
© 2009 IBM Corporation

Real-Time Response on Multicore Systems:
It is Bigger Than You Think

Paul E. McKenney, IBM Distinguished Engineer, Linux Technology Center (Linaro)

10 July 2012

© 2009 IBM Corporation2

Experience With Real-Time Computing

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation3

Experience With Real-Time Computing

Early 1980s: soft real-time on 8-bit and 16-bit systems
–Building-control/energy-management system (bare metal z80, single

processor, deadlines of 1-2 seconds, penalty: exploding transformers)
–Card-key security system (RT-11 on PDP-11, single processor,

deadlines of a few seconds, penalty: user gives up)
–Acoustic navigation system (BSD 2.8 on PDP-11, single processor,

deadlines of a few seconds, penalty: random transponder commands)

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation4

Experience With Real-Time Computing

Early 1980s: soft real-time on 8-bit and 16-bit systems
–Building-control/energy-management system (bare metal z80, single

processor, deadlines of 1-2 seconds, penalty: exploding transformers)
–Card-key security system (RT-11 on PDP-11, single processor,

deadlines of a few seconds, penalty: user gives up)
–Acoustic navigation system (BSD 2.8 on PDP-11, single processor,

deadlines of a few seconds, penalty: random transponder commands)

So what have I done with real time … lately?

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation5

Experience With Real-Time Computing

Early 1980s: soft real-time on 8-bit and 16-bit systems
–Building-control/energy-management system (bare metal z80, single

processor, deadlines of 1-2 seconds, penalty: exploding transformers)
–Card-key security system (RT-11 on PDP-11, single processor,

deadlines of a few seconds, penalty: user gives up)
–Acoustic navigation system (BSD 2.8 on PDP-11, single processor,

deadlines of a few seconds, penalty: random transponder commands)

So what have I done with real time … lately?

Early 2000s: Lots of requests for “real-time Linux”
–IBM response: Linux does not meet your requirements. No bid.

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation6

2004: Prototype Multi-Core ARM Chip!!!

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Core 0 Core 1

Core 2 Core 3

Realtime workRealtime work

Non-realtime workNon-realtime workRealtime workRealtime work

Realtime workRealtime work

Submitted simple patch to Linux-kernel mailing list in 2004...Submitted simple patch to Linux-kernel mailing list in 2004...

© 2009 IBM Corporation7

2004: Prototype Multi-Core ARM Chip!!!

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Core 0 Core 1

Core 2 Core 3

Realtime workRealtime work

Non-realtime workNon-realtime workRealtime workRealtime work

Realtime workRealtime work

Submitted simple patch to Linux-kernel mailing list in 2004...Submitted simple patch to Linux-kernel mailing list in 2004...
The reception was not positive: PREEMPT_RT had started.The reception was not positive: PREEMPT_RT had started.

© 2009 IBM Corporation8

2004: Prototype Multi-Core ARM Chip!!!

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Core 0 Core 1

Core 2 Core 3

Realtime workRealtime work

Non-realtime workNon-realtime workRealtime workRealtime work

Realtime workRealtime work

Submitted simple patch to Linux-kernel mailing list in 2004...Submitted simple patch to Linux-kernel mailing list in 2004...
The reception was not positive: PREEMPT_RT had started.The reception was not positive: PREEMPT_RT had started.
But I did convince my VP that real-time Linux was feasible.But I did convince my VP that real-time Linux was feasible.

© 2009 IBM Corporation9

Resulting in This Situation for Real-Time Linux

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation10

Proposed This Approach to a Real Real-Time User

But my clever scheme failed to survive first contact with a real user...
Why?

