

vate version of the corresponding services to its local ap-

plication threads. Certain functionality is, however, shared

across system components. In particular, we share certain

driver data structures across sandboxes 3, to allow I/O re-

quests and responses to be handled locally.

Quest-V allows any sandbox to be configured for cor-

responding device interrupts, rather than have a dedicated

sandbox be responsible for all communication with that de-

vice. This greatly reduces the communication and control

paths necessary for I/O requests from applications in Quest-

V. It also differs from the split-driver approach taken by sys-

tems such as Xen [4], that require all device interrupts to be

channeled through a special driver domain.

Sandboxes that do not require access to shared devices

are isolated from unnecessary drivers and associated ser-

vices. Moreover, a sandbox can be provided with its own

private set of devices and drivers, so if a software failure

occurs in one driver, it will not necessarily affect all other

sandboxes. In fact, if a driver experiences a fault then its

effects are limited to the local sandbox and the data struc-

tures shared with other sandboxes. Outside these shared

data structures, remote sandboxes (including all monitors)

are protected by EPTs.

Application and system services in distinct sandbox ker-

3Only for those drivers that have been mapped as shared between spe-

cific sandboxes.

nels communicate via shared memory channels. These

channels are established by extended page table map-

pings setup by the corresponding monitors. Messages are

passed across these channels similar to the approach in Bar-

relfish [5].

Main and I/O VCPUs are used for real-time management

of CPU cycles, to enforce temporal isolation. Application

and system threads are bound to VCPUs, which in turn are

assigned to underlying physical CPUs. We will elaborate

on this aspect of the system in the following section.

2.2 VCPU Management

In Quest-V, virtual CPUs (VCPUs) form the fundamen-

tal abstraction for scheduling and temporal isolation of the

system. Here, temporal isolation means that each VCPU

is guaranteed its share of CPU cycles without interference

from other VCPUs.

The concept of a VCPU is similar to that in virtual ma-

chines [2, 4], where a hypervisor provides the illusion of

multiple physical CPUs (PCPUs) 4 represented as VCPUs

to each of the guest virtual machines. VCPUs exist as kernel

abstractions to simplify the management of resource bud-

gets for potentially many software threads. We use a hierar-

chical approach in which VCPUs are scheduled on PCPUs

and threads are scheduled on VCPUs.

A VCPU acts as a resource container [3] for scheduling

and accounting decisions on behalf of software threads. It

serves no other purpose to virtualize the underlying physical

CPUs, since our sandbox kernels and their applications ex-

ecute directly on the hardware. In particular, a VCPU does

not need to act as a container for cached instruction blocks

that have been generated to emulate the effects of guest

code, as in some trap-and-emulate virtualized systems.

In common with bandwidth preserving servers [1, 9, 14],

each VCPU, V , has a maximum compute time budget, CV ,

available in a time period, TV . V is constrained to use no

more than the fraction UV = CV

TV
of a physical processor

(PCPU) in any window of real-time, TV , while running at

its normal (foreground) priority. To avoid situations where

PCPUs are idle when there are threads awaiting service, a

VCPU that has expired its budget may operate at a lower

(background) priority. All background priorities are set be-

low those of foreground priorities to ensure VCPUs with

expired budgets do not adversely affect those with available

budgets.

Quest-V defines two classes of VCPUs: (1) Main VC-

PUs are used to schedule and track the PCPU usage of con-

ventional software threads, while (2) I/O VCPUs are used

to account for, and schedule the execution of, interrupt han-

dlers for I/O devices. This distinction allows for interrupts

4We define a PCPU to be either a conventional CPU, a processing core,

or a hardware thread in a simultaneous multi-threaded (SMT) system.

8

from I/O devices to be scheduled as threads [17], which may

be deferred execution when threads associated with higher

priority VCPUs having available budgets are runnable. The

flexibility of Quest-V allows I/O VCPUs to be specified for

certain devices, or for certain tasks that issue I/O requests,

thereby allowing interrupts to be handled at different prior-

ities and with different CPU shares than conventional tasks

associated with Main VCPUs.

2.2.1 VCPU API

VCPUs form the basis for managing time as a first-class re-

source: VCPUs are specified time bounds for the execution

of corresponding threads. Stated another way, every exe-

cutable control path in Quest-V is mapped to a VCPU that

controls scheduling and time accounting for that path. The

basic API for VCPU management is described below. It is

assumed this interface is managed only by a user with spe-

cial privileges.

• int vcpu create(struct vcpu param *param) – Creates

and initializes a new Main or I/O VCPU. The func-

tion returns an identifier for later reference to the new

VCPU. If the param argument is NULL the VCPU as-

sumes its default parameters. For now, this is a Main

VCPU using a SCHED SPORADIC policy [15, 13].

The param argument points to a structure that is ini-

tialized with the following fields:

struct vcpu_param {

int vcpuid; // Identifier

int policy; // SCHED_SPORADIC or SCHED_PIBS

int mask; // PCPU affinity bit-mask

int C; // Budget capacity

int T; // Period

}

The policy is SCHED SPORADIC for Main VCPUs

and SCHED PIBS for I/O VCPUs. SCHED PIBS is a

priority-inheritance bandwidth-preserving policy that

is described further in Section 3.1. The mask is a

bit-wise collection of processing cores available to the

VCPU. It restricts the cores on which the VCPU can

be assigned and to which the VCPU can be later mi-

grated. The remaining VCPU parameters control the

budget and period of a sporadic server, or the equiv-

alent bandwidth utilization for a PIBS server. In the

latter case, the ratio of C and T is all that matters, not

their individual values.

On success, a vcpuid is returned for a new VCPU.

An admission controller must check that the addition

of the new VCPUmeets system schedulability require-

ments, otherwise the VCPU is not created and an error

is returned.

• int vcpu destroy (int vcpuid, int force) – Destroys and

cleans up state associated with a VCPU. The count of

the number of threads associated with a VCPU must

be 0 if the force flag is not set. Otherwise, destruc-

tion of the VCPU will force all associated threads to

be terminated.

• int vcpu setparam (struct vcpu param *param) – Sets

the parameters of the specified VCPU referred to by

param. This allows an existing VCPU to have new

parameters from those when it was first created.

• int vcpu getparam (struct vcpu param *param) – Gets

the VCPU parameters for the next VCPU in a list for

the caller’s process. That is, each process has associ-

ated with it one or more VCPUs, since it also has at

least one thread. Initially, this call returns the VCPU

parameters at the head of a list of VCPUs for the call-

ing thread’s process. A subsequent call returns the pa-

rameters for the next VCPU in the list. The current

position in this list is maintained on a per-thread basis.

Once the list-end is reached, a further call accesses the

head of the list once again.

• int vcpu bind task (int vcpuid) – Binds the calling task,

or thread, to a VCPU specified by vcpuid.

Functions vcpu destroy, vcpu setparam, vcpu getparam

and vcpu bind task all return 0 on success, or an error value.

2.2.2 Parallelism in Quest-V

At system initialization time, Quest-V launches one or more

sandbox kernels. Each sandbox is then assigned a partition-

ing of resources, in terms of host physical memory, avail-

able I/O devices, and PCPUs. The default configuration cre-

ates one sandbox per PCPU. As stated earlier, this simpli-

fies scheduling decisions within each sandbox. Sandboxing

also reduces the extent to which synchronization is needed,

as threads in separate sandboxes typically access private re-

sources. For parallelism of multi-threaded applications, a

single sandbox must be configured to manage more than

one PCPU, or a method is needed to distribute application

threads across multiple sandboxes.

Quest-V maintains a quest tss data structure for each

software thread. Every address space has at least one

quest tss data structure. Managing multiple threads

within a sandbox is similar to managing processes in con-

ventional system designs. The only difference is that Quest-

V requires every thread to be associated with a VCPU and

the corresponding sandbox kernel (without involvement of

its monitor) schedules VCPUs on PCPUs.

In some cases it might be necessary to assign threads of

a multi-threaded application to separate sandboxes. This

could be for fault isolation reasons, or for situations where

one sandbox has access to resources, such as devices, not

available in other sandboxes. Similarly, threads may need

to be redistributed as part of a load balancing strategy.

In Quest-V, threads in different sandboxes are mapped

to separate host physical memory ranges, unless they ex-

9

ist in shared memory regions established between sand-

boxes. Rather than confining threads of the same appli-

cation to shared memory regions, Quest-V defaults to us-

ing separate process address spaces for threads in different

sandboxes. This increases the isolation between application

threads in different sandboxes, but requires special commu-

nication channels to allow threads to exchange information.

Here, we describe how a multi-threaded application is

established across more than one sandbox.

STEP 1: Create a new VCPU in parent process

– Quest-V implements process address spaces using

fork/exec/exit calls, similar to those in conventional

UNIX systems. A child process, initially having one thread,

inherits a copy of the address space and corresponding re-

sources defined in the parent thread’s quest tss data

structure. Forked threads differ from forked processes in

that no new address space copy is made. A parent calling

fork first establishes a new VCPU for use by the child.

In all likelihood the parent will know the child’s VCPU pa-

rameter requirements, but they can later be changed in the

child using vcpu setparam.

If the admission controller allows the new VCPU to be

created, it will be established in the local sandbox. If the

VCPU cannot be created locally, the PCPU affinity mask

can be used to identify a remote sandbox for the VCPU. Re-

mote sandboxes can be contacted via shared memory com-

munication channels, to see which one, if any, is best suited

for the VCPU. If shared channels do not exist, monitors can

be used to send IPIs to other sandboxes. Remote sandboxes

can then respond with bids to determine the best target. Al-

ternatively, remote sandboxes can advertise their willing-

ness to accept new loads by posting information relating to

their current load in shared memory regions accessible to

other sandboxes. This latter strategy is an offer to accept re-

mote requests, and is made without waiting for bid requests

from other sandboxes.

STEP 2: Fork a new thread or process and specify the

VCPU – A parent process can now make a special fork

call, which takes as an argument the vcpuid of the VCPU

to be used for scheduling and resource accounting. The

request can originate from a different sandbox to the one

where the VCPU is located, so some means of global reso-

lution of VCPU IDs is needed.

STEP 3: Set VCPU parameters in new thread/process – A

thread or process can adjust the parameters of any VCPUs

associated with it, using vcpu setparam. This includes

updates to its utilization requirements, and also the affinity

mask. Changes to the affinity might require the VCPU and

its associated process to migrate to a remote sandbox.

The steps described above can be repeated as necessary

to create a series of threads, processes and VCPUs within

or across multiple sandboxes. As stated in STEP 3, it might

be necessary to migrate a VCPU and its associated address

space to a remote sandbox. The initial design of Quest-

V limits migration of Main VCPUs and associated address

spaces. We assume I/O VCPUs are statically mapped to

sandboxes responsible for dedicated devices.

The details of how migration is performed are described

in Section 3.1. The rationale for only allowing Main VC-

PUs to migrate is because we can constrain their usage

to threads within a single process address space. Specifi-

cally, a Main VCPU is associated with one or more threads,

but every such thread is within the same process address

space. However, two separate threads bound to different

VCPUs can be part of the same or different address space.

This makes VCPU migration simpler since we only have

to copy the memory for one address space. It also means

that within a process the system maintains a list of VCPUs

that can be bound to threads within the corresponding ad-

dress space. As I/O VCPUs can be associated with multiple

different address spaces, their migration would require the

migration, and hence copying, of potentially multiple ad-

dress spaces between sandboxes. For predictability reasons,

we can place an upper bound on the time to copy one ad-

dress space between sandboxes, as opposed to an arbitrary

number. Also, migrating I/O VCPUs requires association of

devices, and their interrupts, with different sandboxes. This

can require intervention of monitors to update I/O APIC in-

terrupt distribution settings.

3 System Predictability

Quest-V uses VCPUs as the basis for time management

and predictability of its sub-systems. Here, we describe

how time is managed in four key areas of Quest-V: (1)

scheduling and migration of threads and virtual CPUs, (2)

I/O management, (3) inter-sandbox communication, and (4)

fault recovery.

3.1 VCPU Scheduling and Migration

By default, VCPUs act like Sporadic Servers [13]. Spo-

radic Servers enable a system to be treated as a collection

of equivalent periodic tasks scheduled by a rate-monotonic

scheduler (RMS) [12]. This is significant, given I/O events

can occur at arbitrary (aperiodic) times, potentially trigger-

ing the wakeup of blocked tasks (again, at arbitrary times)

having higher priority than those currently running. RMS

analysis can therefore be applied, to ensure each VCPU is

guaranteed its share of CPU time, UV , in finite windows of

real-time.

Scheduling Example. An example schedule is provided in

10

Figure 3. Example VCPU Schedule

Figure 3 for threeMain VCPUs, whose budgets are depleted

when a corresponding thread is executed. Priorities are in-

versely proportional to periods. As can be seen, each VCPU

is granted its real-time share of the underlying PCPU.

In Quest-V there is no notion of a periodic timer interrupt

for updating system clock time. Instead, the system is event

driven, using per-processing core local APIC timers to re-

plenish VCPU budgets as they are consumed during thread

execution. We use the algorithm proposed by Stanovich et

al [15] to correct for early replenishment and budget ampli-

fication in the POSIX specification.

Main and I/O VCPU Scheduling. Figure 4 shows an ex-

ample schedule for two Main VCPUs and one I/O VCPU

for a certain device such as a gigabit Ethernet card. In this

example, Schedule (A) avoids premature replenishments,

while Schedule (B) is implemented according to the POSIX

specification. In (B), VCPU1 is scheduled at t = 0, only
to be preempted by higher priority VCPU0 at t = 1, 41, 81,
etc. By t = 28, VCPU1 has amassed a total of 18 units

of execution time and then blocks until t = 40. Similarly,

VCPU1 blocks in the interval [t = 68, 80]. By t = 68,
Schedule (B) combines the service time chunks for VCPU1

in the intervals [t = 0, 28] and [t = 40, 68] to post future

replenishments of 18 units at t = 50 and t = 90, respec-
tively. This means that over the first 100 time units, VCPU1

actually receives 46 time units, when it should be limited

to 40%. Schedule (A) ensures that over the same 100 time

units, VCPU1 is limited to the correct amount. The prob-

lem is triggered by the blocking delays of VCPU1. Sched-

ule (A) ensures that when a VCPU blocks (e.g., on an I/O

operation), on resumption of execution it effectively starts

a new replenishment phase. Hence, although VCPU1 ac-

tually receives 21 time units in the interval [t = 50, 100]
it never exceeds more than its 40% share of CPU time be-

tween blocking periods and over the first 100 time units it

meets its bandwidth limit.

For completeness, Schedule (A) shows the list of replen-

ishments and how they are updated at specific times, accord-

ing to scheduling events in Quest-V. The invariant is that

the sum of replenishment amounts for all list items must

not exceed the budget capacity of the corresponding VCPU

(here, 20, for VCPU1). Also, no future replenishment, R,

for a VCPU, V , executing from t to t + R can occur before

t + TV .

When VCPU1 first blocks at t = 28 it still has 2 units of

budget remaining, with a further 18 due for replenishment

at t = 50. At this point, the schedule shows the execution
of the I/O VCPU for 2 time units. In Quest-V, threads run-

ning on Main VCPUs block (causing the VCPU to block

if there are no more runnable threads), while waiting for

I/O requests to complete. All I/O operations in response to

device interrupts are handled as threads on specific I/O VC-

PUs. Each I/O VCPU supports threaded interrupt handling

at a priority inherited from the Main VCPU associated with

the blocked thread. In this example, the I/O VCPU runs at

the priority of VCPU1. The I/O VCPU’s budget capacity is

calculated as the product of it bandwidth specification (here,

UIO = 4%) and the period, TV , of the corresponding Main

VCPU for which it is performing service. Hence, the I/O

VCPU receives a budget of UIO·TV = 2 time units, and

through bandwidth preservation, will be eligible to execute

again at te = t + Cactual/UIO, where t is the start time

of the I/O VCPU and Cactual | 0≤Cactual≤UIO·TV is how

much of its budget capacity it really used.

In Schedule (A), VCPU1 resumes execution after un-

blocking at times, t = 40 and 80. In the first case, the I/O

VCPU has already completed the I/O request for VCPU1

but some other delay, such as accessing a shared resource

guarded by a semaphore (not shown) could be the cause

of the added delay. Time t = 78 marks the next eligible

time for the I/O VCPU after it services the blocked VCPU1,

which can then immediately resume. Further details about

VCPU scheduling in Quest-V can be found in our accompa-

nying paper for Quest [8], a non-virtualized version of the

system that does not support sandboxed service isolation.

Since each sandbox kernel in Quest-V supports local

scheduling of its allocated resources, there is no notion of

a global scheduling queue. Forked threads are by default

managed in the local sandbox but can ultimately be mi-

grated to remote sandboxes along with their VCPUs, ac-

cording to load constraints or affinity settings of the target

VCPU. Although each sandbox is isolated in a special guest

execution domain controlled by a corresponding monitor,

the monitor is not needed for scheduling purposes. This

avoids costly virtual machine exits and re-entries (i.e., VM-

Exits and VM-resumes) as would occur with hypervisors

such as Xen [4] that manage multiple separate guest OSes.

Temporal Isolation. Quest-V provides temporal isolation

11

Figure 4. Sporadic Server Replenishment List Management

of VCPUs assuming the total utilization of a set of Main
and I/O VCPUs within each sandbox do not exceed specific
limits. Each sandbox can determine the schedulability of
its local VCPUs independently of all other sandboxes. For
cases where a sandbox is associated with one PCPU, nMain
VCPUs and m I/O VCPUs we have the following:

n−1
X

i=0

Ci

Ti

+

m−1
X

j=0

(2 − Uj)·Uj ≤ n

“

n
√

2 − 1
”

Here, Ci and Ti are the budget capacity and period of Main

VCPU, Vi. Uj is the utilization factor of I/O VCPU, Vj [8].

VCPU and Thread Migration. For multicore processors,

the cores share a last-level cache (LLC) whose lines are oc-

cupied by software thread state from any of the sandbox ker-

nels. It is therefore possible for one thread to suffer poorer

progress than another, due to cache line evictions from con-

flicts with other threads. Studies have shown memory bus

transfers can incur several hundred clock cycles, or more,

to fetch lines of data from memory on cache misses [7, 10].

While this overhead is often hidden by prefetch logic, it

is not always possible to prevent memory bus stalls due to

cache contention from other threads.

To improve the global performance of VCPU schedul-

ing in Quest-V, VCPUs and their associated threads can be

migrated between sandbox kernels. This helps prevent co-

schedules involving multiple concurrent threads with high

memory activity (that is, large working sets or frequent ac-

cesses to memory). Similarly, a VCPU and its correspond-

ing thread(s) might be better located in another sandbox that

is granted direct access to an I/O device, rather than hav-

ing to make inter-sandbox communication requests for I/O.

Finally, on non-uniform memory access (NUMA) architec-

tures, threads and VCPUs should be located close to the

memory domains that best serve their needs without hav-

ing to issue numerous transactions across an interconnect

between chip sockets [6].

In a real-time system, migrating threads (and, in our

case, VCPUs) between processors at runtime can impact the

schedulability of local schedules. Candidate VCPUs for mi-

gration are determined by factors such as memory activity

of the threads they support. We use hardware performance

counters found on modern multicore processors to measure

events such as per-core and per-chip package cache misses,

cache hits, instructions retired and elapsed cycles between

scheduling points.

For a single chip package, or socket, we distribute

threads and their VCPUs amongst sandboxes to: (a) bal-

ance total VCPU load, and (b) balance per-sandbox LLC

miss-rates or aggregate cycles-per-instruction (CPI) for all

corresponding threads. For NUMA platforms, we are con-

sidering cache occupancy prediction techniques [16] to es-

timate the costs of migrating thread working sets between

sandboxes on separate sockets.

Predictable Migration Strategy. We are considering two

approaches to migration. In both cases, we assume that a

VCPU and its threads are associated with one address space,

otherwise multiple address spaces would have to be moved

between sandboxes, which adds significant overhead.

The first migration approach uses shared memory to

copy an address space and its associated quest tss data

structure(s) from the source sandbox to the destination. This

allows sandbox kernels to perform the migration without in-

volvement of monitors, which would require VM-Exit and

VM-resume operations. These are potentially costly opera-

tions, of several hundred clock cycles [11]. This approach

only requires monitors to establish shared memory map-

pings between a pair of sandboxes, by updating extended

page tables as necessary. However, for address spaces that

are larger than the shared memory channel we effectively

have to perform a UNIX pipe-style exchange of informa-

tion between sandboxes. This leads to a synchronous ex-

change, with the source sandbox blocking when the shared

channel is full, and the destination blocking when awaiting

12

more information in the channel.

In the second migration approach, we can eliminate the

need to copy address spaces both into and out of shared

memory. Instead, the destination sandbox is asked to move

the migrating address space directly from the source sand-

box, thereby requiring only one copy. However, the mi-

grating address space and its quest tss data structure(s)

are initially located in the source sandbox’s private memory.

Hence, a VM-Exit into the source monitor is needed, to send

an inter-processor interrupt (IPI) to the destination sand-

box. This event is received by a remote migration thread

that traps into its monitor, which can then access the source

sandbox’s private memory.

The IPI handler causes the destination monitor to tem-

porarily map the migrating address space into the target

sandbox. Then, the migrating address space can be copied

to private memory in the destination. Once this is complete,

the destination monitor can unmap the pages of the migrat-

ing address space, thereby ensuring sandbox memory isola-

tion except where shared memory channels should exist. At

this point, all locally scheduled threads can resume as nor-

mal. Figure 5 shows the general migration strategy. Note

that for address spaces with multiple threads we still have

to migrate multiple quest tss structures, but a bound on

per-process threads can be enforced.

Migration Threads. We are considering both migration

strategies, using special migration threads to move address

spaces and their VCPUs in bounded time. A migration

thread in the destination sandbox has a Main VCPU with

parameters Cm and Tm. The migrating address space asso-

ciated with a VCPU, Vsrc, having parameters Csrc and Tsrc

should ideally be moved without affecting its PCPU share.