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation11

Fortunately, There Was This PREEMPT_RT Project...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Now called PREEMPT_RT_FULL
(But still the -rt patchset)

© 2009 IBM Corporation12

CONFIG_PREEMPT=n Kernel

Real-Time Response on Multicore Systems: It is Bigger Than You Think

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

s s

Li
nu

x
P

ro
ce

s s

Li
nu

x
P

ro
ce

s s

Linux Kernel

CPU 0

© 2009 IBM Corporation13

CONFIG_PREEMPT=y Kernel

Real-Time Response on Multicore Systems: It is Bigger Than You Think

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

s s

Li
nu

x
P

ro
ce

s s

Li
nu

x
P

ro
ce

s s

Linux
Kernel

CPU 0

Critical Sections

Interrupt Handlers

Interrupt-Disable

Preempt-Disable
Sched-Clock

Interrupt

© 2009 IBM Corporation14

CONFIG_PREEMPT_RT=y Kernel

Real-Time Response on Multicore Systems: It is Bigger Than You Think

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

s s

Li
nu

x
P

ro
ce

s s

Li
nu

x
P

ro
ce

s s

Linux
Kernel

CPU 0

Critical Sections

Interrupt Handlers

Interrupt-Disable

Preempt-Disable
Sched-Clock

Interrupt

ReducedReduced

10s of microseconds scheduling latency10s of microseconds scheduling latency

© 2009 IBM Corporation15

CONFIG_PREEMPT_RT_FULL=y Kernel

Real-Time Response on Multicore Systems: It is Bigger Than You Think

CPU 1

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

R
T

 L
in

ux
 P

ro
ce

ss

Li
nu

x
P

ro
ce

s s

Li
nu

x
P

ro
ce

s s

Li
nu

x
P

ro
ce

s s

Linux
Kernel

CPU 0

Critical Sections

Interrupt Handlers

Interrupt-Disable

Preempt-Disable
Sched-Clock

Interrupt

ReducedReduced

10s of microseconds scheduling latency10s of microseconds scheduling latency

Eliminate?Eliminate?

MigrateMigrate
DisableDisable

© 2009 IBM Corporation16

But 2004 PREEMPT_RT Had Problems With RCU...

So I knew what my job had to be:

Why is this a problem?

Real-Time Response on Multicore Systems: It is Bigger Than You Think

+ /*+ /*
+ * PREEMPT_RT semantics: different-type read-locks+ * PREEMPT_RT semantics: different-type read-locks
+ * dont nest that easily:+ * dont nest that easily:
+ */+ */
+// rcu_read_lock_read(&ptype_lock);+// rcu_read_lock_read(&ptype_lock);

© 2009 IBM Corporation17

The Problem With 2004 PREEMPT_RT RCU

Real-Time Response on Multicore Systems: It is Bigger Than You Think

rcu_read_lock();rcu_read_lock();
spin_lock(&my_lock);spin_lock(&my_lock);
do_something();do_something();
spin_unlock(&my_lock);spin_unlock(&my_lock);
rcu_read_unlock();rcu_read_unlock();

spin_lock(&my_lock);spin_lock(&my_lock);
rcu_read_lock();rcu_read_lock();
do_something_else();do_something_else();
rcu_read_unlock();rcu_read_unlock();
spin_unlock(&my_lock);spin_unlock(&my_lock);

Deadlock!!!

© 2009 IBM Corporation18

The Problem With 2004 PREEMPT_RT RCU

Real-Time Response on Multicore Systems: It is Bigger Than You Think

rcu_read_lock();rcu_read_lock();
spin_lock(&my_lock);spin_lock(&my_lock);
do_something();do_something();
spin_unlock(&my_lock);spin_unlock(&my_lock);
rcu_read_unlock();rcu_read_unlock();

spin_lock(&my_lock);spin_lock(&my_lock);
rcu_read_lock();rcu_read_lock();
do_something_else();do_something_else();
rcu_read_unlock();rcu_read_unlock();
spin_unlock(&my_lock);spin_unlock(&my_lock);

Deadlock!!!
And there are a lot of these in the Linux kernel!