To ensure this is true, we require the migration cost, ∆m,src,

of copying an address space and its quest tss data struc-

ture(s) to be less than or equal to Cm. Tm should ideally be

set to guarantee the migration thread runs at highest priority

in the destination. To ease migration analysis, it is prefer-

able to move VCPUs with full budgets. For any VCPU with

maximum tolerable delay, Tsrc − Csrc, before it needs to

be executed again, we require preemptions by higher prior-

ity VCPUs in the destination sandbox to be less than this

value. In practice, Vsrc might have a tolerable delay lower

than Tsrc − Csrc. This restricts the choice of migratable

VCPUs and address spaces, as well as the destination sand-

boxes able to accept them. Further investigation is needed to

determine the schedulability of migrating VCPUs and their

address spaces.

3.2 Predictable I/O Management

As shown in Section 3.1, Quest-V assigns I/O VCPUs to

interrupt handling threads. Only a minimal “top half” [17]

Figure 5. Time­Bounded Migration Strategy

part of interrupt processing is needed to acknowledge the

interrupt and post an event to handle the subsequent “bot-

tom half” in a thread bound to an I/O VCPU. A worst-

case bound can be placed on top half processing, which is

charged to the current VCPU as system overhead.

Interrupt processing as part of device I/O requires proper

prioritization. In Quest-V, this is addressed by assigning

an I/O VCPU the priority of the Main VCPU on behalf

of which interrupt processing is being performed. Since

all VCPUs are bandwidth preserving, we set the priority

of an I/O VCPU to be inversely proportional to the pe-

riod of its corresponding Main CPU. This is the essence

of priority-inheritance bandwidth preservation scheduling

(PIBS). Quest-V ensures that the priorities of all I/O opera-

tions are correctly matched with threads running on Main

VCPUs, although such threads may block on their Main

VCPUs while interrupt processing occurs. To ensure I/O

processing is bandwidth-limited, each I/O VCPU is as-

signed a specific percentage of PCPU time. Essentially, a

PIBS-based I/O VCPU operates like a Sporadic Server with

one dynamically-calculated replenishment.

This approach to I/O management prevents live-lock

and priority inversion, while integrating the management

of interrupts with conventional thread execution. It does,

however, require correctly matching interrupts with Main

VCPU threads. To do this, Quest-V’s drivers support early

demultiplexing to identify the thread for which the interrupt

has occurred. This overhead is also part of the top half cost

described above.

Finally, Quest-V programs I/O APICs to multicast de-

13

vice interrupts to the cores of sandboxes with access to

those devices. In this way, interrupts are not always di-

rected to one core which becomes an I/O server for all oth-

ers. Multicast interrupts are filtered as necessary, as part of

early demultiplexing, to decide whether or not subsequent

I/O processing should continue in the target sandbox.

3.3 Inter­Sandbox Communication

Inter-sandbox communication in Quest-V relies on mes-

sage passing primitives built on shared memory, and

asynchronous event notification mechanisms using Inter-

processor Interrupts (IPIs). IPIs are currently used to com-

municate with remote sandboxes to assist in fault recov-

ery, and can also be used to notify the arrival of messages

exchanged via shared memory channels. Monitors update

shadow page table mappings as necessary to establish mes-

sage passing channels between specific sandboxes. Only

those sandboxes with mapped shared pages are able to com-

municate with one another. All other sandboxes are isolated

from these memory regions.

A mailbox data structure is set up within shared mem-

ory by each end of a communication channel. By default,

Quest-V currently supports asynchronous communication

by polling a status bit in each relevant mailbox to determine

message arrival. Message passing threads are bound to VC-

PUs with specific parameters to control the rate of exchange

of information. Likewise, sending and receiving threads

are assigned to higher priority VCPUs to reduce the latency

of transfer of information across a communication channel.

This way, shared memory channels can be prioritized and

granted higher or lower throughput as needed, while ensur-

ing information is communicated in a predictable manner.

Thus, Quest-V supports real-time communication between

sandboxes without compromising the CPU shares allocated

to non-communicating tasks.

3.4 Predictable Fault Recovery

Central to the Quest-V design is fault isolation and re-

covery. Hardware virtualization is used to isolate sandboxes

from one another, with monitors responsible for mapping

sandbox virtual address spaces onto (host) physical regions.

Quest-V supports both local and remote fault recovery.

Local fault recovery attempts to restore a software compo-

nent failure without involvement of another sandbox. The

local monitor re-initializes the state of one or more compro-

mised components, as necessary. The recovery procedure

itself requires some means of fault detection and trap (VM-

Exit) to the monitor, which we assume is never compro-

mised. Remote fault recovery makes sense when a replace-

ment software component already exists in another sand-

box, and it is possible to use that functionality while the

local sandbox is recovered in the background. This strategy

avoids the delay of local recovery, allowing service to be

continued remotely. We assume in all cases that execution

of a faulty software component can correctly resume from

a recovered state, which might be a re-initialized state or

one restored to a recent checkpoint. For checkpointing, we

require monitors to periodically intervene using a preemp-

tion timeout mechanism so they can checkpoint the state of

sandboxes into private memory.

Here, we are interested in the predictability of fault re-

covery and assume the procedure for correctly identifying

faults, along with the restoration of suitable state already

exists. These aspects of fault recovery are, themselves, chal-

lenging problems outside the scope of this paper.

In Quest-V, predictable fault recovery requires the use of

recovery threads bound to Main VCPUs, which limit the

time to restore service while avoiding temporal interference

with correctly functioning components and their VCPUs.

Although recovery threads exists within sandbox kernels

the recovery procedure operates at the monitor-level. This

ensures fault recovery can be scheduled and managed just

like any other thread, while accessing specially trusted mon-

itor code. A recovery thread traps into its local monitor and

guarantees that it can be de-scheduled when necessary. This

is done by allowing local APIC timer interrupts to be de-

livered to a monitor handler just as they normally would be

delivered to the event scheduler in a sandbox kernel, outside

the monitor. Should a VCPU for a recovery thread expire its

budget, a timeout event must be triggered to force the moni-

tor to upcall the sandbox scheduler. This procedure requires

that wherever recovery takes place, the corresponding sand-

box kernel scheduler is not compromised. This is one of

the factors that influences the decision to perform local or

remote fault recovery.

When a recovery thread traps into its monitor, VM-Exit

information is examined to determine the cause of the exit.

If the monitor suspects it has been activated by a fault we

need to initialize or continue the recovery steps. Because

recovery can only take place while the sandbox recovery

thread has available VCPU budget, the monitor must be pre-

emptible. However, VM-Exits trap into a specific monitor

entry point rather than where a recovery procedure was last

executing if it had to be preempted. To resolve this issue,

monitor preemptions must checkpoint the execution state so

that it can be restored on later resumption of the monitor-

level fault recovery procedure. Specifically, the common

entry point into a monitor for all VM-Exits first examines

the reason for the exit. For a fault recovery, the exit handler

will attempt to restore checkpointed state if it exists from a

prior preempted fault recovery stage. This is all assuming

that recovery cannot be completed within one period (and

budget) of the recovery thread’s VCPU. Figure 6 shows how

the fault recovery steps are managed predictably.

14

Figure 6. Time­Bounded Fault Recovery

4 Conclusions and Future Work

This paper describes time management in the Quest-V

real-time multikernel. We show through the use of vir-

tual CPUs with specific time budgets how several key sub-

system components behave predictably. These sub-system

components relate to on-line fault recovery, communica-

tion, I/O management, scheduling and migration of execu-

tion state.

Quest-V is being built from scratch for multicore pro-

cessors with hardware virtualization capabilities, to isolate

sandbox kernels and their application threads. Although

Intel VT-x and AMD-V processors are current candidates

for Quest-V, we expect the system design to be applicable

to future embedded architectures such as the ARM Cortex

A15. Future work will investigate fault detection schemes,

policies to identify candidate sandboxes for fault recovery,

VCPU and thread migration, and also load balancing strate-

gies on NUMA platforms.

References

[1] L. Abeni, G. Buttazzo, S. Superiore, and S. Anna. Inte-

grating multimedia applications in hard real-time systems.

In Proceedings of the 19th IEEE Real-time Systems Sympo-

sium, pages 4–13, 1998.

[2] K. Adams and O. Agesen. A comparison of software and

hardware techniques for x86 virtualization. In Proceedings

of the 12th Intl. Conf. on Architectural Support for Program-

ming Languages and Operating Systems, pages 2–13, New

York, NY, USA, 2006.

[3] G. Banga, P. Druschel, and J. C. Mogul. Resource contain-

ers: a new facility for resource management in server sys-

tems. In Proceedings of the 3rd USENIX Symposium on Op-

erating Systems Design and Implementation, 1999.

[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and

the art of virtualization. In SOSP ’03: Proceedings of the

nineteenth ACM symposium on Operating systems princi-

ples, pages 164–177, New York, NY, USA, 2003. ACM.

[5] A. Baumann, P. Barham, P.-E. Dagand, T. Harris, R. Isaacs,

S. Peter, T. Roscoe, A. Schüpbach, and A. Singhania. The

Multikernel: A new OS architecture for scalable multicore

systems. In Proceedings of the 22nd ACM Symposium on

Operating Systems Principles, pages 29–44, 2009.

[6] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova. A

case for NUMA-aware contention management on multicore

processors. In USENIX Annual Technical Conference, 2011.

[7] S. Boyd-Wickizer, H. Chen, R. Chen, Y. Mao, M. F.

Kaashoek, R. Morris, A. Pesterev, L. Stein, M. Wu, Y. hua

Dai, Y. Zhang, and Z. Zhang. Corey: An operating system

for many cores. In Proceedings of the 8th USENIX Sym-

posium on Operating Systems Design and Implementation,

pages 43–57, 2008.

[8] M. Danish, Y. Li, and R. West. Virtual-CPU Scheduling

in the Quest Operating System. In the 17th IEEE Real-

Time and Embedded Technology and Applications Sympo-

sium, April 2011.

[9] Z. Deng, J. W. S. Liu, and J. Sun. A scheme for scheduling

hard real-time applications in open system environment. In

Proceedings of the 9th Euromicro Workshop on Real-Time

Systems, 1997.

[10] U. Drepper. What Every Programmer Should Know About

Memory. Redhat, Inc., November 21 2007.

[11] Y. Li, M. Danish, and R.West. Quest-V: A virtualized multi-

kernel for high-confidence systems. Technical Report 2011-

029, Boston University, December 2011.

[12] C. L. Liu and J. W. Layland. Scheduling algorithms for mul-

tiprogramming in a hard-real-time environment. Journal of

the ACM, 20(1):46–61, 1973.

[13] B. Sprunt, L. Sha, and J. Lehoczky. Aperiodic task schedul-

ing for hard real-time systems. Real-Time Systems Journal,

1(1):27–60, 1989.

[14] M. Spuri, G. Buttazzo, and S. S. S. Anna. Scheduling aperi-

odic tasks in dynamic priority systems. Real-Time Systems,

10:179–210, 1996.

[15] M. Stanovich, T. P. Baker, A.-I. Wang, and M. G. Harbour.

Defects of the POSIX sporadic server and how to correct

them. In Proceedings of the 16th IEEE Real-Time and Em-

bedded Technology and Applications Symposium, 2010.

[16] R. West, P. Zaroo, C. A. Waldspurger, and X. Zhang. On-

line cache modeling for commodity multicore processors.

Operating Systems Review, 44(4), December 2010. Special

VMware Track.

[17] Y. Zhang and R. West. Process-aware interrupt scheduling

and accounting. In the 27th IEEE Real-Time Systems Sym-

posium, December 2006.

[18] C. Zimmer and F. Mueller. Low contention mapping of real-

time tasks onto a TilePro 64 core processor. In the 18th

IEEE Real-Time and Embedded Technology and Applica-

tions Symposium, April 2012.

15

Operating Systems for Manycore Processors from

the Perspective of Safety-Critical Systems
Florian Kluge∗, Benoı̂t Triquet†, Christine Rochange‡, Theo Ungerer∗

∗ Department of Computer Science, University of Augsburg, Germany
† Airbus Operations S.A.S., Toulouse, France

‡ IRIT, University of Toulouse, France

Abstract—Processor technology is advancing from bus-based
multicores to network-on-chip-based manycores, posing new
challenges for operating system design. While not yet an issue
today, in this forward-looking paper we discuss why future safety-
critical systems could profit from such new architectures. We
show, how today’s approaches on manycore operating systems
must be extended to fulfill also the requirements of safety-critical
systems.

I. INTRODUCTION

Multicore processors have been around for many years.

Their use is widely spread in high-performance and desktop

computing. In the domain of real-time embedded systems

(RTES) the multicore era has just started in the last years.

Despite initial reservations against multicore processors for

safety-critical systems [1], considerable work to overcome

these by appropriate hardware [2]–[5] and software design

[6], [7] exists. Today, several multicore- and real-time-capable

operating systems are commercially available, e.g. the Sysgo

PikeOS [8] or VxWorks [9] from Wind River.

Meanwhile processor technology is progressing, and the

number of cores in single chips is increasing. Today several

processors are already available that integrate over 32 cores

on one die [10], [11]. The single cores in such processors are

no longer connected by a shared bus, but by a Network on

Chip (NoC) for passing messages between the cores of such

a manycore processor. Recent work shows that even on such

platforms a deterministic execution could be made possible

[12]. Such manycore architectures pose new challenges not

only for application developers, but also for OS design. There

is considerable work on operating systems for future manycore

processors [13]–[16], but targeting the domains of general-

purpose, high performance and cloud computing.

In this paper we present our considerations about a system

architecture for future safety-critical embedded systems that

will be built from manycore processors. We show the advan-

tages of manycore processors over today’s multicore proces-

sors concerning application development and certification. We

also show what problems will arise by using manycores and

introduce ideas how these problems can be overcome.

In section II we present the requirements of avionic com-

puters and show potential impacts by multi- and manycore

processor deployment. In section III we discuss existing oper-

ating systems for manycore processors. The findings flow into

the manycore operating system architecture that is presented in

section IV. In section V we show the research challenges we

see emerging from the presented manycore operating system.

Section VII concludes the paper with a brief summary.

II. AVIONIC COMPUTERS

A. Requirements

Today, avionic computer systems are developed following

the Integrated Modular Avionics (IMA) architecture. Some

IMA software requirements are stated in the ARINC 653 stan-

dard. The objective is to run applications of different criticality

levels on the same computing module (mixed criticality). This

raises the problem of certification. Avionic industry uses the

concept of incremental qualification, where each component

of a system is certified for itself prior to certification of the

system as a whole. This can only succeed, if unpredictable

interferences between the components can be excluded. AR-

INC 653 defines the concept of partitioning to isolate ap-

plications from each other. Each application is assigned its

own partition. Communication between partitions is restricted

to messages that are sent through interfaces provided by the

OS. Thus, freedom of interference between applications is

guaranteed, i.e. timely interferences and error propagation over

partition boundaries are prevented. ARINC 653 requires that

an avionic computer can execute up to 32 partitions. Partitions

are scheduled in a time-slicing manner. Concerning shared

I/O, the underlying OS or hypervisor must help to ensure

isolation. Applications consist of multiple processes that can

interact through a number of ARINC 653 services operating

on objects local to an application. In the current standard,

it is unspecified whether processes of one application share

a single addressing space, and applications cannot make the

assumption that pointers in one thread will be valid from

another one. In the upcoming release of the standard, this

will be clarified such that processes of one application share

a single addressing space so they can also interact through

global variables. However, ARINC 653 offers no support

for hardware where concurrent access to globals needs to

be programmed differently from the sequential programming

model, such as hardware requiring explicit memory ordering,

non cache-coherent hardware, etc. It is known that some

existing ARINC 653 applications do assume that globals can

be shared among processes. This is an invalid assumption,

although it does work with most implementations.

Figure 1 shows the basic architecture that is coined from

the terms defined above. Additionally, it shows the required

16

O
S Partition Scheduler

Partition/Application

ProcessProcessProcessProcessProcess

Process Scheduler

Partition/Application

ProcessProcessProcessProcessProcess

Process Scheduler

P
ar

ti
ti

o
n

B
o
u
n
d
ar

y

P
ar

ti
ti

o
n

B
o
u
n
d
ar

y

Figure 1. Basic Application Architecture for one computer; Partition
boundaries in thick lines

partition boundaries. The OS must ensure that there are no

interferences across these boundaries. Concerning the devel-

opment process, this also means that changes within one

application must not trigger changes in any other application.

All in all, we state the following requirements and properties

for safety-critical RTES: (1) The whole system must behave

predictably and must therefore be analysable. This includes a

predictable timing behaviour to ensure that all deadlines are

kept. (2) Partitioning in time and space guarantees freedom of

interference. Special care must be taken to make accesses to

shared resources predictable. (3) Fine-grained communication

takes only place between processes of the same application. If

applications have to exchange data over partition boundaries,

special mechanisms are provided by the OS. (4) Furthermore,

there is ongoing research on the dynamic reconfiguration of

software in safety critical systems [17]. While this is not part

of today’s standards, we view the capability for reconfiguration

also as an important requirement for future avionic systems.

B. Multicores in Avionic Systems

Kinnan [1] identified several issues that are preventing a

wide use of multicore processors in safety-critical RTES. Most

of these issues relate to the certification of shared resources

like caches, peripherals or memory controllers in a multicore

processor. Wilhelm et al. [2] show how to circumvent the certi-

fication issues of shared resources through a diligent hardware

design. Later work also shows that even if an architecture is

very complex, smart configuration can still allow a feasible

timing analysis [3].

Additionally, Kinnan also identified issues that inhere the

concept of multicore. The replacement of multiple processors

by one multicore processor can introduce the possibility of

a single point of failure for the whole system. Separate

processors have separate power feeds and clock sources, where

the failure of one feed will not impact the other processors.

C. Manycores in Avionic Systems

Problems discussed above stem mostly from a fine-grained

sharing of many hardware resources in today’s multicore

processors. In a NoC-based manycore (see figure 2), the single

cores are decoupled more strongly. The only shared resources

are the NoC interconnect and off-chip I/O.

We see a great benefit from such a hardware architecture.

On the single-core processors used in today’s aircrafts, the

Node

I/O Connection

Core

Local Memory

Network Interface

Node Router NoC Interconnect

Figure 2. Manycore architecture [18]

partitions of one computer share one core. Even with multicore

computers, several partitions would have to share one core.

With an increasing number of cores, it would be possible

to assign each partition its own core or even a set of cores

exclusively, resulting in a mapping like depicted in figure 3.

The space and time partitioning thus is partly provided by the

underlying hardware. We discuss this concept in more depth

in later sections.

PR PR PR PR

Application 1

PR PR

Application 2

PR PR PR

Application 3 PR PR

PR PR

PR

PR

PR PR PR

Figure 3. Mapping of processes and partitions to a manycore processor

III. MANYCORE OPERATING SYSTEMS

In this section we discuss some existing work on manycore

operating systems exemplarily. Based on the presented works

common principles for a manycore OS are deduced that form

the base of our work.

A. Barrelfish

The Barrelfish [13] OS targets multicore processors, includ-

ing those with heterogeneous core architectures. The design

of Barrelfish is guided by the idea that today’s computers

are already distributed systems. Thus, also the OS should be

reconsidered to exploit future hardware. Based on this idea,

three design principles were defined for Barrelfish to form a

Multikernel OS.

In Barrelfish, all communication between cores is explicit.

The authors argue that this approach is amenable for cor-

rectness analysis as a theoretical foundation therefore already

exists, e.g. Hoare’s communicating processes [19]. The OS

structure of Barrelfish is hardware-neutral. Hardware-related

parts like message transport or CPU and device interfaces are

implemented in a small kernel. All other parts of the OS are

implemented uniformly on top. The state of OS components

in Barrelfish is no longer shared, but replicated. OS instances

are distributed homogeneously over all cores. If some local

instance of the OS has to access data that is possibly shared,

17

this data is treated as a local replica. Consistency between the

instances is ensured through messages.

B. Factored operating system

The factored operating system (fos) [14] is based on the idea

that scheduling on a manycore processor should be a problem

of space partitioning and no longer of time multiplexing. OS

and application components are executed on separate cores

each, thus forming a rather heterogeneous system. Separate

servers provide different OS services. Communication is re-

stricted to passing messages. On each core, fos provides

an identical µKernel. Applications and servers run on top

of this kernel. Applications can execute on one or more

cores. The µKernel converts applications’ system calls into

messages for the affected server. Furthermore, the µKernel

provides a reliable messaging and named mailboxes for clients.

Namespaces help to improve protection. fos servers are in-

spired by internet servers. They work transaction-oriented and

implement only stateless protocols. Transactions cannot be

interrupted, however long latency operations are handled with

the help of so-called continuation objects. While the operation

is pending, the server thus can perform other work.

C. Tesselation and ROS

Tesselation [15] introduces the concept of space-time par-

titioning (STP) on a manycore processor for single-user client

computers. A spatial partition contains a subset of the available

resources exclusively and is isolated from other partitions. STP

additionally time-multiplexes the partitions on the available

hardware. Communication between partitions is restricted to

messages sent over channels providing QoS guarantees. The

authors discuss how partitioning can help improving perfor-

mance of parallel application execution and reducing energy

consumption in mobile devices. They also argue that STP can

provide QoS guarantees and will enhance the security and

correctness of a system.

Building on these concepts, Klues et al. [16] introduce

the manycore process (MCP) as a new process abstraction.

Threads within a MCP are scheduled in userspace, thus re-

moving the need for corresponding kernel threads and making

the kernel more scalable. Physical resources used by a MCP

must be explicitly granted and revoked. They are managed

within so-called resource partitions. The resources are only

provisioned, but not allocated. ROS guarantees to make them

available if requested. While they are not used by the partition,

ROS can grant them temporarily to other partitions. Like

Tesselation, ROS targets general-purpose client computers.

D. Summary

The works presented above base on the fact that a big

problem for scalability of operating systems stems from the

uncontrolled sharing of resources and especially the use of

shared memory. They switch over to message passing and use

shared memory only very restrictedly, if at all. Barrelfish and

fos also change the view on the whole system. They view a

manycore computer no longer as a monolithic block, but as

a distributed system. These works have in common that they

strongly separate software components by keeping as much

data locally as possible. Tesselation continues this approach

by introducing partitioning for general-purpose computing.

The issue of safety-critical systems has, to the best of

our knowledge, not yet been addressed concretely in works

concerning future manycore processors. Baumann et al. [13]

give some hints about system analysis concerning their Bar-

relfish approach. The STP concept of Tesselation and its

continuation in ROS pursues similar goals as ARINC 653 par-

titioning, but targets general-purpose computers. The problem

of predictability that is central to safety-critical systems, is

considered only marginally.

IV. MANYCORE OPERATING SYSTEM FOR

SAFETY-CRITICAL APPLICATIONS

The basic idea of our system architecture is to map ARINC

653 applications or even processes to separate cores. Each

partition is represented by one core or a cluster of cores (see

figure 3). Additionally, we allocate separate cores as servers

to perform tasks that need global knowledge or that can only

perform on a global level. These include off-chip I/O (for all

partitions) and inter-partition communication. There is no need

for a global scheduler among applications, regarding user code

execution (but there may be a need for I/O or communication

schedulers). If multiple processes of one application end up

on one core, a local scheduler is required, and it can be

somewhat simplified as it does not need to cross addressing

space boundaries. If processes of one application end up

on more than one core, according to ARINC 653-2 we are

only required to implement ARINC 653 buffers, blackboards,

events and semaphores such that they work across the cores

of one application. The upcoming release of ARINC 653

will require implicit memory migration, which may in turn

cause a performance degradation (although it may help that

the network traffic remains fairly local).

Figure 4 outlines the overall architecture of the pro-

posed Manycore Operating System for Safety-Critical systems

(MOSSCA). The hardware base is formed by nodes which

are connected by a real-time interconnect (cf. figure 2) that

provides predictable traversal times for messages. An identical

Real-time Interconnect

Node

MOSSCA µKernel

Node

MOSSCA µKernel

Node

MOSSCA µKernel

MOSSCA

Stub

Application MOSSCA

OS Server

MOSSCA

I/O Server

Off-chip

I/O

Figure 4. Overall System Architecture

MOSSCA µKernel on each node is responsible for config-

uration and management of the node’s hard- and software.

MOSSCA is split into two parts and runs in a distributed

manner to achieve high parallelism. Application nodes are

equipped with a MOSSCA stub that provides the functional

18

interface for applications to use the manycore OS. If a

MOSSCA service cannot be performed on the calling node,

the MOSSCA stub sends a request to a MOSSCA server

running on a separate node. Nodes which are connected to

external I/O facilities act as I/O servers. They are responsible

for processing all I/O requests from applications concerning

their I/O facility. The general concepts of MOSSCA are based

on the works presented in section III. In the following sections,

we discuss the additional properties that must be fulfilled to

make the OS capable for safety-critical systems.

A. µKernel

The µKernel manages the node-local hardware devices.

Concerning e.g. the interface to the NoC interconnect this

includes a fine-grained configuration of the send/receive band-

width within the bounds that are decided during system

integration and ensuring that the local application keeps this

constraints. The µKernel is also responsible for the software

configuration of the node, i.e. loading the code of applications

that should run on the node, including MOSSCA and I/O

servers. Thus, the µKernel must possess basic mechanisms for

coordination with other cores during the boot process, and also

provide an interface for the MOSSCA server to allow online

reconfiguration of the node. If several processes of an appli-

cation are mapped to one node, the µKernel must also provide

a process scheduler and, if necessary, means for protection

between the processes. Code and data of the µKernel must

be protected from applications. Finally, all µKernel services

must deliver a predictable timing behaviour. This includes the

mechanisms for boot coordination and reconfiguration.

B. Servers: General Techniques

Functionalities that must be globally available are imple-

mented as servers. The stateless protocol of fos servers [14]

provides a sound base, which we want to extend in MOSSCA.

In safety-critical embedded systems, special care must be taken

of the predictability of the servers:

1) All transactions that return immediately must be pre-

dictable, i.e. they must have at least an upper timing bound,

but better perform in constant time. This problem is already

solved for today’s single processor systems [20].

2) As the server is a shared resource, the worst-case waiting

time of a client consists not only of the raw processing time

of the request. Instead, the time is increased considerably by

requests from other clients that are possibly pending.

3) Special care must be given to long-latency operations that

are handled through continuation objects. When the operation

is finished, the server processes the continuation before other

pending requests. Thus, these requests are delayed further. The

constraints defined for server access must consider also such

long-latency operations.

While these requirements are obvious, we see some chal-

lenges especially concerning requirement 2). Today, when

dealing with shared resources, usually time multiplexing or

prioritisation are used. Both of these approaches can lead to a

high pessimism in worst-case execution time (WCET) analysis

if the number of clients increases. Replicating the servers, if

possible at all, can only be part of the solution. However, with

concrete knowledge of the application, it might be possible

to derive access constraints that allow a less pessimistic

WCET estimation, when combined with time multiplexing or

prioritisation techniques.

MOSSCA has to provide proper and possibly various means

for the implementation of access constraints. Their concrete

definition needs knowledge of the application and can only be

performed during development of the system.

C. MOSSCA Stub and OS Server

MOSSCA is responsible for the management of all on-

chip resources. With help of the µKernel, it manages the

NoC interconnect and sets up send/receive policies for all

nodes. The first MOSSCA server instance also coordinates

the boot process of the chip and configures all other cores by

deciding which code to execute on which core. If the need for

online-reconfiguration of the system arises, this task is also

managed by MOSSCA. The MOSSCA stubs on application

cores provide the functional interface of e.g. ARINC 653 and

additional, manycore-specific functionalities. The MOSSCA

stubs perform as much work as possible locally. Only work

that needs interaction with other nodes or a global knowledge

is marshaled into messages that are sent to the MOSSCA

server, where they are processed. Inter-partition communica-

tion is controlled by the MOSSCA. It provides message queues

to store messages temporarily until the target partition is ready

to receive them.

D. I/O Server

Through the integration of many cores on one chip, only

dedicated cores will be able to access I/O hardware directly.

These cores act as I/O server for the connected device. They

handle all I/O requests from the other cores for this device.

The I/O server takes care of time multiplexing and shaping of

the applications’ output towards its device. It provides means

for bandwidth and latency management which allow to give

certain guarantees to applications. The concrete implementa-

tion of the management will depend on the specific device.

MOSSCA has to provide general helpers to alleviate this

implementation. The I/O Server is also the primary interrupt

handler for its device. If necessary, it may forward interrupt

requests to specialised nodes. Then however, one must ensure

to not degrade the timing predictability, e.g. when periodic

messages arrive with jitter.

V. RESEARCH CHALLENGES

Based on the system architecture proposed in section IV, we

see the following research challenges on manycore operating

systems for safety-critical applications:

1) Management of NoC: The OS must provide means

to convey application-level bandwidth/latency requirements to

the control mechanisms provided by the available NoC. Such

approaches exist for today’s manycore processors [21]. How-

ever, it is also necessary to develop fault tolerance mechanisms

to e.g. detect and exclude nodes with faulty software from the

NoC while sustaining the proper operation of all other nodes.

19

2) Weighting between distribution and centralisation of

essential services: MOSSCA services should be executed on

the same cores as the calling application as far as possible to

improve the worst-case timing behaviour. This however means

also to replicate the relevant code. The size of memory locally

available on a core will be limited, thus posing a natural bound

for the replication.

3) Predictable Servers: As discussed in section IV-B,

a diligent design of the servers is essential. The derivation

of application-specific access constraints will help tightening

WCET estimations. ROS [16] presents another promising

approach to this problem, whose applicability in safety-critical

systems should be explored.

4) Control of I/O: Similar to NoC management, also for

off-chip I/O operations the OS must give guarantees in terms

of bandwidth and latency. Usually, I/O operations are afflicted

with jitter. As I/O requests have to traverse the NoC, they can

incur further jitter. The implementation of an I/O server must

not add further jitter to the I/O operations or at least ensure a

proper shaping of the jitter as not to degrade the responsiveness

of the system.

5) Coordination of boot process: In an IMA system, even

the startup time of a computer is critical. For a manycore com-

puter this requires loading all code and data from ROM to the

appropriate cores. This can be a very time-consuming process.

Therefore, we imagine a staggered boot process, where the

applications that are most critical are started foremost, while

less critical applications are deferred.

6) Reconfiguration of software at runtime: This is an active

research issue already today. On a manycore it must take the

special properties and constraints of the processor into account,

e.g. sharing of NoC bandwidth.

VI. STATE OF WORK

We are exploring the presented MOSSCA concepts based on

a manycore simulator developed in our group [18]. However,

our approach is not limited to purely NoC-based processors.

We are also working on transferring the concepts to a clustered

manycore which is developed in the parMERASA project1.

VII. SUMMARY

Fine-grained sharing of hardware resources is impacting the

usability of today’s multicore processors in safety-critical real-

time systems. We have discussed, how these problems might

be alleviated in future manycore processors, where resource

sharing will happen on a more coarse level. A manycore OS

must provide a sound base for applications on such future

processors. Borrowing ideas from existing manycore operating

systems, we devised a concept for a Manycore Operating

System for Safety-Critical applications (MOSSCA). In our

proposal, MOSSCA is distributed as far as possible, but some

parts may or even must be centralised on dedicated servers.

The central issue of a safety-critical system is the predictability

of its behaviour, which today is achieved through partitioning

the system. We achieve the partitioning partially by mapping

1parMERASA project web site: http://www.parmerasa.eu/

different applications to different cores. Remaining sources of

possible interferences are shared resources like the NoC and

off-chip I/O. In precluding these interferences we see great

challenges for future research.

ACKNOWLEDGEMENTS

Part of this research has been supported by the EC FP7

project parMERASA under Grant Agreement No. 287519.

REFERENCES

[1] L. Kinnan, “Use of multicore processors in avionics systems and its
potential impact on implementation and certification,” in 28th Digital

Avionics Systems Conference (DASC ’09), Oct. 2009, pp. 1.E.4 1–6.
[2] R. Wilhelm et al., “Memory Hierarchies, Pipelines, and Buses for Future

Architectures in Time-Critical Embedded Systems,” IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, vol. 28,
no. 7, pp. 966–978, Jul. 2009.

[3] C. Cullmann et al., “Predictability Considerations in the Design of
Multi-Core Embedded Systems,” in Proceedings of Embedded Real Time

Software and Systems, May 2010, pp. 36–42.
[4] T. Ungerer et al., “MERASA: Multicore Execution of HRT Applications

Supporting Analyzability,” IEEE Micro, vol. 30, pp. 66–75, 2010.
[5] D. N. Bui et al., “Temporal isolation on multiprocessing architectures,”

in Design Automation Conference (DAC), June 2011, pp. 274 – 279.
[6] F. Boniol et al., “Deterministic execution model on cots hardware,” in

Architecture of Computing Systems ARCS 2012, ser. LNCS. Springer
Berlin / Heidelberg, 2012, vol. 7179, pp. 98–110.

[7] J. Nowotsch and M. Paulitsch, “Leveraging Multi-Core Computing
Architectures in Avionics,” in Ninth European Dependable Computing

Conference (EDCC 2012), Sibiu, Romania, May 2012.
[8] PikeOS, Product Data Sheet, SYSGO AG, 2012.
[9] “Wind River VxWorks Web Site,” visited 16.04.2012. [Online].

Available: http://www.windriver.com/products/vxworks/
[10] TILE-Gx8036 Processor Specification Brief, Tilera Corporation, 2011.
[11] J. Howard et al., “A 48-Core IA-32 message-passing processor with

DVFS in 45nm CMOS,” in IEEE International Solid-State Circuits

Conference, ISSCC 2010, USA. IEEE, Feb. 2010, pp. 108–109.
[12] B. D’Ausbourg et al., “Deterministic Execution on Many-Core Plat-

forms: application to the SCC,” in 4th symposium of the Many-core

Applications Research Community (MARC), Dec. 2011.
[13] A. Baumann et al., “The multikernel: a new OS architecture for scalable

multicore systems,” in 22nd ACM Symposium on Operating Systems

Principles (SOSP 2009), Big Sky, USA. ACM, Oct. 2009, pp. 29–44.
[14] D. Wentzlaff and A. Agarwal, “Factored operating systems (fos): the

case for a scalable operating system for multicores,” SIGOPS Oper. Syst.

Rev., vol. 43, pp. 76–85, Apr. 2009.
[15] R. Liu et al., “Tessellation: Space-Time Partitioning in a Manycore

Client OS,” in Hot-Par ’09, Berkeley, CA, USA, Mar. 2009.
[16] K. Klues et al., “Processes and Resource Management in a Scalable

Many-core OS,” in HotPar ’10, Berkeley, CA, USA, Jun. 2010.
[17] C. Pagetti et al., “Reconfigurable IMA platform: from safety assessment

to test scenarios on the SCARLETT demonstrator,” in Embedded Real

Time Software (ERTS’12), 2012.
[18] S. Metzlaff et al., “A Real-Time Capable Many-Core Model,” in Work-

in-Progress Session RTSS 2011, Vienna, Austria, Nov. 2011.
[19] C. A. R. Hoare, “Communicating sequential processes,” Commun.

ACM, vol. 21, no. 8, pp. 666–677, Aug. 1978. [Online]. Available:
http://doi.acm.org/10.1145/359576.359585

[20] “ARINC 664, Aircraft Data Network, Part 1: Systems Concepts and
Overview,” 2006.

[21] C. Zimmer and F. Mueller, “Low contention mapping of real-time tasks
onto tilepro 64 core processors,” in IEEE Real-Time and Embedded

Technology and Applications Symposium, M. D. Natale, Ed. IEEE,
2012, pp. 131–140.

20

PRACTISE: a framework for PeRformance Analysis and Testing of real-time

multIcore SchEdulers for the Linux kernel ∗

Fabio Falzoi, Juri Lelli, Giuseppe Lipari

{name.surname}@sssup.it - Scuola Superiore Sant’Anna - ITALY

Technical Paper

Abstract

The implementation of a multi-core real-time

scheduler is a difficult task, due to the many problems

that the developer encounters in debugging and testing

parallel code inside the kernel. Also, it is often very dif-

ficult to compare the performance of alternative imple-

mentations, due to the many different parameters that

influence the behaviour of the code.

In this paper, we present PRACTISE, a tool for

developing, debugging, testing and analyse real-time

scheduling data structures in user space. Unlike other

similar tools, PRACTISE executes code in parallel, al-

lowing to test and analyse the performance of the code

in a realistic multiprocessor scenario.

After describing the organisation of the code, we

show how easy it is to port the developed code in

the Linux kernel. Also, we compare the performance

of two different schedulers, SCHED DEADLINE and

SCHED FIFO in the kernel and in the tool. Although

PRACTISE cannot substitute performance analysis in

the kernel, we show that, under certain conditions,

PRACTISE can also be used as tool for early perfor-

mance estimation.

1. Introduction

The wide diffusion of multi-core architectures in

personal computing, servers and embedded systems,

has revived the interest in multiprocessor scheduling,

especially in the field of real-time applications. In fact,

real-time scheduling on multi-core and multiprocessor

systems is still an open research field both from the

point of view of the theory and for the technical difficul-

ties in implementing an efficient scheduling algorithm

in the kernel.

∗The research leading to these results has received funding

from the European Community’s Seventh Framework Programme

n.248465 “S(o)OS – Service-oriented Operating Systems.”

Regarding the second problem, let us discuss a (non

exhaustive) list of problems that the prospective devel-

oper of a new scheduler must be faced with. The task

scheduler is a fundamental part of the operating system

kernel: a buggy scheduler will soon crash the system,

usually at random and unexpected points. The major

difficulty in testing and debugging a new scheduling

algorithm derives from the fact that, when the system

crashes, it is difficult to reconstruct the situation (i.e.

the sequence of events and states) that led to the crash.

The developer has to carefully analyse system logs and

traces (for example using one of the tools described in

Section 3), and reconstruct the state to understand what

went wrong. More importantly, it is often impossible to

impose a precise sequence of events: crashes can rarely

be reproduced deterministically. Hence, it is practically

impossible to run a sequence of test-cases.

This problem is exacerbated in multi-core architec-

tures where the scheduler service routines run in paral-

lel on the different processors, and make use of shared

data structures that are accessed in parallel. In these

cases, it is necessary to ensure that the data structures

remain consistent under every possible interleaving of

the service functions. A simple solution is to protect

the shared data structure with locks. However, a single

big lock reduces parallelism and performance does not

scale; fine-grain locks may cause deadlock situations,

without improving scalability; and lock-free algorithms

are difficult to implement and prove correct. As a conse-

quence, many important and interesting scheduling al-

gorithms proposed in the research literature fail to be

implemented on popular operating systems like Linux

due to the difficulty of the task.

One reasonable approach would be to develop, de-

bug, test and analyse the algorithms in user space. Once

the main algorithm is sufficiently tested using user-

space debugging and testing techniques, the same algo-

rithm can be ported in the kernel. However, if no spe-

cific methodology is followed, the code must be writ-

ten twice, increasing the possibility of introducing bugs

in one of the two versions. Also, if one is unsure of

21

which algorithm, data structure or locking strategy is

more appropriate, the number of versions to implement,

test, analyse by hand may become very large.

Hence, we decided to tackle the “user-space ap-

proach” by proposing a simple framework to facilitate

the development, testing and performance evaluation of

scheduling algorithms in user space, and minimise the

effort of porting the same algorithms in kernel spaces.

1.1. Contributions of this work

In this paper, we propose PRACTISE (PeRfor-

mance Analysis and TestIng of real-time multicore

SchEdulers) for the Linux kernel: it is a framework

for developing, testing and debugging scheduling al-

gorithms in user space before implementing them in

the Linux kernel, that alleviates at least part of the

problems discussed above. In addition, PRACTISE

allows to compare different implementations by pro-

viding early estimations of their relative performance.

In this way, the most appropriate data structures and

scheduler structure can be chosen and evaluated in user-

space. Compared to other similar tools, like LinSched,

the proposed framework allows true parallelism thus

permitting a full test in a realistic scenario (a short com-

parison between is done in Section 2)

The main features of PRACTISE are:

• Rapid prototyping of scheduling data structures in

user space;

• Effective, quick and extensive testing of the data

structures though consistency tests;

• Real multi-core parallelism using multi-threading;

• Relative performance estimation between different

algorithms and data structures in user space;

• Possibility to specify application load though

probabilistic distributions of events, and statistical

analysis;

• Ease of porting to the kernel or to other scheduling

simulators.

PRACTISE is available as open source software,

and a development version is available for download1.

The rest of the paper is organised as follows. In

Section 2 we provide a survey of existing testing and

debugging tools for the Linux kernel; in Section 3 we

describe the architecture of the tool and the main im-

plementation choices that we followed; in Section 4 we

1At the time of submission (April 29 2012), the soft-

ware can be downloaded cloning the repository available at

https://github.com/Pippolo84/PRAcTISE

evaluate the tool by reporting the performance as mea-

sured by the tools compared to the performance of the

same algorithms in the kernel; finally, in Section 5 we

discuss conclusion and future work.

2. State of the art

Several tools exist, as open-source software, that

are geared towards, or can be used as effective means

to implement, debug and analyse real-time scheduling

algorithms for multiprocessor systems. Each one tack-

les the intrinsic toughness of this field from different

angles, generally focusing on one single aspect of the

problem.

A valuable tool during the development process of

a scheduling algorithmwould be the one that allows fast

prototyping and easy debugging. Originally developed

by the Real Time Systems Group at University of North

Carolina at Chapel Hill, and currently maintained by

P. Turner from Google, LinSched [3]2 lets developers

modify the behaviour of the Linux scheduler and test

these changes in user-space. One of the major strength

points of this tool is that it introduces very few modifi-

cations in the kernel sources. The developer can thus

write kernel code and, once satisfied by tests, it has

kernel ready patches at hand. Furthermore, debugging

is facilitated by the fact that LinSched runs as a sin-

gle thread user-space program, that can hence be de-

bugged with common user-space tools like GDB3. Even

if single-threading is useful for debugging purposes, it

can be a notable drawback when focusing on the analy-

sis of behaviour assuming a high degree of concurrency.

LinSched can indeed verify locking, but it cannot pre-

cisely model multi-core contention.

LITMUSRT[1] has a completely different focus.

The LITMUSRT patch, developed by the Real Time

Systems Group at University of North Carolina at

Chapel Hill, is a (soft) real-time extension of the Linux

kernel that allows fast prototyping and evaluation of

real-time (multiprocessor) scheduling algorithms on

real hardware. The LITMUSRT testbed provides an ex-

perimental platform that real-time system researchers

can use to simplify the development process of schedul-

ing and synchronisation algorithms (compared to modi-

fying a stock Linux kernel). Another nice feature of this

testbed is an integrated tracing infrastructure (Feather-

Trace [2]) with which performance and overhead data

can be collected for off-line processing. Being a re-

search tool rather than a production-quality system,

LITMUSRT does not target Linux mainline inclusion

nor POSIX-compliance: in other words code patches

2v3.3-rc7 release announce: http://bit.ly/IJsyV3.
3http://sources.redhat.com/gdb/

22

created with it cannot be seamless applied to a “vanilla”

Linux kernel.

Lots of other tools exist that make kernel develop-

ers lives easier during debugging, some of them can also

be used to collect performance data or even extract ex-

ecution traces from a running system. Among others,

these are probably part of every kernel developer arse-

nal:

• KVM 4 + GDB: the very first step after having

modified the kernel is usually to run it on a virtual-

ized environment. The KVM virtual machine can

here be useful as it can be attached, and controlled,

by the GNU Project Debugger (GDB). However,

this solution can hardly be used in presence of high

concurrency; moreover, it can occasionally affect

the repeatability of certain bugs.

• perf[9]: the performance counter subsystem in

Linux can be used to collect scheduling events and

performance data from a real execution. It can also

be used in conjunction with LinSched, as it can

record an application behaviour that can later be

played back in the simulator.

• Ftrace[11]: a tracing utility built directly into the

Linux kernel. Ftrace is a valuable debugging tool

as it brings to Linux the ability to see what is hap-

pening inside the kernel. With the ability of syn-

chronise a user-space testing application with ker-

nel execution, one can track function calls up to

the point where a bug may happen.