© 2009 IBM Corporation19

Preemptible RCU

 December 2004: realized that I fix RCU...
 March 2005: first hint that solution was possible

– I proposed flawed approach, Esben Neilsen proposed flawed but serviceable approach

 May 2005: first design fixing flaws in Esben's approach
 June 2005: first patch submitted to LKML
 August 2005: patch accepted in -rt
 November 2006: priority boosting patch
 Early 2007: priority boosting accepted into -rt
 September 2007: preemptible RCU w/o atomics
 January 2008: preemptible RCU in mainline
 December 2009: scalable preemptible RCU in mainline
 July 2011: RCU priority boosting in mainline

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation20

The -rt Patchset Was Used in Production Early On

2006: aggressive real-time on 64-bit systems
–Real-time Linux kernel (x86_64, 4-8 processors, deadlines down to 70

microseconds, measured latencies less than 40 microseconds)
• I only did RCU. Ingo Molnar, Sven Dietrich, K. R. Foley, Thomas Gleixner,

Gene Heskett, Bill Huey, Esben Nielsen, Nick Piggin, Lee Revell, Steven
Rostedt, Michal Schmidt, Daniel Walker, and Karsten Wiese did the real
work, as did many others joining the project later on.

• Plus a huge number of people writing applications, supporting customers,
packaging distros, ...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation21

The -rt Patchset Was Used in Production Early On

2006: aggressive real-time on 64-bit systems
–Real-time Linux kernel (x86_64, 4-8 processors, deadlines down to 70

microseconds, measured latencies less than 40 microseconds)
• I only did RCU. Ingo Molnar, Sven Dietrich, K. R. Foley, Thomas Gleixner,

Gene Heskett, Bill Huey, Esben Nielsen, Nick Piggin, Lee Revell, Steven
Rostedt, Michal Schmidt, Daniel Walker, and Karsten Wiese did the real
work, as did many others joining the project later on.

• Plus a huge number of people writing applications, supporting customers,
packaging distros, …

But some were not inclined to believe it, so...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation22

The Writeup

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation23

“SMP and Embedded Real Time”

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Five Real-Time Myths:
–Embedded systems are always uniprocessor systems
–Parallel programming is mind crushingly difficult
–Real time must be either hard or soft
–Parallel real-time programming is impossibly difficult
–There is no connection between real-time and enterprise systems

Source: Paul E. McKenney “SMP and Embedded Real Time”, Linux Journal, Feb 2007, http://www.linuxjournal.com/article/9361

© 2009 IBM Corporation24

“SMP and Embedded Real Time”

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Five Real-Time Myths:
–Embedded systems are always uniprocessor systems
–Parallel programming is mind crushingly difficult
–Real time must be either hard or soft
–Parallel real-time programming is impossibly difficult
–There is no connection between real-time and enterprise systems

This message was not well-received in all quarters

Source: Paul E. McKenney “SMP and Embedded Real Time”, Linux Journal, Feb 2007, http://www.linuxjournal.com/article/9361

© 2009 IBM Corporation25

“SMP and Embedded Real Time”

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Five Real-Time Myths:
–Embedded systems are always uniprocessor systems
–Parallel programming is mind crushingly difficult
–Real time must be either hard or soft
–Parallel real-time programming is impossibly difficult
–There is no connection between real-time and enterprise systems

This message was not well-received in all quarters

Let's start with “Real time must be either hard or soft”:
–What is hard real time? A system that always meets its deadlines!

Source: Paul E. McKenney “SMP and Embedded Real Time”, Linux Journal, Feb 2007, http://www.linuxjournal.com/article/9361

© 2009 IBM Corporation26

Real-Time Response on Multicore Systems: It is Bigger Than You Think

The Limits of Hard Real Time in the Hard Real World

You show me a hard real-time system,
and I will show you a hammer that will cause it to miss its deadlines.

© 2009 IBM Corporation27

Real-Time Response on Multicore Systems: It is Bigger Than You Think

The Limits of Hard Real Time in the Hard Real World

You can make your system more robust,
but I can get a bigger hammer.