• LTTng[4, 5]: the Linux Trace Toolkit is an highly

efficient tracing tool for Linux that can help track-

ing down performance issues and debugging prob-

lems involving concurrent execution.

PRACTISE adds onemore powerful weapon to this

arsenal: the possibility to test and analyse parallel code

(like lock-free data structures) in user space via multi-

threading.

3. PRACTISE Architecture

In this section, we describe the basic structure of

our tool. PRACTISE emulates the behaviour of the

LINUX scheduler subsystem on a multi-core architec-

ture with M parallel cores. The tool can be executed on

a machine with N cores, with N that can be less, equal

to or greater thanM. The tool can be executed in one of

the following modes:

• testing;

4Kernel Based Virtual Machine: http://bit.ly/IdlzXi

• performance analysis.

Each processor in the simulated system is modelled by

a software thread that performs a cycle in which:

• scheduling events are generated at random;

• the corresponding scheduling functions are in-

voked;

• statistics are collected.

In testing mode, a special “testing” thread is exe-

cuted periodically that performs consistency checks on

the shared data structures. In the performance analysis

mode, instead, each thread is pinned on a processor, and

the memory is locked to avoid spurious page faults; for

this reason, to obtain realistic performances it is neces-

sary to set M ≤ N.

3.1. Ready queues

The Linux kernel scheduler uses one separate ready

queue per each processor. A ready task is always en-

queued in one (and only one) of these queues, even

when it is not executing. This organisation is tailored

for partitioned schedulers and when the frequency of

task migration is very low. For example, in the case

of non real-time best effort scheduling, a task usu-

ally stays on the same processor, and periodically a

load-balancing algorithm is called to distribute the load

across all processors.

This organisation may or may not be the best

one for global scheduling policies. For example the

SCHED FIFO and SCHED RR policies, as dictated by

the POSIX standard, requires that the m highest priority

tasks are scheduled at every instant. Therefore, a task

can migrate several times, even during the same peri-

odic instance.

The current multi-queue structure is certainly not

mandatory: a new and different scheduler could use

a totally different data structure (for example a single

global ready queue); however, the current structure is

intertwined with the rest of the kernel and we believe

that it would be difficult to change it without requiring

major changes in the rest of the scheduler. Therefore,

in the current version of PRACTISE we maintained the

structure of distributed queues as it is in the kernel. We

plan to extend and generalise this structure in future ver-

sions of the tool.

Migration between queues is done using two basic

functions: push and pull. The first one tries to migrate

a task from the local queue of the processor that calls

the function to a remote processor queue. In order to

do this, it may use additional global data structures to

23

select the most appropriate queue. For example: the

current implementation of the fixed priority scheduler

in Linux uses a priority map (implemented in cpupri.c)

that records for each processor the priority of the high-

est priority tasks; the SCHED DEADLINE [7, 8] patch

uses a max heap to store the deadlines of the tasks exe-

cuting on the processors.

The pull does the reverse operation: it searches for

a task to “pull” from a remote processor queue to the

local queue of the processor that calls the function. In

the current implementation of SCHED {FIFO,RR} and
SCHED DEADLINE, no special data structure is used

to speed up this operation. We developed and tested

in PRACTISE a min-heap for reducing the duration of

the pull operation, but, driven by not satisfactory per-

formance figures, we didn’t port the structure inside the

kernel. Instead, we are currently investigating several

different data structures with the aim of comparing them

and select the most efficient to be implemented in the

next release of the SCHED DEADLINE patch.

Tasks are inserted into (removed from) the ready

queues using the enqueue() (dequeue()) func-

tion, respectively. In Linux, the queues are imple-

mented as red-black trees. In PRACTISE, instead, we

have implemented them as priority heaps, using the data

structure proposed by B. Brandenburg 5. However, it

is possible to implement different algorithms for queue

management as part of the framework: as a future work,

we plan to implement alternative data structures that use

lock-free algorithms.

3.2. Locking and synchronisation

PRACTISE uses a range of locking and synchroni-

sation mechanisms that mimic the correspondingmech-

anisms in the Linux kernel. An exhaustive list is given

in Table 1. These differences are major culprits for the

slight changes needed to port code developed on the tool

in the kernel 4.1.

It has to be noted that wmb and rmb kernel mem-

ory barriers have no corresponding operations in user-

space; therefore we have to issue a full memory bar-

rier (sync synchronize) for every occurrence of

them.

3.3. Event generation and processing

PRACTISE cannot execute or simulate a real ap-

plication. Instead, each threads (that emulates a proces-

sor) periodically generates random scheduling events

according to a certain distribution, and calls the sched-

uler functions. Our goals are to debug, test, compare

5Code available here: http://bit.ly/IozLxM.

and evaluate real-time scheduling algorithms for multi-

core processors. Therefore, we identified two main

events: task activation and blocking. When a task is

activated, it must be inserted in one of the kernel ready

queues; since such an event can cause a preemption, the

scheduler is invoked, data structures are updated, etc.

Something similar happens when a task self-suspends

(for example because it blocks on a semaphore, or it

suspends on a timer).

The pseudo-code for the task activation is function

on activation() described in Figure 1. The code

mimics the sequence of events that are performed in the

Linux code:

• First, the task is inserted in the local queue.

• Then, the scheduler performs a pre-schedule, cor-

responding to pull(), which looks at the global

data structure pull struct to find the task

to be pulled; if it finds it, does a sequence of

dequeue() and enqueue().

• Then, the Linux scheduler performs the real sched-

ule function; this corresponds to setting the curr

pointer to the executing task. In PRACTISE this

step is skipped, as there is no real context switch

to be performed.

• Finally, a post-schedule is performed, consisting

of a push() operation, which looks at the global

data structure push struct to see if some task

need to be migrated, and in case the response is

positive, performs a dequeue() followed by an

enqueue(). A similar thing happens when a

task blocks (see function on block()).

The pseudo code shown in Figure 1 is an overly

simplified, schematic version of the code in the tool; the

interested reader can refer to the original source code6

for additional details.

As anticipated, every processor is simulated by a

periodic thread. The thread period can be selected from

the command line and represents the average frequency

of events arriving at the processor. At every cycle,

the thread randomly select one between the following

events: activation, early finish and idle.

In the first case, a task is generated with a random value

of the deadline and function on activation() is

called. In the second case, the task currently ex-

ecuting on the processor blocks: therefore function

on block() is called. In the last case, nothing hap-

pens. Additionally, in all cases, the deadline of the ex-

ecuting task is checked against the current time: if the

6https://github.com/Pippolo84/PRAcTISE

24

Linux PRAcTISE Action

raw spin lock pthread spin lock lock a structure

raw spin unlock pthread spin unlock unlock a structure

atomic inc sync fetch and add add a value in memory atomically

atomic dec sync fetch and sub subtract a value in memory atomically

atomic read simple read read a value from memory

wmb sync synchronize issue a memory barrier

rmb sync synchronize issue a read memory barrier

mb sync synchronize issue a full memory barrier

Table 1: Locking and synchronisation mechanisms (Linux vs. PRAcTISE).

pull() {

bool found = find(pull_struct, &queue);

if (found) {

dequeue(&task, queue);

enqueue(task, local_queue);

}

}

push() {

bool found = find(push_struct, &queue);

if (found) {

dequeue(&task, local_queue);

enqueue(task, queue);

}

}

on_activation(task) {

enqueue(task, local_queue);

pull(); /* pre-schedule */

push(); /* post-schedule */

}

on_block(task) {

dequeue(&task, local_queue);

pull(); /* pre-schedule */

push(); /* post-schedule */

}

Figure 1: Main scheduling functions in PRACTISE

deadline has passed, then the current task is blocked,

and function on block() is called.

Currently, it is possible to specify the period of the

thread cycle; the probability of an activation event; and

the probability of an early finish.

3.4. Data structures in PRACTISE

PRACTISE has a modular structure, tailored to

provide flexibility in developing new algorithms. The

interface exposed to the user consists of hooks to func-

tions that each global structure must provide. The most

important hooks:

• data init: initialises the structure, e.g., spin-

lock init, dynamic memory allocation, etc.

• data cleanup: performs clean up tasks at the

end of a simulation.

• data preempt: called each time an

enqueue() causes a preemption (the arriv-

ing tasks has higher priority that the currently

executing one); modifies the global structure to

reflect the new local queue status.

• data finish: data preempt dual (triggered by

a dequeue()).

• data find: used by a scheduling policy to find

the best CPU to (from) which push (pull) a task.

• data check: implements the checker mecha-

nism (described below).

PRACTISE has already been used to slightly mod-

ify and validate the global structure we have pre-

viously implemented in SCHED DEADLINE [8] to

speed-up push() operations (called cpudl from here

on). We also implemented a corresponding structure for

pull() operations (and used the tool to gather perfor-

mance data from both). Furthermore, we back-ported

in PRACTISE the mechanism used by SCHED FIFO

to improve push() operations performance (called

cpupri from here on).

We plan to exploit PRACTISE to investigate the

use of different data structures to improve the efficiency

of the aforementioned operations even further. How-

ever, we leave this task as future work, since this paper

is focused on describing the tool itself.

25

One of the major features provided by PRACTISE

is the checking infrastructure. Since each data struc-

ture has to obey different rules to preserve consistency

among successive updates, the user has to equip the

implemented algorithm with a proper checking func-

tion. When the tool is used in testing mode, the

data check function is called at regular intervals.

Therefore, an on-line validation is performed in pres-

ence of real concurrency, thus increasing the probability

of discovering bugs at an early stage of the development

process. User-space debugging techniques can then be

used to fix design or developing flaws.

To give the reader an example, the checking func-

tion for SCHED DEADLINE cpudl structure ensures

the max-heap property: if B is a child node of A, then

deadline(A) ≥ deadline(B); it also check consistency

between the heap and the array used to perform up-

dates on intermediate nodes (see [8] for further details).

We also implemented a checking function for cpupri:

periodically, all ready queues are locked, and the con-

tent of the data structure is compared against the cor-

responding highest priority task in each queue, and the

consistency of the flag overloaded in the struct

root domain is checked. We found that the data

structure is always perfectly consistent to an external

observer.

3.5. Statistics

To collect the measurements we use the TSC (Time

Stamp Counter) of IA-32 and IA-64 Instruction Set Ar-

chitectures. The TSC is a special 64-bit per-CPU reg-

ister that is incremented every clock cycle. This regis-

ter can be read with two different instructions: RDTSC

and RDTSCP. The latter reads the TSC and other in-

formation about the CPUs that issues the instruction it-

self. However, there are a number of possible issues

that needs to be addressed in order to have a reliable

measure:

• CPU frequency scaling and power management.

Modern CPUs can dynamically vary frequency to

reduce energy consumption. Recently, CPUs man-

ufacturer have introduced a special version of TSC

inside their CPUs: constant TSC. This kind of reg-

ister is always incremented at CPU maximum fre-

quency, regardless of CPU actual frequency. Every

CPU that supports that feature has the flag con-

stant tsc in /proc/cpuinfo proc file of Linux.

Unfortunately, even if the update rate of TSC is

constant in these conditions, the CPU frequency

scaling can heavily alter measurements by slow-

ing down the code unpredictably; hence, we have

conducted every experiment with all CPUs at fixed

maximum frequency and no power-saving features

enabled.

• TSC synchronisation between different cores.

Since every core has its own TSC, it is possible

that a misalignment between different TSCs may

occur. Even if the kernel runs a synchronisation

routine at start up (as we can see in the kernel

log message), the synchronisation accuracy is typ-

ically in the range of several hundred clock cycles.

To avoid this problem, we have set CPU affinity of

every thread with a specific CPU index. In other

words we have a 1:1 association between threads

and CPUs, fixed for the entire simulation time. In

this way we also prevent thread migration during

an operation, which may introduce unexpected de-

lays.

• CPU instruction reordering. To avoid instruction

reordering, we use two instructions that guaran-

tees serialisation: RDTSCP and CPUID. The lat-

ter guarantees that no instructions can be moved

over or beyond it, but has a non-negligible and

variable calling overhead. The former, in contrast,

only guarantees that no previous instructions will

be moved over. In conclusion, as suggested in

[10], we used the following sequence to measure

a given code snippet:

CPUID

RDTSC

code

RDTSCP

CPUID

• Compiler instruction reordering. Even the com-

piler can reorder instructions; so we marked the

inline asm code that reads and saves the TSC cur-

rent value with the keyword volatile.

• Page faults. To avoid page fault time accounting

we locked every page of the process in memory

with a call to mlockall.

PRACTISE collects every measurement sample in

a global multidimensional array, where we keep sam-

ples coming from different CPUs separated. After all

simulation cycles are terminated, we print all of the

samples to an output file.

By default, PRACTISE measures the following

statistics:

• duration and number of pull and push operations;

• duration and number of enqueue and dequeue op-

erations;

26

• duration and number of data preempt,

data finish and data find.

Of course, it is possible to add different measures in

the code of a specific algorithm by using PRACTISE’s

functions. In the next section we report some experi-

ment with the data structures currently implemented in

PRACTISE.

4. Evaluation

In this section, we present our experience in im-

plementing new data structures and algorithms for the

Linux scheduler using PRACTISE. First, we show how

difficult is to port a scheduler developed with the help

of PRACTISE into the Linux kernel; then, we report

performance analysis figures and discuss the different

results obtained in user space with PRACTISE and in-

side the kernel.

4.1. Porting to Linux

The effort in porting an algorithm developed with

PRACTISE in Linux can be estimated by counting the

number of different lines of code in the two imple-

mentations. We have two global data structures im-

plemented both in PRACTISE and in the Linux kernel:

cpudl and cpupri.

We used the diff utility to compare differences

between user-space and kernel code of each data struc-

ture. Results are summarised in Table 2. Less than

10% of changes were required to port cpudl to Linux,

these differences mainly due to the framework interface

(pointers conversions). Slightly higher changes ratio

for cpupri, due to the quite heavy use of atomic oper-

ations (see Section 3.2). An example of such changes

is given in Figure 2 (lines with a - correspond to user-

space code, while those with a + to kernel code).

Structure Modifications Ratio

cpudl 12+ 14- 8.2%

cpupri 17+ 21- 14%

Table 2: Differences between user-space and kernel

code.

The difference on the synchronisation code can

be reduced by using appropriate macros. For ex-

ample, we could introduce a macro that translates

to sync fetch and add when compiled inside

PRACTISE, and to the corresponding Linux code oth-

erwise. However, we decided for the moment to main-

[...]

-void cpupri_set(void *s, int cpu, int newpri)

+void cpupri_set(struct cpupri *cp, int cpu,

+ int newpri)

{

- struct cpupri *cp = (struct cpupri*) s;

int *currpri = &cp->cpu_to_pri[cpu];

int oldpri = *currpri;

int do_mb = 0;

@@ -63,57 +61,55 @@

if (newpri == oldpri)

return;

- if (newpri != CPUPRI_INVALID) {

+ if (likely(newpri != CPUPRI_INVALID)) {

struct cpupri_vec *vec =

&cp->pri_to_cpu[newpri];

cpumask_set_cpu(cpu, vec->mask);

- __sync_fetch_and_add(&vec->count, 1);

+ smp_mb__before_atomic_inc();

+ atomic_inc(&(vec)->count);

do_mb = 1;

}

[...]

Figure 2: Comparison using diff.

tain the different code to highlight the differences be-

tween the two frameworks. In fact, debugging, testing

and analyse the synchronisation code is the main diffi-

culty, and the main goal of PRACTISE; therefore, we

thought that it is worth to show such differences rather

than hide them.

However, the amount of work shouldered on the

developer to transfer the implemented algorithm to the

kernel, after testing, is quite low reducing the probabil-

ity of introducing bugs during the porting. Moreover,

this residual amount of handwork could be eliminated

using simple translation scripts (e.g., sed). Additional

macros will be introduced in future version of PRAC-

TISE to minimise such effort even further.

4.2. Experimental setup

The aim of the experimental evaluation is to com-

pare performance measures obtained with PRACTISE

with what can be extracted from the execution on a real

machine.

Of course, we cannot expect the measures obtained

with PRACTISE to compare directly with the measure

obtained within the kernel; there are too many differ-

ences between the two execution environments to make

the comparison possible: for example, the completely

different synchronisation mechanisms. However, com-

paring the performance of two alternative algorithms

within PRACTISE can give us an idea of their relative

27

performance within the kernel.

4.3. Results

In Linux, we rerun experiments from our previous

work [8] on a Dell PowerEdge R815 server equipped

with 64GB of RAM, and 4 AMDR OpteronTM 6168

12-core processors (running at 1.9 GHz), for a total of

48 cores. This was necessary since the cpupri kernel

data structure has been modified in the meanwhile 7

and the PRACTISE implementation is aligned with this

last cpupri version. We generated 20 random task sets

(using the randfixedsum [6] algorithm) with peri-

ods log-uniform distributed in [10ms, 100ms], per CPU

utilisation of 0.6, 0.7 and 0.8 and considering 2, 4, 8,

16, 24, 32, 40 and 48 processors. Then, we ran each

task set for 10 seconds using a synthetic benchmark 8

that lets each task execute for its WCET every period.

We varied the number of active CPUs using the Linux

CPU hot plug feature and we collected scheduler statis-

tics through sched debug. The results for the Linux

kernel are reported in Figures 3a and 3b, for modifying

and querying the data structures, respectively. The fig-

ures show the number of cycles (y axis) measured for

different number of processors ranging from 2 to 48 (x

axis). The measures are shown in boxplot format: a

box indicates all data comprised between the 25% and

the 75% percentiles, whereas an horizontal lines indi-

cates the median value; also, the vertical lines extend

from the minimum to the maximum value.

In PRACTISE we run the same experiments. As

depicted in Section 3.3, random scheduling events gen-

eration is instead part of PRACTISE . We varied the

number of active processors from 2 to 48 as in the for-

mer case.

We set the following parameters: 10 milliseconds

of thread cycle; 20% probability of new arrival; 10%

probability of finish earlier than deadline (cpudl) or run-

time (cpupri); 70% probability of doing nothing. These

probability values lead to rates of about 20 task activa-

tions / (core * s), and about 20 task blocking / (core *

s).

The results are shown in Figures 6a and 5a for mod-

ifying the cpupri and cpudl data structures, respectively;

and in Figures 6b and 5b for querying the cpupri and

cpudl data structures, respectively.

Insightful observations can be made comparing

performance figures for the same operation obtained

from the kernel and from simulations. Looking at Fig-

ure 3a we see that modifying the cpupri data structure

is generally faster than modifying cpudl: every measure

7More info here: http://bit.ly/KjoePl
8rt-app: https://github.com/gbagnoli/rt-app.

corresponding to the former structure falls below 1000

cycles while the same operation on cpudl takes about

2000 cycles. Same trend can be noticed in Figure 6a

and 5a. Points dispersion is generally a bit higher than

in the previous cases; however median values for cpupri

are strictly below 2000 cycles while cpudl never goes

under that threshold. We can see that PRACTISE over-

estimates this measures: in Figure 6a we see that the es-

timation for the find operation on cpupri are about twice

the ones measured in the kernel; however, the same hap-

pens for cpudl (in Figure 5a); therefore, the relative per-

formance of both does not change.

Regarding query operations the ability of PRAC-

TISE to provide an estimation of actual trends is even

more evident. Figure 3b shows that a find on cpudl

is generally more efficient than the same operation on

cpupri; this was expected, because the former simple

reads the top element of the heap. Comparing Figure 6b

with Figure 5b we can state that latter operations are the

most efficient also in the simulated environment.

Moreover, we used PRACTISE to compare the

time needed to modify and query the two global data

structure for push and pull operations for cpudl. As we

can see in Figure 5a and Figure 5b compared against

Figure 6a and Figure 6b, the results are the same, as the

data structures used are the same. We haven’t compared

cpudl pull operation against cpupri pull operation since

the latter doesn’t have a global data structure that hold

the status of all run queues where we can issue find and

set operations.

5. Conclusions and future work

In this paper we introduced PRACTISE, a frame-

work for PeRformance Analysis and TestIng of real-

time multicore SchEdulers for the Linux kernel. PRAC-

TISE enables fast prototyping of real-time multicore

scheduling mechanisms, allowing easy debugging and

testing of such mechanisms in user-space. Furthermore,

we performed an experimental evaluation of the simula-

tion environment, and we showed that PRACTISE can

also be used to perform early performance estimation.

In future work, we plan to refine the framework

adherence to the Linux kernel. In doing so, we have

to enhance task affinity management, local run queues

capabilities and provide the possibility to generate ran-

dom scheduling events following probability distribu-

tions gathered from real task sets execution traces.

Furthermore, we will exploit PRACTISE to per-

form a comparative study of different data structures

to improve pull operation performance. In particular

we will try to implement some lock-free data structures

and subsequently compare their performances against

28

(a) modify (b) query

Figure 3: Number of cycles (mean) to a) modify and b) query the global data structure (cpudl vs. cpupri), kernel

implementation.

��������

(a) modify

xx
xx

��������

(b) query

Figure 4: Number of cycles (mean) to a) modify and b) query the global data structure (cpupri), on PRACTISE.

the heap already presented.

As a concluding use-case, it is worth mentioning

that PRACTISE has already been used as a testing en-

vironment for the last SCHED DEADLINE release on

the LKML 9. The cpudl global data structure underwent

major changes that needed to be verified. The tested

code has been finally merged within the patch set.

References

[1] Linux Testbed for Multiprocessor Scheduling in Real-

Time Systems (LITMUSRT). http://www.litmus-

rt.org/index.html.

9LKML (Linux Kernel Mailing List) thread available at:

https://lkml.org/lkml/2012/4/6/39

[2] B. Brandenburg and J. Anderson. Feather-trace: A light-

weight event tracing toolkit. In Proc. 3th International

Workshop on Operating Systems Platforms for Embed-

ded Real-Time Applications (OSPERT 2007), National

ICT Australia, July 2007.

[3] John M. Calandrino, Dan P. Baumberger, Tong Li, Jes-

sica C. Young, and Scott Hahn. Linsched: The linux

scheduler simulator. In J. Jacob and Dimitrios N. Ser-

panos, editors, ISCA PDCCS, pages 171–176. ISCA,

2008.

[4] M. Desnoyers and M. R. Dagenais. The lttng tracer:

A low impact performance and behavior monitor for

GNU/Linux. In Proc. Ottawa Linux Symposium (OLS

2006), pages 209–224, July 2006.

[5] Mathieu Desnoyers. Lttng, filling the gap between ker-

nel instrumentation and a widely usable kernel tracer.

Linux Foundation Collaboration Summit, April 2009.

29

�������

(a) modify

xx
xx

�������

(b) query

Figure 5: Number of cycles (mean) to a) modify and b) query the global data structure (cpudl), on PRACTISE.

(a) modify (b) query

Figure 6: Number of cycles (mean) to a) modify and b) query the global data structure for speed-up

SCHED DEADLINE pull operations, on PRACTISE.

[6] Paul Emberson, Roger Stafford, and Robert I. Davis.

Techniques for the synthesis of multiprocessor tasksets.

In Proceedings of the 1st International Workshop on

Analysis Tools and Methodologies for Embedded and

Real-time Systems (WATERS 2010), Brussels, Belgium,

July 2010.

[7] Dario Faggioli, Michael Trimarchi, Fabio Checconi,

Marko Bertogna, and Antonio Mancina. An implemen-

tation of the earliest deadline first algorithm in linux. In

Proceedings of the 24th Annual ACM Symposium on Ap-

plied Computing (SAC), Honolulu (USA), March 2009.

[8] Juri Lelli, Giuseppe Lipari, Dario Faggioli, and Tom-

maso Cucinotta. An efficient and scalable implemen-

tation of global EDF in Linux. In Proceedings of the

7th Annual Workshop on Operating Systems Platforms

for Embedded Real-Time applications (OSPERT 2011).

July 2011.

[9] Arnaldo Melo. The new linux ’perf’ tools. In 17 In-

ternational Linux System Technology Conference (Linux

Kongress), Georg Simon Ohm University Nuremberg

(Germany), September 21-24 2010.

[10] Gabriele Paoloni. How to benchmark code execution

times on Intel IA-32 and IA-64 Instruction Set Architec-

tures. Intel White Paper, September 2010.

[11] Steven Rostedt. The world of ftrace. Linux Foundation

Collaboration Summit, April 2009.

30

CoS: A New Perspective of Operating Systems

Design for the Cyber-Physical World
[Forward-looking Paper]

Vikram Gupta†‡, Eduardo Tovar†, Nuno Pereira†, Ragunathan (Raj) Rajkumar‡

†CISTER Research Center, ISEP, Polytechnic Institute of Porto, Portugal
‡Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, USA

vikramg@ece.cmu.edu, {emt, nap}@isep.ipp.pt, raj@ece.cmu.edu

Abstract—Our day-to-day life is dependent on several em-
bedded devices, and in the near future, many more objects
will have computation and communication capabilities enabling
an Internet of Things. Correspondingly, with an increase in
the interaction of these devices around us, developing novel
applications is set to become challenging with current software
infrastructures. In this paper, we argue that a new paradigm
for operating systems needs to be conceptualized to provide a
conducive base for application development on Cyber-physical
systems. We demonstrate its need and importance using a few
use-case scenarios and provide the design principles behind, and
an architecture of a co-operating system or CoS that can serve
as an example of this new paradigm.

I. INTRODUCTION

The penetration of embedded-systems in our daily lives is

increasing at a tremendous rate, and even today, a human being

can have tens of devices around him that have computational

capabilities. In the future, not only the number of such devices

is set to increase further, their capability to communicate

among themselves and accomplish complex and distributed

logic will become more widespread. In addition to the current

smart devices such as mobile-phones, music players and

tablets, even the dumb devices such as lamps, tables and

chairs may have computation capabilities and contribute to

ambient intelligence. This possible trend has led researchers in

academia and industry to foresee an Internet of Things, where

all (or most) of the objects will be connected to each other

and the internet. Such a highly connected world will further

enable several applications like home automation, intelligent

ambience, green buildings and so on. However, full potential

of highly-connected cooperating objects is still difficult to

perceive, as there is scope for diverse and revolutionary

applications that may not have been conceived yet.

To enable the development of such new applications, new

paradigms for embedded-systems software are required. We

believe that the currently available operating systems and pro-

gramming abstractions may not encourage an environment for

active application development for future networked embedded

systems. In this paper, we argue that the design of the operating

systems for networked embedded systems needs to be thought

from a different perspective than the one already taken in the

popular solutions like TinyOS [1], Contiki [2], Nano-RK [3]

etc. Most of the popular research works in the direction of

facilitating programming on sensor networks assume that the

existing operating systems are the de-facto platforms upon

which the middleware or the programming abstractions have to

be built. This assumption needs to be thought again from a top-

down perspective where the new goal is to support dynamic

deployment and management for network-level applications.

Existing operating systems were designed to ease the

programming of specific hardware that was developed as

prototypes for wireless sensor networks. Programming these

devices on bare-metal is complex and requires high degree

of expertise in embedded systems. Platforms like MicaZ and

TelosB are resource-constrained yet powerful-enough devices

that can easily support a small operating system, custom

communication stacks and one or more applications. Operating

systems were designed from the perspective of easing the

application development process on individual devices because

even in their standalone operation they are complex systems

with a processor, a radio, several sensors, a programming/com-

munication interface over the USB or the serial port and so

on. These hardware and software platforms have contributed

a lot towards the development of ground-breaking research

and proof-of-concept ideas. Moreover, the research in these

areas provided a vision for the future of networked embedded

systems. To achieve the goal of ubiquitous connectivity of

embedded devices described earlier, there is a need to design

(distributed) operating systems from scratch that completely

isolate the users from node-level intricacies, and take the

application development to a higher level where the whole

network ecosystem can be viewed as a single organism. We

believe that revamping the way operating systems are designed

is a first step towards this goal.

By networked embedded systems we refer to the broader

area of Cyber-Physical Systems (CPS) that react to the en-

vironment in addition to just sensing the physical quantities

as in the case of wireless sensor networks. Timeliness is an

important requirement of CPS, because of the tight integration

of sensing and actuation. We believe that it is time we move

from an operating system to a co-operating system or CoS,

that embodies all fundamental functionalities necessary for

encouraging application development for networked embedded

systems directly above it. CoS is a truly distributed operating

system, in the way that it provides a geographically distributed

view of the operating system to the user rather than abstracting

the network as a single machine. In the rest of this paper, we

31

describe a few key principles that can motivate the design

of such a cooperating-system, and we propose a possible

architecture that can satisfy those principles.

II. STATE OF THE ART

Many solutions have been designed that aim to provide

an environment for convenient application development for

networked embedded systems. From the perspective of allow-

ing the development of diverse applications on cyber-physical

systems, we classify them into three major classes.

A. Operating Systems

Earlier operating systems and even the more recent ones

provide several convenient abstractions for programming the

hardware. The popular sensor network operating systems like

Contiki, TinyOS, etc., all allow one or more applications to be

developed for hardware platforms, and the network-level co-

ordination is the responsibility of the application programmer.

These operating systems facilitated and supported computer

scientists familiar with programming of general-purpose com-

puters to develop applications for embedded hardware.

Some newer operating systems like LiteOS [4] provides

a UNIX-like interface for sensor networks and each device

can be accessed or written-to like a file. HomeOS [5], [6]

allows connectivity of heterogenous devices such that a typical

user can develop complex logic using the appliances in a

modern home. HomeOS is a centralized design that connects

the deployed devices and provides an interface for configuring

the devices according to the needs of the users, based on

access privileges and time of the day, for example. HomeOS

is an interface above the home automation infrastructure and

is closer to being a middleware-layer rather than an OS.

B. Middleware and Abstractions

Facilitating the development and the deployment of applica-

tions on heterogenous sensor networks has been a key driver

behind the design of several middleware and programming

abstractions proposed in the past. Most of the solutions dis-

cussed in the recent survey by Mottola and Picco [7] allow

programming the network as a whole, while abstracting the

user from lower-level complexities. Several different solutions

have been proposed that serve varied goals, but anecdotal

evidence suggests that almost none of those have been adopted

in actual deployments or test-beds other than those for which

these systems were built. When a new application is conceived,

researchers typically find it more convenient to develop their

own middleware/programming framework on top of a popular

operating system to deploy and test their application instead

of using an existing solution. The reasons behind this rela-

tively less enthusiastic adoption of middleware can be several.

Visibility of the solution, maturity of the software, hardware

platforms supported and application domains covered, are few

such factors that dictate the popularity of a middleware or a

programming abstraction.

In addition to those, developers generally are not able to

place confidence in third-party middleware for their applica-

tions because of the lack of robustness and support. Debugging

may eventually require delving into the middleware code and

its interactions with the underlying operating system. We aim

to design a co-operating system to overcome these limitations,

such that all the functionality of the underlying hardware and

the possible interactions of devices can be visible to the user-

interface, while providing easy development.

C. Standards

Several standards are being promoted by the industry and

academia to foster interoperability between various appliances

at home, and hence allow development of applications. Ex-

amples of such protocols are DLNA [8], Z-Wave [9] and

OSIAN [10]. These standards can be great contributors to-

wards distributed application development for appliances, and

any programming system should be able to leverage these

standards for communicating with heterogenous devices.

III. USE-CASE SCENARIOS

The operating system we envision (propose) should be

generic-enough for most of the cyber-physical applications

and should allow rapid application development as well. We

consider the following two broad application scenarios, on

which we can base the design decisions behind a CoS.

Intelligent surroundings (Distributed Applications):

Cyber-physical systems embody interacting (cooperating) ob-

jects, where based on sensed inputs by one or more devices,

a distributed action might be taken. We take the example of a

conference room in an office building with several chairs, an

LCD screen and lighting infrastructure. We also assume that

all these devices (the chairs, the lights and the screen) have

sensing and actuation capabilities, a computation platform

capable of running a CoS, and compatible radio-transceivers.

Several applications can be conceived on this infrastructure.

For example: i) adjusting the brightness and color temperature

of the LCD screen based on the distance of the chairs from

the screen and properties of the ambient light, ii) turning

the lights on/off based on the occupancy of the room, and

iii) turning on the heat in the chairs based on the occupant-

preferences and so on. Considering that these devices could

be manufactured by different vendors, developing distributed

applications is challenging. A CoS should provide a conducive

environment where applications can be deployed across di-

verse devices with different capabilities. End-to-end device

connectivity, application-code dissemination are some of the

basic functionalities that should be provided, and higher level

device interactions should be specified by the programmer.

Communicating Vehicles (Dynamic Topologies): A rel-

evant example of connected devices in dynamic topologies

is a set of cars at an intersection that are stuck in a traffic

jam. In such a scenario, where different vehicles meet at a

junction for brief periods, having a centralized middleware or

a common abstraction for directing them to carry out a certain

goal may or may not be possible. A practical solution can be

a modern operating system, that has coordination of dynamic-

topologies as a basic functionality, and allows programming

this ecosystem in a non-centralized way. A traffic policeman

32

Cyber-physical systems can consist of varied sensor and

actuator peripherals, and providing out-of-the-box support for

such possibly large number of devices may not be practical.

Programmers or users should be able to install modules on the

nodes covered by their applications. The kernel should allow

dynamic loading and unloading of modules in a manner similar

to the SOS [12] operating system. The kernel can achieve this

with the help of module management and storage components.

As CoS may be run on battery-powered devices, minimizing

the power consumption is important. A power-management

module tries to put the device to sleep for as long as possible.

Nodes may operate at very low duty-cycles, hence the power-

management module can ensure that different applications

execute in way to maximize the sleep interval.

C. Drivers

Hardware support for the peripherals on a node, including

the radio, the sensors and the actuators, is provided through

drivers. In addition to the default drivers available with CoS,

drivers can be loaded as modules at the runtime. Such design

allows easy integration of heterogenous devices and dynamic

behavior in the long-term. The operating system does not

need to be flashed again if some peripheral devices are added

or removed. In addition to the peripherals, drivers can help

applications to configure the communication layer as well.

Radio configuration, medium-access control and routing can

be implemented as modules and changed on-the-fly, if needed.

D. Exchange Plane

One of most important components of the CoS architecture

is the data-exchange plane. The data-exchange plane handles

all the communication to and from the node. Applications

created by the user are delivered to the nodes through this

plane, and are further relayed to other nodes that participate

in the given application. Other responsibilities of the data-

exchange plane are ensuring isolation between the applica-

tions, delivering data to the nodes involved, and also directing

actuation based on the distributed logic of an application.

The data-exchange plane uses information from the network

management module in the kernel about the topology and

routing information in order to maintain the communication

across a multi-hop network. It can use a device-advertisement

phase to construct a topology map of the system. The adver-

tisements allow the exchange-plane to maintain information

about the capabilities of the neighboring nodes. The radius of

the neighborhood may be pre-decided as a design-parameter or

specified by the applications. Developing an application may

require knowledge about the capabilities of the devices in the

network and hence, the advertisements available to the data-

exchange plane should be provided to the programmer so that

a distributed logic can be implemented, in accordance with the

truly distributed design principle explained in Section IV-B.

The flexibility of CoS lies mainly in the configurability of

the data-exchange plane and how conveniently a programmer

can access and adapt this plane in her application. It allows on-

demand information gathering about the devices around and

topology formation according to the application needs. For

more dynamic network topologies, the maintenance of network

information and device advertisements can be more frequent if

an application requires so. Otherwise, the network may remain

relatively dormant if no application-level updates are required.

VI. CONCLUSIONS

We proposed a new paradigm in operating system design

called Co-operating System or CoS, that aims to ease the

application development for cyber-physical systems. We ar-

gued that the current operating systems like TinyOS, Con-

tiki or Nano-RK are designed with a goal to facilitate the

programming of individual nodes in a network of embedded

devices. Middleware or network programming frameworks are

the other end of the spectrum that may reduce the flexibility

of applications and jeopardize the reliability and robustness.

Perhaps this is the reason that even with the development of

several such solutions, not many have been widely adopted,

and researchers still depend heavily on developing applications

directly on top of an operating system. We provided the design

principles behind CoS and discussed its architectural aspects

that may enable significant changes in the way applications are

developed and distributed for networked embedded systems. It

can be argued that CoS may not be significantly different from

a middleware running on top of a traditional OS in terms of

the software-architecture, but the fresh perspective of creating

network applications directly on CoS can provide a conducive

setup for rapid and diverse application development for cyber-

physical systems.

REFERENCES

[1] T. T. 2.x Working Group, “Tinyos 2.0,” in the 3rd international con-
ference on Embedded networked sensor systems, ser. SenSys ’05. San
Diego, California, USA: ACM, 2005, pp. 320–320.

[2] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in the 29th IEEE
International Conference on Local Computer Networks, ser. LCN ’04.
Washington, DC, USA: IEEE Computer Society, 2004, pp. 455–462.

[3] A. Eswaran, A. Rowe and R. Rajkumar, “Nano-RK: an Energy-aware
Resource-centric RTOS for Sensor Networks,” IEEE Real-Time Systems
Symposium, 2005.

[4] Q. Cao, T. Abdelzaher, J. Stankovic, and T. He, “The liteos operating
system: Towards unix-like abstractions for wireless sensor networks,” in
Information Processing in Sensor Networks, 2008. IPSN ’08. Interna-
tional Conference on, april 2008, pp. 233 –244.

[5] C. Dixon, R. Mahajan, S. Agarwal, A. J. Brush, B. Lee, S. Saroiu,
and V. Bahl, “An operating system for the home (to appear),” in
Proceedings of the 9th USENIX conference on Networked systems design
and implementation, ser. NSDI’12, 2012.

[6] ——, “The home needs an operating system (and an app store),” in
Proceedings of the Ninth ACM SIGCOMM Workshop on Hot Topics in
Networks, ser. Hotnets. Monterey, USA: ACM, 2010, pp. 18:1–18:6.

[7] L. Mottola and G. Picco, “Programming wireless sensor networks:
Fundamental concepts and state-of-the-art,” ACM Computing Surveys,
2010.

[8] “http://www.dlna.org/.”
[9] “http://www.z-wave.com/modules/zwavestart/.”

[10] “http://osian.sourceforge.net/.”
[11] A. S. Tanenbaum and R. Van Renesse, “Distributed operating systems,”

ACM Comput. Surv., vol. 17, pp. 419–470, December 1985.
[12] C.-C. Han, R. Kumar, R. Shea, E. Kohler, and M. Srivastava, “A

dynamic operating system for sensor nodes,” in the 3rd international
conference on Mobile systems, applications, and services, ser. MobiSys
’05. Seattle, USA: ACM, 2005, pp. 163–176.

35

Efficient I/O Scheduling with

Accurately Estimated Disk Drive Latencies

Vasily Tarasov1, Gyumin Sim1, Anna Povzner2, and Erez Zadok1

1Stony Brook University, 2IBM Research—Almaden

Abstract—
Modern storage systems need to concurrently support appli-

cations with different performance requirements ranging from
real-time to best-effort. An important aspect of managing per-
formance in such systems is managing disk I/O with the goals
of meeting timeliness guarantees of I/O requests and achieving
high overall disk efficiency. However, achieving both of these
goals simultaneously is hard for two reasons. First, the need to
meet deadlines imposes limits on how much I/O requests can
be reordered; more pessimistic I/O latency assumptions limit
reordering even further. Predicting I/O latencies is a complex
task and real-time schedulers often resort to assuming worst-
case latencies or using statistical distributions. Second, it is
more efficient to keep large internal disk queues, but hardware
queueing is usually disabled or limited in real-time systems to
tightly bound the worst-case I/O latencies.

This paper presents a real-time disk I/O scheduler that uses an
underlying disk latency map to improve both request reordering
for efficiency and I/O latency estimations for deadline scheduling.
We show that more accurate estimation of disk I/O latencies
allows our scheduler to provide reordering of requests with
efficiency better than traditional LBN-based approaches; this
eliminates the need of keeping large internal disk queues. We
also show that our scheduler can enforce I/O request deadlines
while maintaining high disk performance.

I. INTRODUCTION

Modern general-purpose computers and large-scale enter-

prise storage systems need to support a range of applications

with different performance and timeliness requirements. For

example, audio and video streams in multimedia applica-

tions require timely data delivery guarantees, while concur-

rent interactive applications remain responsive. In large-scale

enterprise storage systems, the rise of storage consolidation

and virtualization technologies [1], [2] requires the system to

support multiple applications and users while meeting their

performance constraints. For example, Internet-based services

that share a common infrastructure expect I/O performance for

each service in accordance with its service level agreement [3].

Managing disk I/O is an essential aspect of managing

storage system performance, as disks remain a primary storage

component and one of the top latency bottlenecks. A classic

way to improve disk performance is to reorder disk I/O

requests, because disk performance largely depends on the

order of requests sent to the disk device. With an additional

requirement of providing timeliness guarantees, the traditional

goal of maximizing overall disk efficiency remains an im-

portant requirement. As a result, many real-time disk I/O

schedulers [4], [5], [6] combine reordering algorithms (such as

SCAN) with real-time scheduling (such as EDF) to optimize

disk performance while meeting guarantees. Similarly, fair-

or proportional-sharing schedulers reorder some requests to

improve disk efficiency.

Since operating systems have a limited knowledge of disks,

existing disk I/O schedulers perform reordering based on

the requests’ Logical Block Number (LBN). I/O schedulers

assume that the larger the difference between two LBN ad-

dresses, the longer it takes to access the second LBN address

after accessing the first one. Although this assumption used

to be reasonable in the past, we will demonstrate that it no

longer holds and is misleading due to complex specifics of the

modern disk drive design. The disk drive itself has an internal

queue and a built-in scheduler that can exploit the detailed

information about the drive’s current state and characteristics.

Consequently, built-in disk drive schedulers are capable of

performing request scheduling with a higher efficiency than

LBN-based schedulers can at the OS level.

Best-effort disk I/O schedulers improve their performance

and overcome inefficiencies of LBN-based scheduling by

keeping as many requests as possible outstanding at the

underlying disk device so they are scheduled by the drive’s

internal scheduler. However, disk I/O schedulers with real-time

guarantees cannot take advantage of the drive’s internal sched-

uler, because the I/O scheduler loses control over requests sent

to the drive and the drive’s internal scheduler is not aware

of the host-level request deadlines. Thus, existing real-time

schedulers keep inefficient internal disk queues of only one or

two requests, or allow more outstanding requests at the disk

drive for soft guarantees, but they require frequent draining of

internal disk queues in order to meet request deadlines [7].

If OS would have a more accurate source of information

about disk drive latencies, it could perform efficient scheduling

while meeting request deadlines. But how large can potential

benefits of accurate latency estimation be? In this paper, we

first propose a novel request reordering algorithm based on

maintaining a disk drive latency map within the OS kernel.

The map allows us to accurately estimate the actual latency

between any pair of LBN addresses anywhere on the disk. We

designed and implemented a real-time disk I/O scheduler that

meets request deadlines as long as the disk can sustain the

required throughput. The scheduler learns the disk latencies

and adapts to them dynamically; it uses our request reordering

algorithm to maintain high efficiency while meeting request

deadlines. Real-time schedulers that use a distribution of

I/O execution times over all disk-block addresses, tend to

overestimate I/O execution times; in contrast, our disk drive

36

ATA/SATA

SCSI/SAS LBN−based

interface

LBN−based

interface
PCI/PCI−X

Operating System

Disk Controller

I/O scheduler

I/O scheduler

Disk

Host Bus Adapter

Fig. 1. I/O architecture of commodity servers. The OS accesses the block
devices through a standard LBN-based interface that hides the device’s
physical characteristics.

latency map provides more accurate per-LBN-pair execution

time.

We show that while allowing only one request to the

underlying disk drive, our reordering algorithm can achieve

performance up to 28% better compared to LBN-based sched-

ulers. We also demonstrate that our scheduler enforces request

deadlines while providing higher throughput than LBN-based

schedulers. We address CPU trade-offs using approximation

algorithms and user-defined memory limits. For large datasets

our map size can become too large to fit in RAM. Given the

benefits of accurate latency prediction as demonstrated in this

paper, we expect that various techniques can be used in the

future to reduce map sizes and thus provide similar benefits

for larger devices.

The rest of the paper is organized as follows. Section II

presents experimental results that motivated the creation of our

scheduler. In Section III, we describe how latency estimation

in our design allows to increase disk throughput for batch

applications and enforce deadlines for real-time applications.

Section IV details the implementation and Section V evaluates

our scheduler against others. In Section VI, we survey related

work. We conclude in Section VII and discuss future directions

in Section VIII.

II. BACKGROUND

In this section we describe the overall Input/Output mecha-

nism relevant to the I/O scheduler, deficiencies of this mecha-

nism, and the experiments that led us to create a new scheduler.

To the OS I/O scheduler, the disk device appears as a linear

array where the Logical Block Number (LBN) is the index

LatencySeek Time
Rotational

Wait Time Access Time Transfer Time

Service Time

Fig. 2. Decomposition of the request response time.

into this array. Such address representations are used by many

I/O protocols (e.g., SATA and SCSI). When the disk scheduler

sends a request to the underlying disk device, the Host Bus

Adapter (HBA) passes these requests to the disk controller,

which in turn maps LBNs to the physical location on the disk.

The disk drive has its own internal queue and a scheduler

that services requests one by one and then returns completion

notifications back to the OS, as seen in Figure 1.

Figure 2 depicts a typical timeline for the request’s execu-

tion. Response time is the time from the request submission to

the I/O scheduler to the request’s completion. Response time

consists of wait time and service time. Wait time is the time

spent in the I/O scheduler’s queue. Service time is the time

from when the request is picked from the queue for service and

until the moment the request completes. Service time consists

of access time and transfer time. Access time is required to

locate the data; transfer time is the time to transfer the data.

For disk drives, the access time consists of the time to position

the arm (seek time) and the time until the platter reaches the

required position (rotational latency).

Request reordering at the I/O scheduler directly affects

access and service times. Indirectly it also affects wait time

because shorter service times lead to shorter queues. The

OS I/O scheduler knows only about the requests’ LBNs

and sizes; it is the only criterion OS schedulers can use to

perform request scheduling (apart from the knowledge about

the request owners, the processes). A common assumption

is that the shorter the distance between two LBN addresses

is, the smaller is the access time between them. Given this

assumption, the scheduler can, for example, sort all requests

by their LBNs and submit them in that order (enforcing any

required deadlines if necessary).

This assumption used to be true in the early days of

disk drives when seek time dominated the rotational latency.

Since then, manufacturers significantly improved their disk

positioning mechanisms and nowadays rotational latency is of

the same magnitude as seek time (e.g., 4msec vs. 2msec for

a typical 15K RPM drive). Moreover, the variety of devices

and their complexity increased dramatically. ZCAV/ZBR tech-

nology, error correction, block remapping, improvements in

short seeks, and increased block sizes are just some of many

the complex features in modern disk drives. As the number

of sophisticated disk technologies grows, the variation among

disk models increases [8]. Consequently, one has a large

selection of very different devices available on the market. The

fact that I/O schedulers still assume a common linear disk drive

37

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

LBN Distance (GB)

Assumed by the LBN-based schedulers
Empirical data

(a) 10,000 RPM 3.5” 80GB SCSI Disk

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

LBN Distance (GB)

Assumed by the LBN-based schedulers
Empirical data

(b) 15,000 RPM 2.5” 146GB SAS Disk

Fig. 3. I/O request response time depends on the LBN distance. The empirical dependency is more complex than the one assumed by common LBN-based
schedulers and is unique to specific disk drive models.

model, intuitively, should hurt LBN-based scheduling quality.

We checked how the access time depends on the LBN

distance between two data blocks. Figure 3 depicts this de-

pendency for two different devices. The regular I/O scheduler

assumes that the access time increases linearly (or at least

monotonically) with the LBN distance. However, from the fig-

ure we can clearly see that the dependency is not monotonous.

The coefficient of linearity is 0.57 and 0.42 for the SCSI

and SAS drives, respectively (1.00 corresponds to a perfectly

linear dependency). Moreover, the graphs demonstrate that

dependencies are different for different models.

An optimal I/O request schedule heavily depends on the

specifics of the underlying hardware. Therefore, it seems rea-

sonable to make the storage controller responsible for request

scheduling. In fact, both SCSI and SATA standards support

command queueing that allow the OS to submit multiple

requests to the disk controller, which in turn determines

the optimal request sequence [9], [10]. However, there is

no way to transfer to the controller the information about

desired request deadlines, which are important for real-time

applications. According to our measurements, disk controllers

can postpone request execution by more than 1.2 seconds

if a block address is not on the optimal scheduling path.

The situation is worsened by the fact that disk vendors keep

their firmwares closed and the user has no control over the

scheduling algorithms used within the controllers. Ironically,

the only thing that the OS can do to provide more predictable

service times is to disable hardware queuing entirely or flush it

periodically. But in that case, disk utilization falls dramatically

as the OS is unaware of drive’s physical characteristics. In this

work we propose to augment the OS’s I/O scheduler with the

knowledge of the drive’s physical characteristics. This allows

our OS scheduler to enforce deadlines while providing high

throughput.

III. DESIGN

Section III-A explains our approach to estimate disk laten-

cies. In Section III-B we explain how our scheduler achieves

high throughput. Section III-C describes an additional al-

gorithm that allows the scheduler to enforce deadlines of

individual requests.

A. Disk Latency Estimation

A queue of N requests can be ordered in N ! different ways.

The general task of an I/O scheduler is to pick the order that

satisfies two criteria:

1) The order is the fastest when executed by a disk drive;

and

2) Individual request response times are within certain

limits.

The first criterion provides optimal throughput, and the second

one ensures that the deadlines are met. In this paper, we argue

that satisfying both criteria is hard and requires an accurate

estimation of disk I/O latencies. Assume there is a function

T (o) that returns the execution time of some order o of N
requests. One can experimentally collect the values of this

function and then schedule the requests using it. Here we

assume that experimentally collected values are reproducible:

i.e., if the same sequence of requests is issued again, its

execution time remains the same or sufficiently close. Our

measurements indicate that this assumption is true for modern

disk drives. For more than a 1,000,000 randomly selected

orders, the deviation in execution time was within 1% for

1,000,000 iterations. However, the number of possible orders

is so large that it is practically infeasible to collect latencies

of all orders.

We can simplify the problem by noticing that T (o) can be

calculated as a sum of service times of all requests in the

queue:

T (o) =

N∑

i=1

Si

38

where Si is the service time of the i-th request. Si is a function

of multiple variables, but for disk drives it depends mostly on

two factors: the LBNs of the i-th and the (i − 1)-th request.

This is due to the fact that modern disk drives spend most of

their time to locate the data (access time), while transfer time

does not contribute much to the service time. Our experiments

did not show any difference between read and write service

times, but our approach tolerates potential differences [11] by

using the worst service time of the two. Large I/O sizes can

be addressed by logically dividing a request into smaller sizes.

So, Si is an approximate function of two variables:

Si ≈ Function(LBNi, LBNi−1)

At this point it becomes feasible to collect service times for

many pairs of requests. This function can be represented as

a matrix of M × M elements, where M is the number of

LBN addresses that are covered by the matrix. Ideally, the

matrix should cover the disk’s sub-region that is accessed more

frequently than the rest of the disk. Assuming that the size of

on-disk “hot” dataset is 5GB, the matrix granularity is 128KB,

and the size of the matrix entry is 4 bits, then the total size

of the matrix is around (5G/128K)2 × 0.5B/2 = 400MB. We

divide by two because the matrix is symmetric, so we need

to store only half of it. In our experiments, 128KB and 4 bits

were enough to demonstrate significant improvements.

The matrix needs to reside in RAM or at least in a fast

Flash memory; otherwise, the OS has to perform additional

reads from the disk drive just to schedule an I/O request and

this would make scheduling completely inefficient. 400MB

is a significant amount of memory, but if one spends this

400MB on caching the data, the throughput improvement is

only around 8% (400MB/5GB) for a random workload. Our

scheduling can improve throughput by up to 28%, as shown

in Section V. Therefore, spending expensive memory on just

a cache is not justified in this case and it is wiser to use RAM

for such a matrix.

A single matrix can be shared across an array of hundreds

of identical disk drives (e.g., in a filer), which saves signifi-

cant amount of RAM. Furthermore, some workloads prohibit

caching, e.g., database writes are usually synchronous. In this

case, all available RAM can be devoted to the matrix. E.g., a

machine with 32GB of RAM and 100 disks can cover a dataset

of 4.5TB size ((4, 500G/100/128K)2 × 0.5B/2 = 32GB).

However, this matrix approach scales poorly with the size

of the single device: if a disk drive contains M blocks then

the size of the matrix covering the whole disk is proportional

to M2. Another way to obtain the value of Si is to model

the drive and get Si as the output of this model. In this

case memory consumption can be significantly reduced but

several other concerns emerge: how accurate is the model, how

universal is it, and how high is the modeling CPU overhead.

The accuracy of the model is crucial for optimal scheduling.

We used DiskSim [12] to emulate several disk drives and

compared the access times it predicted with the values from

a pre-collected matrix. We found out that the accuracy was

within 5% for 99.9% of all blocks. Our measurements also

2

3

1 4

3m
s

4m
s

4m
s

3m
s4m

s
2m

s

3m
s

3ms

5
m
s

6
m
s

2m
s

4ms

Fig. 4. Request scheduling problem as a TSP problem.

showed that CPU consumption increases by 2–3% when

DiskSim is used, which we believe is a reasonable trade-off

for the memory we saved.

Hardware schedulers achieve high throughput using efficient

reordering. Internally they use mathematical models that prove

that it is possible to predict latency accurately; our work

demonstrates how much benefits one can get provided that

there is an accurate source of latency prediction. Our approach

works for small devices, but modeling can extend it to larger

ones.

B. Achieving High Throughput

When a service time for 2 consequent requests is available,

the problem of scheduling to optimize disk efficiency resem-

bles the well-known Traveling Salesman Problem (TSP). For

example, assume that there are 4 requests in the queue and they

are enumerated in the order they came from the applications;

see Figure 4. Each request can be thought of as a vertex in

a graph. The edges of the graph represent the possibility of

scheduling one request after the other. As any order of requests

is possible, all vertices are connected to each other (a fully

connected graph). An edge’s weight represents the time to

service one request after the other. To find the optimal order

of requests one needs to find the shortest path that covers all

vertices. From Figure 4 we can see that although the requests

come in the order 1-2-3-4, it is more optimal to execute them

in the order 2-1-4-3, because it constitutes the shortest path.

It is well known that finding an exact solution to a TSP

is exponentially hard. We initially implemented a scheduler

that solves TSP exactly, but as expected it did not scale well

with the queue size. There are a number of approximation

algorithms that solve TSP. We picked an algorithm that is

quick, easy, and provides reasonable precision, the Nearest

Insertion Algorithm [13]. It works as follows:

1) Initialize the Shortest Path Edges set SPE and the

Shortest Path Vertices set SPV to the empty sets.

2) For each graph vertex Vi that is not in the SPV :

a) For each edge VjVk in the SPE set, calculate

the SPE path increase IVjVk
if the edge VjVk is

39

replaced by the VjVi and ViVk edges:

IVjVk
= WVjVi

+ WViVk
− WVjVk

where Wedge is the weight of the edge.

b) For boundary vertices Vb1 and Vb2 in the SPV set

(i.e., the vertices that have less than two adjacent

edges in the SPE), calculate the path increases

Ib1 and Ib2 if edges ViVb1 and VjVb2 are added to

SPE, in order:

Ib1 = WViVb1
, Ib2 = WVjVb2

Only one boundary vertex exists in the very first

cycle of this loop.

c) Pick the smallest one among IVjVk
, Ib1, Ib2 and

add the corresponding edge (VjVi, ViVb1, or VjVb2)

to the SPE set.

d) Add Vi to the SPV set.

3) When all graph vertices are in SPV , the SPE set

contains an approximate solution of the TSP.

The complexity of this algorithm is O(N2), which is

reasonable even for a relatively long queue. Queues that are

longer than 256 requests are rare in real servers because

they dramatically increase the wait time [14]. The worst case

approximation ratio of the described algorithm is 2 (i.e.,

the resulting path might be twice longer than the optimal

one). Although there are algorithms with better approximation

ratios, they are much more difficult to implement, their running

time is worse for small graphs, and they are often not space-

efficient. The Nearest Insertion Algorithm is considered to be

the most applicable one in practice [15].

In order for a TSP solution to be optimal for a real disk, an

accurate service time matrix is required. Our scheduler does

not require a special tool to collect this information. It collects

the matrix as it runs, inferring the latency information from

the requests submitted by the applications. Initially the map

is empty and the scheduler orders the requests so that it can

fill empty cells. For example, if there are requests rq1, rq2,

and rq3 in the queue and the map contains information about

the service time for only the (rq1, rq2) and (rq2, rq3) pairs,

but no information about the (rq1, rq3) pair, our scheduler

schedules the request rq3 after rq1. As more and more matrix

cells are filled with numbers, and the model becomes more

precise, scheduling becomes more efficient. We demonstrate

this behavior in Section V.

C. Deadlines Enforcement

More accurate estimation of disk I/O latencies allows our

reordering algorithm to provide high performance without the

need to keep large internal disk queues. This allows a real-time

scheduler using such a reordering scheme to tightly control

request service times while maintaining high efficiency. This

section describes how we extended our I/O scheduler described

earlier to support the notion of deadlines and guarantee request

completion times as long as device’s throughput allows that.

Let us formulate this problem in terms of the graph theory

as we did in the previous section. Again, we have a fully

connected graph with N vertices which represent requests in

the queue. All edges of the graph are weighted in accordance

with the service time, WViVj
. In addition to that there is a

deadline DVi
for each vertex Vi. Deadlines are measured in

the same time units as the weights of the edges. A traveling

salesman should visit every vertex in the graph and it is

important for him to be in certain vertices within the certain

deadlines.

Assume that the salesman has picked some path through

the vertices. Then it will visit each vertex Vi at specific time

Ci (completion time). We call the overtime OVi
the time by

which the salesman was late at vertex Vi:

OVi
= max(0, CVi

− DVi
)

The problem of TSP with deadlines, or I/O scheduling with

guarantees, is to find a sequence of vertices V1V2...Vi...VN ,

such that:

max
i

(OVi
)) → min (1)

i=N−1∑

i=1

WViVi+1
→ min (2)

Equation (1) expresses the fact that no overtime, or min-

imal overtime, should be found. Equation (2) states that the

path should be minimal. The order of these requirements is

important: we first guarantee minimal overtime; then, among

the remaining solutions, we pick the one that provides the

shortest path. If the system is not overloaded, overtime will be

zero for all vertices, so the algorithm enforces hard deadlines.

Notice, however, that this is under the assumption that esti-

mated latency matrix is accurate enough. Our scheduler keeps

updating the values in the matrix as it works. It stores only the

worst time it has ever observed for a pair of LBN addresses.

This allows to enforce deadlines with a very high probability.

According to our experiments, after 100 measurements the

probability to observe an even worse service time is less

than 10−6%. Storing only the worst time also addresses

potential problems with the very fast accesses to the disk cache

hits. Updating the values in the matrix makes our scheduler

adaptive to the changes in the device characteristics, which

happens, for example, when bad blocks are remapped.

This problem is proven to be NP-complete [16]. We de-

veloped an approximation algorithm to solve it. The classic

method to solve deadline scheduling is the Earliest Deadline

First (EDF) algorithm. It simply executes requests in the

deadline order. EDF provides minimal overtime, but does not

take into account service time variation among requests and

consequently does not find an optimal throughput (i.e., it does

not pick the shortest path in terms of the graph). Somasundara

et al. solved a similar problem for mobile-element scheduling

in sensor networks [16]. However, there are two important

differences between mobile-element scheduling and I/O re-

quest scheduling. First, every I/O request should be eventually

serviced even if it cannot meet its deadline. Second, once

the request is serviced, it is removed from the original set

and there is no deadline update. We merged the EDF and

40

Disk Model Interf. Cap. (GB) RPM Avg Seek (ms) HBA

3.5” Maxtor 6Y200P0 PATA 200 7,200 9.3 ServerWorks CSB6
3.5” Seagate ST380013AS SATA 80 7,200 8.5 Intel 82801FB
3.5” Seagate ST373207LW SCSI 73 10,000 4.9 Adaptec 29320A
2.5” Seagate ST9146852SS SAS 146 15,000 2.9 Dell PERC 6/i

TABLE I
DEVICES USED IN THE EVALUATION

the k-lookahead algorithm by Somasundara et al. to provide

deadline enforcement in our scheduler. Our algorithm operates

as follows:

1) Sort vertices by the deadline in the ascending order.

2) Pick the first k vertices from the sorted list L.

3) For all permutations Pl = (V1V2...Vk) of k vertices:

a) Calculate the maximum overtime MPl
for Pl:

MPl
= max

1..k
(OVi

)

b) Calculate the sum of weights SPl
for Pl:

SPl
=

i=k−1∑

i=1

WViVi+1

4) Among all Pl (l = 1..k!), pick the permutations that

minimize MPl
.

5) If there are multiple permutations with the same minimal

MPl
, then pick the case for which SPl

is minimal.

6) Add the first vertex in the selected permutation Pl to the

final sequence F and remove this vertex from the sorted

list L.

7) Repeat Steps 2–6 if there are still vertices in L.

8) At the end, the final sequence F contains an approximate

solution of the problem.

This algorithm looks through permutations of k vertices and

picks the next vertex to follow among them. Because k
nodes make k! permutations, the overall running time of the

algorithm is O(Nk!). The approximation ratio in this case is

O(N/k). There is a trade-off in selecting the value of the

constant k. If one sets k to a large value, the precision of the

algorithm becomes higher (i.e., when k = N the solution is

absolutely optimal). However, CPU consumption grows with

k. Our experiments showed that the increase of k value beyond

4 does not yield benefits, so our scheduler sets k to 4 by

default, but this can be tuned.

IV. IMPLEMENTATION

We implemented our matrix-based schedulers in Linux ker-

nel version 2.6.33. Linux has a convenient plugable interface

for I/O schedulers, so our code conveniently resides in a single

C file of less than 2,000 LoC. We also wrote several tools for

matrix analysis which total to about 1,000 LoC. All sources

can be downloaded from the following URL: https://avatar.

fsl.cs.sunysb.edu/groups/mapbasedioscheduler/. Our scheduler

exports a number of tunable parameters through the sysfs

interface:

ls /sys/block/sdb/queue/iosched/

latency_matrix

deadlines

lookahead_k

timesource

Servers are occasionally rebooted for maintenance and

because of the power outages. We incorporated the ability

to save and restore the matrix in our disk scheduler through

the latency_matrix file. This feature also helps the user to

shorten the scheduler’s learning phase. If one has a matrix for

some disk drive, then it makes sense to reuse it on the other

machines with identical drives. If there are differences in the

device characteristics, they will be automatically detected by

the scheduler and the matrix will be updated accordingly.

Linux has system calls to assign I/O priorities to processes

and we used those to propagate deadline information to our

scheduler. The mapping between priority levels and deadlines

is loaded through the deadlines file. The parameter k for

the lookahead algorithm is set through the lookahead_k

file. We used two time sources: a timer interrupt and the

RDTSC instruction. One can set up the time source through the

timesource file. In our experiments the RDTSC time source

provided better results due to its higher precision.

We also implemented several other LBN-based scheduling

algorithms to evaluate our scheduler against. We provide de-

tails in Section V-B. To experiment with hardware scheduling

we modified a few HBA drivers so that one can explicitly set

the size of the hardware’s internal queue.

V. EVALUATION

Section V-A details the hardware we used. In Section V-B

we summarize the schedulers we evaluated. In Section V-C we

demonstrate that accurately estimated latency map allows to

achieve better throughput than LBN-based OS I/O schedulers.

Finally, in Section V-D we show that hardware scheduling does

not provide adequate deadlines support, while our scheduler

does.

A. Devices

We experimented with several disks to evaluate our sched-

uler. Table I lists the key characteristics of the drives and HBAs

we used. We picked devices that differ by interface, form

factor, capacity, and performance to ensure that our scheduler

is universal. We present the results for the SCSI disk only,

but our experiments found approximately the same degree of

improvements and the behavioral trends on all of the listed

devices.

41

 0 0

 50
 50

 100

 100

 150

 150

 200

 200

 250

 250

 300

 300

 350

 2 16 4 32 6 48 8 64 10 80 12 96 14 112 16 128 18 144 20 160 22 176 24 192 26 208 28 224 30 240 32

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Queue length

 256

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

Queue length

noop noop
cfq cfq

deadline deadline
satf−lbn satf−lbn

satf−map satf−map
fsatf−lbn fsatf−lbn

fsatf−map
fsatf−map−exact

TCQ 4
TCQ 64

fsatf−map
fsatf−map−exact

TCQ 4
TCQ 64

Fig. 5. Throughput depending on the queue length for different schedulers. We show the graph for 1–256 requests on the left. We zoom into the 1–32 range
of requests on the right.

B. Schedulers

We picked several schedulers to compare against ours:

1) We implemented a SATF-LBN scheduler that calculates

access times purely by the LBN distance and uses SATF

(Shortest Access Time First) policy for scheduling.

SATF is known to provide the best possible throughput

among all scheduling policies [17].

2) The FSATF-LBN scheduler is identical to SATF-LBN but

it freezes the queue during each dispatch round, meaning

that the new incoming requests are sorted in a separate

queue (FSATF). This algorithm is important because

unlike SATF, it prevents postponing requests indefinitely.

3) The first variation of our scheduler, SATF-MAP, imple-

ments the algorithm described in Section III-B. It finds

the shortest path using the latencies stored in the map.

4) The second variation of our scheduler, FSATF-MAP, is

identical to SATF-MAP but uses a FSATF freeze policy.

5) The FSATF-MAP-EXACT scheduler solves the corre-

sponding TSP problem exactly, without approximation.

6) NOOP is a slightly modified version of Linux’s NOOP

scheduler that uses pure FCFS policy (without modifi-

cations it performs sorting by LBN addresses). It serves

as a baseline for the results of the other schedulers.

7) TCQ4 is hardware scheduling with a queue length of 4.

We confirmed that the selection of the OS I/O scheduler

does not matter in this case. In fact, the hardware

completely ignores the request order enforced by the

OS and applies its own ordering rules.

8) TCQ64 is the same as TCQ4, but the queue length is 64.

9) For the sake of completeness we also include the results

of CFQ and DEADLINE schedulers. The Linux CFQ

scheduler is the default one in most Linux distributions,

so its performance results would be interesting for a lot

of users. The Linux DEADLINE scheduler is often recom-

mended for database workloads. It uses the SCAN policy

but also maintains an expiration time for each request.

If some request is not completed within its expiration

time, the scheduler submits this request immediately,

bypassing the SCAN policy.

C. Throughput

In this section, we evaluate the efficiency of our reordering

algorithm. We used Filebench to emulate random-like work-

loads [18]. Filebench allows us to encode and reproduce a

large variety of workloads using its rich model language. In

this experiment, N processes shared the disk and each process

submitted I/Os synchronously, sending next I/O after the

previous one completed. We varied the number of processes

from 1 to 256, which changed the scheduler’s queue size

accordingly (since each process had one outstanding request

at a time). Processes performed random reads and writes

covering the entire disk surface.

To speed-up the benchmarking process (in terms of matrix

collection), we limited the number of I/O positions to 10,000.

We picked positions randomly and changed them periodically

to ensure fairness. We set the I/O size to 1–4KB, which

corresponds to Filebench’s OLTP workload. We set the matrix

granularity to 128KB and collected performance numbers

when the matrix was filled.

Figure 5 depicts how the throughput depends on the queue

length for different schedulers. The left figure shows the results

for the queue lengths from 1–256 and the right one zooms into

the results for 1–32 queue lengths.

The NOOP scheduler’s throughput does not depend on the

queue length and is equal to the native throughput of the

disk: slightly higher than 130 IOPS. This performance level

corresponds to the situation when no scheduling is done.

CFQ’s throughput is identical to NOOP’s, because each request

is submitted synchronously by a separate process (as it is

common in database environments). CFQ iterates over the

list of processes in a round-robin fashion, servicing only the

42

requests corresponding to the currently selected process. If

there is only a single request from a currently selected process,

CFQ switches to the next process. For synchronous processes

this effectively corresponds to NOOP: dispatch requests in the

order they are submitted by the applications. The DEADLINE

scheduler uses the SCAN policy based on the LBN distance.

Consequently, its throughput is up to 50% higher compared

to NOOP and CFQ. However, when requests pass a certain ex-

piration time (500ms by default), it starts to dispatch requests

in FCFS order. This is seen in the graph: after a certain queue

length, the line corresponding to DEADLINE starts to approach

NOOP’s line.

As expected, the SATF-LBN and FSATF-LBN schedulers

exhibit better throughput compared to the previously discussed

schedulers. Specifically, SATF-LBN’s throughput is the best one

that scheduling algorithms can achieve if they use LBN dis-

tance solely as the access-time metric. For queues shorter than

100 requests, SATF-LBN outperforms FSATF-LBN, because

SATF-LBN inserts requests in the live queue, allowing more

space for optimal reordering. However, with longer queues,

SATF-LBN needs to perform more sorting than FSATF-LBN,

and this causes SATF-LBN to perform worse.

The SATF-MAP scheduler, which implements the same

SATF policy as SATF-LBN, but uses the matrix to solve the

problem, performs up to 28% better. This is where the value of

the latency matrix is seen: the better knowledge of the access

times allows us to perform more optimal scheduling.

We implemented a FSATF-MAP-EXACT scheduler that finds

the exact optimal solution of the TSP problem. As expected, its

performance did not look appealing. When the queue length

reaches 8 requests, its throughput drops rapidly because of

the exponential complexity of the algorithm. Approximate

solutions to the TSP problem performed well. The FSATF-

MAP scheduler was up to 17% better than FSATF-LBN, and

13% better on average.

Finally, hardware-implemented algorithms’ performance de-

pends on the controller’s internal queue length. TCQ4 pro-

vides higher throughput compared to not scheduling requests

at all (NOOP), but does not outperform other OS-level I/O

schedulers. TCQ64’s throughput is higher than any other

scheduler. Our scheduler cannot reach this level because there

is an inherent overhead in submitting one request at a time

compared to giving multiple requests to the scheduler at once.

We believe this can be addressed by allowing the controller to

accept multiple requests at a time, but forcing it to preserve

the order. Although it should be possible by setting a ordered

queue tag on every request in the SCSI queue, it did not

work for our controller. Block trace analysis revealed that the

controller ignores this flag. Although TCQ64 provides high

throughput, it is impossible to guarantee response times. In

Section V-D we discuss this problem in more details.

To demonstrate the adaptive nature of our scheduler, we

collected the behavior of its throughput over time (Figure 6).

It is noticeable that in the beginning of the run the scheduler’s

performance is relatively low because it picks the request

orders that lead to completion of the matrix, not the orders that

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Time (sec)

queue length 8
queue length 16
queue length 32

Fig. 6. Adaptive behavior of our scheduler: performance improves with time.
Note: the Y axis starts at 120 ops/sec.

optimize throughput. As the matrix gets filled with the latency

numbers, throughput starts to improve. Interesting is a hollow

in the beginning of the graph. This happens because when

the matrix is mostly empty, the scheduler reorders requests

by LBN while still trying to extract the required information,

which hurts performance temporarily. As time passes, the

number of request sequences that have ordered LBNs (and still

are not in the matrix) decreases, which leads to the drop in the

throughout. After the matrix is filled with missing values, the

throughput starts to grow and surpasses the original number.

Thus far we discussed random workloads, but what about

workloads that are more sequential? Sequential workloads are

characterized by larger request sizes or requests that arrive

in serial order. When the request size is around 400KB,

transfer times reach the same magnitude as access times. If

two subsequent requests are adjacent to each other, access

time becomes almost zero. All that make I/O reordering less

effective because it only optimizes access time. This is true

for all disk schedulers, including ours. However, our scheduler

does not hurt performance of sequential workloads, so keeping

the scheduler enabled for sequential or mixed workloads is

completely valid.

D. Deadlines Enforcement

To show that our scheduler from Section III-C can effi-

ciently enforce request deadlines, we designed the following

experiment in Filebench [18]. We created 8 low-priority and

8 high-priority threads. All requests submitted by the low-

priority threads were assigned 200ms deadline. We set the

deadline for requests from the high-priority threads to 100ms.

We collected the maximum response time and throughput

for each thread at the user level. Table II shows the results

for four schedulers: Earliest Deadline First (EDF), Guaranteed

matrix (G-MATRIX), and hardware schedulers with queue sizes

4 and 64. We present the results of hardware schedulers

to demonstrate that they cannot guarantee response times,

43

Sched.
Max response (ms) Aggr.
100ms 200 ms Thrpt.

deadline deadline (ops/sec)

EDF 99 198 130
G-MATRIX 86 192 172
TCQ4 407 419 169
TCQ64 955 1,272 236

TABLE II
RESPONSE TIMES FOR LOW (200MS) AND HIGH (100MS) PRIORITY

THREADS

though show a good throughput. We do not present the results

for other OS I/O schedulers because those schedulers were

not designed to enforce deadlines, so their poor results are

expected.

EDF enforces deadlines well: maximum response time is

always lower than the deadline. This is how it should be

because EDF is the most optimal algorithm if the overtime is

the only optimization criterion. However, it does not optimize

for throughput. Our G-MATRIX scheduler also enforces the

deadlines, but its throughput is 32% higher. The hardware

schedulers ignore the order in which the OS submits requests

and violates the deadlines. As you can see from the table, the

maximum response time for TCQ4 is twice over the deadline

and 6–9 times worse for TCQ64. By breaking the deadlines,

TCQ64 significantly improves throughput (by 37% compared

to G-MATRIX). We explained this phenomenon earlier in

Section V-C.

VI. RELATED WORK

Improving disk efficiency was a main focus of early disk

scheduling algorithms, that observed that ordering of I/O

requests can significantly improve disk performance. Most

of the algorithms were designed to minimize the disk head

movement to reduce seek times, such as SCAN [19] and

Shortest Seek Time First (SSTF), while other algorithms tried

to minimize total positioning delays by minimizing rotational

latencies as well as seek times [14], [20]. Coffman et al.

analyzed the Freezing SCAN (FSCAN) policy compared to

FCFS, SSTF, and SCAN [21]. The FSCAN scheduler freezes

the request queue before the start of each arm sweep. This

improves response time and fairness compared to SCAN. Hefri

performed extensive theoretical and simulation-based analysis

of FCFS and SSTF, showing that SSTF exhibits the best

throughput under almost all workloads but its response time

variance can be large, delaying some requests by a substantial

amount of time [17]. Geist et al. presented a parameterized al-

gorithm that represents a continuum of scheduling algorithms

between SSTF and SCAN [22].

All the studies mentioned above assumed that a scheduling

algorithm has access to the detailed physical characteristics

and current state of the drive. Since modern hard drives

hide their internal details and expose only a limited Logical

Block Number (LBN) interface, these algorithms had to be

implemented in the disk controller’s firmware, which is only

possible by drive vendors. Our scheduling approach brings

detailed device characteristics to the upper layer so that better

scheduling can be performed by the OS. Due to the closed-

source nature of disk drives’ firmware, researchers mostly used

simulators (such as DiskSim [12] or specially written ones)

or theoretical calculations to demonstrate the performance of

their algorithms. All the experiments in this paper, however,

were conducted on real hardware without emulation.

Other disk schedulers optimized disk performance by using

LBN-based approximation of seek-reducing algorithms [23].

Linux is the richest OS in terms of I/O schedulers, and it

includes noop, anticipatory, deadline, and CFQ schedulers. All

of these schedulers rely on the regular LBN interface [24].

Our reordering scheme is based on more accurate information

about disk I/O latencies and it is more efficient than LBN-

based approaches.

Many real-time schedulers aim to optimize performance

while meeting real-time guarantees by combining a reordering

algorithm to optimize disk efficiency, such as SCAN, with

Earliest Deadline First (EDF) real-time scheduling. Some of

them use LBN-based reordering [6], [5] and others rely on

the detailed knowledge of the disk [25]. Our approach for

accurate I/O latency estimation and our reordering scheme

is complementary to many of these scheduling algorithms,

and can be used to improve overall disk efficiency in these

schedulers.

Reuther et al. proposed to take rotational latency into

account for improving performance of their real-time sched-

uler [4]. The authors used a simplified disk model and as a re-

sult they were only able to calculate maximum response times.

The implementation Reuther et al. had was for the Dresden

Real-Time Operating System [26]. Our implementation is for

much more common Linux kernel and consequently we were

able to compare our scheduler to other schedulers available in

Linux. Michiels et al. used the information about disk zones

to provide guaranteed throughput for applications [27]. How-

ever, they were mainly concerned about throughput fairness

among applications, not response time guarantees. Lamb et al.

proposed to utilize the disk’s rotational latency to serve I/O

requests from background processes [28]. This is another way

to increase disk utilization, providing high throughput while

enforcing response time deadlines [29].

Yu et al. conducted the study similar to ours [30]. They

examined the behavior of several Linux I/O schedulers running

on top of a command-queuing capable device. Their analysis

provided the evidence of possible redundant scheduling, I/O

starvation, and difficulties with prioritizing I/O requests when

command queuing is enabled. The authors also proposed a

mechanism for overcoming these problems. Their idea is to

switch command queuing on and off depending on the value

of a specially developed metric. The disadvantage of their

approach is that the metric has a number of tunable parameters

which are difficult to set appropriately. Moreover, the appropri-

ate values depend on the hardware specifics. Conversely, our

approach is simpler and more general: it moves all scheduling

decisions to the OS level, works for virtually any device

and performs all tuning automatically. The CPU usage of

44

our solution is negligible because we use computationally

lightweight approximation algorithms, and our memory usage

can be limited by the administrator.

VII. CONCLUSIONS

Hardware schedulers are capable of providing excellent

throughput but a user cannot control response times of in-

dividual requests. OS schedulers can strictly enforce response

time deadlines but their throughput is significantly lower than

what a disk can provide. The ability to estimate disk latencies

at the OS level allows to achieve higher throughput while

enforcing the deadlines. We designed and implemented an

I/O scheduler that collects a matrix of service times for and

underlying disk drive. It then performs request scheduling

by finding an approximate solution of a corresponding TSP

problem. The design of our scheduler incorporates a number

of trade-offs between CPU usage, memory usage, universality,

and simplicity. The scheduler does not require a distinct

learning phase: it collects hardware information on the fly

and performs better as more information becomes available.

We successfully tested our scheduler on a variety physical

disks and showed it to be up to 28% more efficient than other

schedulers. Compared to hardware level scheduling solutions,

our scheduler enforces deadlines as requested by the processes.

VIII. FUTURE WORK

We plan to work towards memory footprint reduction in our

scheduler. We believe that pattern recognition techniques are

especially promising in this respect because latency matrices

contain a lot of fuzzy patterns which regular compression

algorithms cannot detect. We plan to work on extending

our scheduler to a wider set of devices, specifically solid-

state drives and hybrid devices. We expect that matrix design

will require modifications to reflect storage devices with sig-

nificantly different hardware characteristics. Virtualization is

another direction for future work, because virtualization layers

tend to further perturb, or randomize, I/O access patterns. We

successfully tested a prototype of our scheduler inside a virtual

machine and the scheduler was capable of detecting significant

latency differences in the underlying storage.

REFERENCES

[1] A. Gulati, C. Kumar, and I. Ahmad, “Storage workload characterization
and consolidation in virtualized environments,” in Proceedings of 2nd

International Workshop on Virtualization Performance: Analysis, Char-

acterization, and Tools (VPACT), 2009.
[2] D. Sears, “IT Is Heavily Invested in ERP, Application Consolida-

tion Rising,” 2010, www.eweek.com/c/a/IT-Management/IT-Is-Heavily-
Invested-in-ERP-Application-Consolidation-Rising-244711/.

[3] C. Li, G. Peng, K. Gopalan, and T. cker Chiueh, “Performance guarantee
for cluster-based internet services,” in in The 23rd IEEE International

Conference on Distributed Computing Systems (ICDCS), 2003.
[4] L. Reuther and M. Pohlack, “Rotational-position-aware real-time disk

scheduling using a dynamic active subset (das),” in Proceedings of the

24th IEEE International Real-Time Systems Symposium, 2003.
[5] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M. Wong,

and C. Maltzahn, “Efficient guaranteed disk request scheduling
with fahrrad,” in Proceedings of the 3rd ACM SIGOPS/EuroSys

European Conference on Computer Systems 2008, ser. Eurosys ’08.
New York, NY, USA: ACM, 2008, pp. 13–25. [Online]. Available:
http://doi.acm.org/10.1145/1352592.1352595

[6] A. L. N. Reddy and J. Wyllie, “Disk scheduling in a multimedia i/o
system,” in Proceedings of the first ACM international conference on

Multimedia, ser. MULTIMEDIA ’93. New York, NY, USA: ACM,
1993, pp. 225–233. [Online]. Available: http://doi.acm.org/10.1145/
166266.166292

[7] M. J. Stanovich, T. P. Baker, and A.-I. A. Wang, “Throttling
on-disk schedulers to meet soft-real-time requirements,” in Proceedings

of the 2008 IEEE Real-Time and Embedded Technology and

Applications Symposium, ser. RTAS ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 331–341. [Online]. Available:
http://dx.doi.org/10.1109/RTAS.2008.30

[8] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer, “Benchmarking file
system benchmarking: It *is* rocket science,” in Proceedings of HotOS

XIII:The 13th USENIX Workshop on Hot Topics in Operating Systems,
Napa, CA, May 2011.

[9] B. Dees, “Native Command Queuing - Advanced Performance in
Desktop Storage,” in Potentials. IEEE, 2005, pp. 4–7.

[10] “Tagged Command Queuing,” 2010, http://en.wikipedia.org/wiki/
Tagged Command Queuing.

[11] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,”
IEEE Computer, vol. 27, pp. 17–28, 1994.

[12] J. S. Bucy and G. Ganger, The DiskSim Simulation Environment Version

3.0 Reference Manual, 3rd ed., January 2003, www.pdl.cmu.edu/PDL-
FTP/DriveChar/CMU-CS-03-102.pdf.

[13] D. Rosenkrantz, R. Stearns, and P. Lewis, “Approximate Algorithms
for the Traveling Salesperson Problem,” in 15th Annual Symposium on

Switching and Automata Theory (SWAT 1974). IEEE, 1974, pp. 33–42.
[14] M. Seltzer, P. Chen, and J. Ousterhout, “Disk Scheduling Revisited,” in

Proceedings of the Winter Usenix, 1990.
[15] A. Frieze, G. Galbiati, and F. Maffioli, “On the Worst-case Performance

of Some Algorithms for the Asymmetric Traveling Salesman Problem,”
Networks, 1982.

[16] A. Somasundara, A. Ramamoorthy, and M. Srivastava, “Mobile Element
Scheduling for Efficient Data Collection in Wireless Sensor Networks
with Dynamic Deadlines,” in Proceedings of the 25th IEEE Real-Time

Systems Symposium. IEEE, 2004, pp. 296–305.
[17] M. Hofri, “Disk Scheduling: FCFS vs. SSTF revisited,” Communication

of the ACM, vol. 23, no. 11, November 1980.
[18] “Filebench,” http://filebench.sourceforge.net.
[19] P. Denning, “Effects of Scheduling on File Memory Operations,” in

Proceedings of the Spring Joint Computer Conference, 1967.
[20] D. Jacobson and J. Wilkes, “Disk Scheduling Algorithms based on

Rotational Position,” Concurrent Systems Project, HP Laboratories,
Tech. Rep. HPLCSP917rev1, 1991.

[21] E. Coffman, L. Klimko, and B. Ryan, “Analysis of Scanning Policies
for Reducing Disk Seek Times,” SIAM Journal on Computing, vol. 1,
no. 3, September 1972.

[22] R. Geist and S. Daniel, “A Continuum of Disk Scheduling Algorithms,”
ACM Transactions on Computer Systems (TOCS), vol. 5, no. 1, February
1987.

[23] B. Worthington, G. Ganger, and Y. Patt, “Scheduling Algorithms for
Modern Disk Drives,” in Proceedings of the ACM Sigmetrics, 1994.

[24] J. Axboe, “Linux Block I/O — Present and Future,” in Proceedings of

the Ottawa Linux Symposium, 2004.
[25] H.-P. Chang, R.-I. Chang, W.-K. Shih, and R.-C. Chang, “Gsr: A

global seek-optimizing real-time disk-scheduling algorithm,” J. Syst.

Softw., vol. 80, no. 2, pp. 198–215, February 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2006.03.045

[26] H. Hrtig, R. Baumgartl, M. Borriss, C. Hamann, M. Hohmuth, F. Mehn-
ert, L. Reuther, S. Schnberg, and J. Wolter, “Drops: Os support for
distributed multimedia applications,” in Eighth ACM SIGOPS European

Workshop, 2003.
[27] W. Michiels, J. Korst, and J. Aerts, “On the guaranteed throughput of

multi-zone disks,” IEEE Transactions on Computers, vol. 52, no. 11,
November 2003.

[28] C. R. Lumb, J. Schindler, and G. R. Ganger, “Freeblock scheduling out-
side of disk firmware,” in Proceedings of the First USENIX Conference

on File and Storage Technologies (FAST ’02). Monterey, CA: USENIX
Association, January 2002, pp. 275–288.

[29] Y. Zhu, “Evaluation of scheduling algorithms for real-time disk i/o,”
2007.

[30] Y. Yu, D. Shin, H. Eom, and H. Yeom, “NCQ vs I/O Scheduler:
Preventing Unexpected Misbehaviors,” ACM Transaction on Storage,
vol. 6, no. 1, March 2010.

45

A Dataflow Monitoring Service Based on

Runtime Verification for AUTOSAR OS:

Implementation and Performances

Sylvain Cotard∗

Renault S.A.S.

1 Avenue du Golf

78280 Guyancourt, France

Email : sylvain.cotard@renault.com

Sébastien Faucou∗, Jean-Luc Béchennec†

LUNAM Université. Université de Nantes∗, CNRS†

IRCCyN UMR CNRS 6597

44321 Nantes, France

Email: sebastien.faucou@univ-nantes.fr,

jean-luc.bechennec@irccyn.ec-nantes.fr

Abstract—We have recently proposed a data flow monitoring
service based on runtime verification for AUTOSAR [1]. This
service aims at detecting unexpected communication patterns
in complex in-vehicle embedded multitask real-time software.
The service uses monitors automatically generated from for-
mal models of the system and of the expected communication
patterns. These monitors are statically injected in the kernel
of Trampoline, an open source RTOS based on AUTOSAR
OS specification. In this paper, we present the implementation
of the service and its performances. We propose and evaluate
several memory optimization techniques aiming at minimizing
the memory footprint of the monitors.

I. INTRODUCTION

AUTOSAR (AUTomotive Open System ARchitecture) is a

system architecture standard promoted by car makers, equip-

ment suppliers, and software and hardware providers. Release

4 of the standard introduces a support for multicore processors.

Such processors have arisen in the embedded market in recent

years and are currently promoted by microcontroller manu-

facturers such as Freescale, Infineon, TI etc.. Despite their

undeniable advantages in terms of performance, multicore

architectures bring a set of problems that may jeopardize the

dependability of embedded applications by increasing their

complexity. The main motivation of this work is consequently

to support real-time software developpers to maintain a high

level of dependability while using these new architectures.

AUTOSAR software systems are composed of communi-

cating real-time tasks. The global behavior of such a software

system depends on the individual behaviors of the tasks and on

the relative order of the communication operations performed

by each task. This order results from the scheduling of the

tasks. One problem brought by multicore architectures is

the difficulty to accurately predict all the possible schedules

of a system. Two reasons can explain this difficulty. First,

many results established in the context of uniprocessor real-

time scheduling do not scale to multicore systems [2], [3].

Second, multicore architecture complicates the evaluation of

the Worst-Case Execution Time (WCET) of the tasks [4],

[5]. By the very nature of multicores, multiple tasks can

be executed simultaneously, potentially leading to inter core

interferences that are difficult to take into account. In addition

the architecture of modern processors – often superscalar with

a memory hierarchy – further complicates the analysis.

Recently we have proposed a data flow monitoring ser-

vice based on runtime verification [1]. The service target an

AUTOSAR-like plateform, which is a static application. It

could be possible to use the monitoring service in a dynamic

system while the application architecture is static. The goal

of this service is to detect unwanted communication patterns

in complex in-vehicle embedded multitask real-time software.

For this purpose monitors are automatically generated from

formal models of the system and of the expected commu-

nication patterns. These monitors are statically plugged in

the kernel of Trampoline, an open source RTOS based on

AUTOSAR OS specification. Let us underline that the service

we propose is fully independent of the multitask architecture.

It can be used within a time-triggered or an event-triggered

system as long as the tasks communicate through system

calls (which is mandatory in a critical system where memory

protection must be used).

For now, since trampoline is a monocore real time operating

system, the implemented service is only suitable for this kind

of system. In the near future, the service will be extended to

multicore architecture.

In this paper, we present the implementation of the service

and its performance. We propose and evaluate several memory

optimization techniques aiming at minimizing the memory

footprint of the monitors.

The paper is organized as follow: in section II we give an

overview of the service with a simple use case; in section III

we describe related works; in section IV we briefly describe

the monitor synthesis techniques and tool; in section V we

describe the implementation of the service; in section VI

we give some results concerning the performances of our

implementation; in section VII we conclude the paper.

II. ILLUSTRATION WITH A SIMPLE USE CASE

Consider the software system described by Figure 1. It

is composed of three concurrent tasks T0, T1 and T2 that

46

communicate through two shared blackboard buffers b0 and

b1. Let us consider that T2 reads data from both b0 and b1 to

make a coherency check of the results produced by T1. We

want to verify at runtime that when T2 starts reading, both

buffers are synchronized and stay synchronized until it has

finished. The buffers are synchronized if the data currently

stored in b1 has been produced with the data currently stored

in b0. To implement this verification, each send and receive

operation in the system is intercepted and forwarded to a

monitoring service. The service uses a monitor to compare the

system operations with the specification and outputs a verdict.

T0

T1

T2b0

b1

Monitoring service

s00

r10 s11 r21

r21

false true

Fig. 1. Monitoring architecture. sxy are sending events by Tx to by and
rxy are receiving events by Tx from by .

The service must detect and report all the errors in the

communication patterns as soon as possible (as soon as T2

performs a read operation while the buffers are not synchro-

nized) and must not report false positive. The implementation

of the service has also to meet non-functional characteristics

to fulfill the requirements of industrial real-time embedded

systems as listed for instance in [6]:

• it has to accomplish its function introducing a minimal

overhead;

• after the monitor inclusion, it must be possible to check if

the system is still able to respect its timing requirements;

• in industrial contexts, components have to be qualified

(or certified) with respect to standards (AUTOSAR and

ISO26262 in the automotive context).

To address the functional constraints and the possibility to

qualify the implementation, we rely on formal methods to

automatically generate the monitors and we adopt a fully static

implementation approach conform to the AUTOSAR industrial

standard. To address the other non-functional constraints, we

include the monitor in the kernel of the RTOS to avoid

useless switches between user and kernel modes produced by

each system call. We also propose and characterize alternative

implementations of the monitors leading to different memory

footprint and time overheads. These informations can then be

used as inputs for the schedulability analysis.

III. RELATED WORKS

Many theoretical works exists on the theoretical foundations

of runtime verification and its application to distributed sys-

tems. Fewer works deal with actual implementation of runtime

verification for (industrial) real-time embedded systems.

The MaC (Monitoring and Checking) system and its im-

plementation for the Java platform are described in [7]. At

design-time, monitoring scripts are written with an extension

of LTL (linear temporal logic, see below), as well as the glue

between these scripts and the monitored system. At runtime,

instrumentation in the application code sends information to

an automatically generated event recognizer. Then, the event

recognizer forwards relevant events to a checker that executes

the monitoring script. We follow a similar methodology with

a much more domain-specific approach. This implies that we

do not need to instrument the application code and we do not

need an event recognizer. Moreover, offline processing of the

specification allows us to obtain very simple and very efficient

monitors in the form of Moore machines. We obtain a solution

which is less intrusive and with very small overheads to fulfill

the stringent requirements of our application domain.

Copilot [6] is a DSL (domain specific language) to pro-

gram monitors for hard real-time systems. Copilot programs

are compiled into C code and executed by recurrent tasks

scheduled alongside application tasks. These programs sample

the shared variables and check properties of the data flows.

We also target properties of the data flows. At the moment

we focus on temporal aspects while Copilot addresses both

temporal and functional aspects. To ensure the synchronization

between the application and the monitors, Copilot assumes that

application tasks conform to a specific programming pattern.

Our solution does not suffer from this restriction.

In [8], an high-level overview of an other architecture for

fault-tolerance in AUTOSAR is presented. This architecture

uses monitors automatically generated from specifications

written in SALT, a LTL-like specification language. We reuse

the monitor synthesis technique used by SALT. However,

our solution differs greatly at the implementation level. Our

monitors are plugged inside the RTOS kernel. This allows to

minimize the time overhead and to bypass the scheduler in

order to achieve the lowest detection latency.

IV. MONITOR SYNTHESIS

A. Runtime Verification

Runtime verification is a lightweight formal method that

consists in deciding on-line if the current run of a monitored

system is conform to some specification. The specification

is generally expressed with a temporal logic. Monitors are

automatically generated from the specifications. Monitors are

simple machines that observe the system and tries to evaluate

in a finite time if all the possible extensions of the current

run are models of the specification or if none of the possible

extension is a model of the specification. A monitor is incon-

clusive as long as some possible extensions are models of the

specification whereas some other are not.

We use runtime verification tools to build the monitors that

will be used by our service. The process that we use has three

steps.

In a first step, we describe the system that we want to

monitor in the form of finite state automata. Each state of each

automata is associated with a property. Each automata reacts

47

• Monitored events are declared. An event is the combina-

tion of a task, a buffer and a service (send or receive a

message).

enforcer_event s00 {

// s00: T0 sends data to buf. b0

task = T0;

messageobject = b0;

action = send;

};

• The system is described with finite state automata. The

initial state is implicitly the first one;

automata m1 {

state = sync; // initial state

state = nosync;

state = inprog

transition sync_to_nosync {

fromstate = sync;

tostate = nosync;

enforcer_event = s00;

};

/* etc */

};

• The rule declaration contains the property written in LTL

and the reset flag. It also references the automata that

must be used to generate the final monitor.

LTL_rule rule1 {

automata = m_sync;

automata = m_t2

property = "always((m_t2.firstb0 or m_t2.firstb1)

implies (m_sync.sync until m_t2.begin))";

reset = true;

};

The consistency of the configuration is checked by the OIL

compiler. If no error is detected, the Enforcer model (*.enf

file) is generated. This model is processed by Enforcer to

generate different source files (c files and headers). These files

contain the monitor configuration, the hook handler and the

event handler .

The monitor configuration includes the monitor transition

table and the data structure used at runtime to run the monitor.

The definition of this data structure type is given on figure 73.

This definition includes alternative parts corresponding to the

different memory optimization policies provided by Enforcer.

This data structure is stored in RAM whereas the transition

table is stored in ROM. The constant fields could be grouped

in a distinct data structure stored in ROM to save some bytes.

Among these fields, one can notice the two function point-

ers false_function and true_function. These functions are

called when the monitor outputs a verdict. If the reset flag is

set, the monitor is put in its initial state after the execution of

one of these functions.

The hook handler contains the skeletons of the

false_function and the true_function. The system

integrator must fill these skeletons with its code. Some helper

functions are provided to identify for instance the monitor

3AUTOSAR normalizes storage classes using a set of macros.
CONST(type,TYPEDEF) is used for a constant definition in a struct dec-
laration.

and the last event. To stick with the AUTOSAR OS context,

the system integrator must choose in the false_function

between the actions usually proposed in case of a timing

protection error: 1) shutdown the OS, this leads to restart the

whole ECU; 2) terminate the application owning the task that

has triggered the last event. 3) terminate the task that has

triggered the last event.

struct TPL_FSM_INITIAL_INFORMATION {

u8 monitor_id; /* monitor identifier */

#if ENFORCER_OPTIMISATION == NO

u8 *automata; /* transition table */

#else

unsigned long *automata;

#endif

u8 current_state; /* current state */

u8 nb_event; /* number of events */

CONST(tpl_false_func, TYPEDEF) false_function;

/* function called when "false" occurs */

CONST(tpl_true_func, TYPEDEF) true_function;

/* function called when "true" occurs */

u8 false_state; /* false state identifier */

u8 true_state; /* true state identifier */

u8 reset; /* reset flag */

#if ENFORCER_OPTIMISATION_1 == YES

u8 nb_bit_per_state;

u8 mask; /* mask value */

u8 nb_bit_per_line; /* transition table size */

#endif

#if ENFORCER_OPTIMISATION_2 == YES

u8 nb_bit_per_state;

u8 div_value; /* division value */

u8 mod_value; /* modulo value */

u8 mask; /* mask value */

u8 garbage_size; /* bits lost per line */

u8 nb_bit_per_line; /* transition table size */

#endif

#if ENFORCER_OPTIMISATION_3 == YES

u8 nb_bit_per_state;

u8 div_value; /* division value */

u8 mod_value; /* modulo value */

u8 mask; /* mask value */

u8 nb_bit_per_line; /* transition table size */

#endif

};

Fig. 7. Monitor data structure description

Finally, the event handler is the entry point of the moni-

toring service. Since we focus on monitoring communication

patterns, the message sending (SendMessage) and message

receiving (ReceiveMessage) system calls of Trampoline have

been modified to notify events to the monitors. The notification

process uses a table indexed by the identity of the target

message object and the identity of the task. The table contains

pointers to generated functions. These functions calls the

update function of the monitors interested in this event.

The monitor is included in the kernel of Trampoline for

performance purposes. As an alternate implementation, noti-

fying events to the monitor could be done in the RTE (so

outside of the kernel). However beside the lack of memory

protection for the data of the monitor, which is paradoxical for

this kind of mechanism, this implementation would lead to an

additional execution time overhead especially in a multicore

50

0

20

40

60

80

2 3 4 5 6 7 8

log2Ns

M
em

o
ry

sa
v
ed

(%
)

Optim 1 Optim 2 Optim 3

(a) Percentage of memory saved (Ne = 3)

0

20

40

60

80

2 3 4 5 6 7 8

log2Ns

M
em

o
ry

sa
v
ed

(%
)

Optim 1 Optim 2 Optim 3

(b) Percentage of memory saved (Ne = 5)

Fig. 10. Memory optimization for (Ne = 3 and Ne = 5)

data). The corresponding Enforcer model is composed of three

automata. m sync (Fig 11(a)) and m t2 (Fig. 11(b)) have

been introduced above; 11(c) describes the behavior of the

buffer b0.

We consider three alternative properties for this system.

• Prop 1: when T2 reads b1 buffers are synchronized and

stay synchronized until T2 completes;

always (m_t2.firstb1 implies (

m_sync.sync until m_t2.begin

)

)

• Prop 2: once T2 has read b0, it must wait that the buffers

are synchronized before to read T1.;

always (m_t2.firstb0 implies (

(not (m_b0.writeb0) and not (m_t2.begin))

until (m_sync.sync and m_t2.begin)

)

)

• Prop 3: We always want the scheme: s00 then r20 then

r21;

always (m_b0.writeb0 implies (next (

m_b0.b0read2 and (m_b0.b0read2

implies (next (

m_b0.b0read1 and (m_b0.b0read1 implies (

next (m_b0.writeb0)

))

)))

)))

Table I shows the main attributes of each property. The

size column gives the size of the transition table in the initial

implementation.

Number of states Number of events Monitor size

Prop 1 8 5 40 bytes

Prop 2 20 5 100 bytes

Prop 3 7 3 21 bytes

TABLE I
PROPERTIES FEATURES

2) Hardware Platform: The implementation targets an

Olimex lpc2294 board. The LPC2294 MCU is a 32-bits

ARM7TDMI-S chip, running at 60 MHz. The compiler is

gcc and optimization level is O3. All experiments have been

run only once because there is no memory cache on this

platform so the execution time is constant. Both program and

data are stored in external RAM. Results have been obtained

by measuring the number of cycles required to execute the

services (i.e. SendMessage() and ReceiveMessage()) when the

monitor framework is disabled and then when it is enabled.

We took into account the kind of notification triggered by the

ReceiveMessage service.

B. Results

1) Monitor Impact with one property: For these exper-

iments, we consider the monitor generated from property

prop2. The figure 12 shows the time needed to perform the

main communication services (send and receive a message)

compared to the one needed by the monitor, first when no

memory optimization is performed and then for each of the

optimization methods. It is worth noting that the monitor

execution time does not depend on the communication ser-

vice called. This is because the operations performed by the

monitor are always the same: 1) intercept an event; 2) call the

change state function; 3) output a verdict. At last, the time

required to analyze the intercepted event is presented. This

cost is the part of the monitoring imputed to each call of

SendMessage or ReceiveMessage services, even if no monitor

is attached to the event.

With no memory optimization, the monitor execution time

represents about 33, 5% of the time required by the fastest

service (i.e. ReceiveMessage) and 14% of the time required by

the slowest one (SendMessage with ActivateTask notification).

The overhead is reasonable compared to the benefit brought

by the monitoring service.

The monitor introduction has also an impact on the memory.

We separate the monitor impact on the memory in three

categories: The code needed to get the new state after an

event interception in ROM; the size of the transition table in

ROM; the size of the data structure, in RAM. Table II shows

53

syncstart

nosyncinprog

s11, r10

s00

s00, s11

r10

s00

s11

(a) m sync: Buffer synchro-
nization

beginstart

firstb0

firstb1

r20

r21

r21

r20

(b) m t2: T2 behavior

writeb0start

b0read1

b0read2
s00

r10

r20

s00

r20

r10

s00

r10

r20

(c) m b0: b0 behavior

Fig. 11. Formal model of the monitored system

Execution time (µs)

0 10 20 30

SendMessage (alone)

SendMessage (ActivateTask)

SendMessage (SetEvent)

ReceiveMessage

Event analysis

Monitoring initial†

Monitoring optim 1†

Monitoring optim 2†

Monitoring optim 3†

15.4

24

18.5

10

1.0

3.4

4.1

7.8

5.9

†The Event analysis time is included in these measures

Fig. 12. Execution time for prop 2

the results of property prop2: computation cost and memory

footprint.

As expected, we can observe that the most efficient opti-

mization is the third one. On the other hand, the overhead

on the execution time and the code size are increased by

almost 74%. It is worth noting that the results are given for

the worst case (i.e. when the next state has to be computed by

the concatenation of a data from a line i and a data from the

following line). However this case will be encountered only

occasionally. The mean increase is 44%.

In this experiment, the first optimization solution appears

to be the best tradeoff: 20% of the memory is saved while

other parameters are gently increased (e.g. only 20% for the

execution time). Finally, the second solution does not present

any interest.

2) Monitor Impact with n properties: We consider now

the monitors generated from properties prop1, prop2, and

prop3 previously defined. We replicate these monitors in

order to obtain configurations where an event is shared by

k ∈ {1, 2, 4, 6, 8, 10} monitors.

In figure 13, we plot the execution time taken by the mon-

itoring service to update k monitors. This overhead increases

linearly with k. It is composed of a constant part (time required

to obtain the set of monitors to update) followed by a linear

part (time required to update each monitor). For example, if the

Execution
Memory print

Time
Transition table Data structure Code size

ROM RAM ROM

Initial 3, 4µs 100 bytes 15 bytes 168 bytes

Optim 4, 1µs 80 bytes 18 bytes 200 bytes

1 (+20, 5%) (−20%) (+20%) (+19%)

Optim 7, 8µs 68 bytes 21 bytes 244 bytes

2 (+129%) (−32%) (+40%) (+45%)

Optim 5, 9µs 63 bytes 20 bytes 292 bytes

3 (+73, 5%) (−37%) (+33.3%) (+73, 8%)

TABLE II
MEASUREMENTS : IMPACT OF THE OPTIMIZATION POLICY FOR prop2

SendMessage (AT)

ReceiveMessage

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10

Number of rules k

E
x
ec

u
ti

o
n

ti
m

e
(µ

s)

Initial Optim 1 Optim 2 Optim 3

Fig. 13. Execution time for k rules (k ∈ {1, 2, 4, 6, 8, 10})

second optimization is used and if two monitors evolve on a

same event, the monitoring service takes more time to execute

than the ReceiveMessage service (non monitored) alone.

As can be seen on the figure, if the number of monitors

that must be updated after an event becomes greater than 6, the

overhead of the monitoring service becomes prohibitive. Let us

underline that most of the time, the monitors of a system watch

different parts of the architecture and do not share events.

For the case where some monitors share events, in order

to maintain a constant and predictable overhead, a solution

consist in composing the monitors. This allows to update

all the monitors in one operation (constant overhead). The

54

drawbacks of this solution are a potential increase of the

ROM footprint and a decrease of the quantity of information

produced by the service that can be used for diagnosing the

system.

As an illustration, let us consider two monitors M1, M2,

with event sets Σ1 and Σ2. We denote |Q1| and |Q2| the

number of states of M1 and M2.

In the case where Σ1 ⊆ Σ2 or Σ2 ⊆ Σ1, the composition

is the intersection of the two monitors. The set Q of states of

the composed monitor is such that |Q| ≤ max(|Q1|, |Q2|).
For example, let us consider the monitors generated from

properties prop1 and prop2. Monitor size for each property

is given in Table I. The total memory taken by these two

properties represent (20 + 8)× 5 = 140 bytes with the initial

implementation. After the composition, there are only 14 states

so 14 ∗ 5 = 70 bytes are required.

In the general case (some events are shared but not all),

the composition impact on the ROM depends on the ratio of

shared events. The set of states of the composed monitor Q
is such that |Q| ≤ |Q1| × |Q2|. The result is in fact very

dependent on the application. A dedicated analysis for each

situation is required.

The main drawback of the composition concerns the diag-

nostic. When a composed monitors outputs a negative verdict,

it is not possible to detect which property has been violated.

This has to be done by the user in the false_function.

Moreover, a composed monitor outputs a positive verdict only

when all the composed properties are enforced.

VII. CONCLUSION AND FUTURE WORKS

In this paper, we show that runtime verification can be

introduced in industrial real-time embedded systems with a

minimal execution time overhead and an acceptable memory

footprint in monocore context. To do so, we propose to inject

monitors in the RTOS kernel. We have developed a tool named

Enforcer that generates the source code of the monitors that

can be injected in the kernel of the Trampoline RTOS.

We have presented the implementation of the monitoring

service and a performance evaluation of this implementation.

We have proposed 3 optimization solutions to limit the size of

the monitor transition table. In most case, these solutions are

very efficient, to the price of an extra execution time overhead

that can be significant. These solutions give the possibility to

the system integrator to make a tradeoff between memory and

execution time.

For now, the service targets monocore architectures. How-

ever it will be extended to multicore ones. Beside the redesign

of the implementation, this extension will have to address

the problem of truly simultaneous events. Whether the formal

model of the system considers simultaneous occurrences of

events or it serializes them remains an open problem that we

will undertake in future works.

The service will also be used in different case studies so

as to determine how it could be extended to better fulfill the

needs of embedded real-time applications.

ACKNOWLEDGMENT

This work has been supported by Renault S.A.S., 1 Avenue

du Golf, 78280 Guyancourt - France

REFERENCES

[1] S. Cotard, S. Faucou, J.-L. Béchennec, A. Queudet, and Y. Trinquet,
“A Data Flow Monitoring Service Based on Runtime Verification for
AUTOSAR,” in International Conference on Embedded Software and

Systems (ICESS), 2012.

[2] A. Fedorova, M. Seltzer, and M. D. Smith, “Cache-fair threads schedul-
ing for multicoreprocessors,” Harvard University, Tech. Rep. TR-17-06,
2006.

[3] J. H. Anderson and J. M. Calandrino, “Parallel real-time task scheduling
on multicore platforms,” in Real-Time Systems Symposium (RTSS), 2006,
pp. 89–100.

[4] J. Yan and W. Zhang, “WCET analysis for multi-core processors with
shared L2 instruction caches,” in Real-Time and Embedded Technology

and Applications Symposium (RTAS), 2008, pp. 80–89.

[5] D. Hardy, T. Piquet, and I. Puaut, “Using bypass to tighten WCET
estimates for multi-core processors with shared instruction caches,” in
Real-Time Systems Symposium (RTSS), 2009, pp. 68–77.

[6] L. Pike, A. Goodloe, R. Morisset, and S. Niller, “Copilot: A hard
real-time runtime monitor,” in International Conference on Runtime

Verification (RV), 2010, pp. 345–359.

[7] M. Kim, I. Lee, U. Sammapun, J. Shin, and O. Sokolsky, “Monitoring,
checking, and steering of real-time systems,” in International Workshop

on Runtime Verification (RV), 2002, pp. 95–111.

[8] A. Bauer, M. Leucker, and C. Schallhart, “Runtime reflection: Dy-
namic model-based analyis of component-based distributed embedded
systems,” in Modellierung von Automotive Systems, 2006.

[9] ——, “Runtime verification for LTL and TLTL,” ACM Transactions on

Software Engineering and Methodology, vol. 20, no. 4, 2010.

[10] A. Pnueli, “The temporal logic of programs,” Annual Symposium on

Foundations of Computer Science (FOCS), pp. 46–57, 1977.

[11] P. Gastin and D. Oddoux, “Fast LTL to Büchi automata translation,” in
International Conference on Computer Aided Verification (CAV), 2001,
pp. 53–65.

[12] J.-L. Béchennec, M. Briday, S. Faucou, and Y. Trinquet, “Trampoline -
an open source implementation of the OSEK/VDX RTOS specification,”
in International Conference on Emerging Technologies and Factory

Automation (ETFA), 2006, pp. 62–69.

[13] OSEK/VDX, “OSEK/VDX - OSEK Implementation Language,” OSEK
Group, Tech. Rep. v2.5, 2005.

55