© 2009 IBM Corporation28

Real-Time Response on Multicore Systems: It is Bigger Than You Think

But Do Hardware Failures Count?

© 2009 IBM Corporation29

Real-Time Response on Multicore Systems: It is Bigger Than You Think

But Do Hardware Failures Count?

Rest assured, sir, that should there be a failure,
it will not be due to software!

© 2009 IBM Corporation30

The Reality of Hard and Soft Real Time?

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Hard real time is a point in a multidimensional continuum of
possible real-time requirements

Soft real time is much of the remainder of the continuum

The reality is that we almost always need to design a much
more sophisticated specification of real-time behavior:

–What operations?
–For each operation, what deadlines?
–What constraints on the environment?
–What is to happen if a given environmental constraint is violated?
–What degradation of non-real-time performance, throughput, and

scalability can be tolerated?

© 2009 IBM Corporation31

“SMP and Embedded Real Time”

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Five Real-Time Myths:
–Embedded systems are always uniprocessor systems
–Parallel programming is mind crushingly difficult
–Real time must be either hard or soft
–Parallel real-time programming is impossibly difficult
–There is no connection between real-time and enterprise systems

This message was not well-received in all quarters

Just for fun, let's focus on the most controversial two of them

Source: Paul E. McKenney “SMP and Embedded Real Time”, Linux Journal, Feb 2007, http://www.linuxjournal.com/article/9361

© 2009 IBM Corporation32

Parallel Programming Is Mind Crushingly Difficult???

On the theory that there is no example quite like a good
counter-example...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation33

Parallel Programming Is Mind Crushingly Difficult???

On the theory that there is no example quite like a good
counter-example...

#!/bin/sh
./do_something &
./do_something_else &
wait

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation34

Parallel Programming Is Mind Crushingly Difficult???

On the theory that there is no example quite like a good
counter-example...

#!/bin/sh
./do_something &
./do_something_else &
wait

As more parallel open-source projects appear, there will be
more examples to learn from

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation35

Parallel Programming Is Mind Crushingly Difficult???

On the theory that there is no example quite like a good
counter-example...

#!/bin/sh
./do_something &
./do_something_else &
wait

As more parallel open-source projects appear, there will be
more examples to learn from

–Without the benefit of parallel-programming experience, the smarter
you are, the deeper a hole you dig for yourself before you realize that
you are in trouble!!!

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation36

Parallel Programming Is Mind Crushingly Difficult???

On the theory that there is no example quite like a good
counter-example...

#!/bin/sh
./do_something &
./do_something_else &
wait

As more parallel open-source projects appear, there will be
more examples to learn from

–Without the benefit of parallel-programming experience, the smarter
you are, the deeper a hole you dig for yourself before you realize that
you are in trouble!!!

–Not parallel programming's fault if you do hard things the hard way!!!

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation37

Parallel Programming Is Mind Crushingly Difficult???

Real-Time Response on Multicore Systems: It is Bigger Than You Think

 In addition, the Linux kernel is starting to see bugs that
appear only in UP kernels

–For two recent example:
• Patch that failed to provide definitions used in UP kernels
• Patch that livelocked on UP kernels

–Perhaps the Linux kernel community is becoming all too comfortable
with parallel programming ;-)

Parallelism is primarily a performance optimization
–It is one optimization of many, each with an area of applicability
–Is parallelism the best optimization for the problem at hand?

• Not parallel programming's fault if you make a poor choice of optimization!!!

© 2009 IBM Corporation38

Parallel Real Time: Impossibly Difficult?

Again, on the theory that there is no example quite like a
good counter-example...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation39

Parallel Real Time: Impossibly Difficult?

Again, on the theory that there is no example quite like a
good counter-example...

–Parallel real-time projects exist
–Therefore, parallel real-time programming logically cannot be

impossibly difficult

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation40

Parallel Real Time: Impossibly Difficult?

Again, on the theory that there is no example quite like a
good counter-example...

–Parallel real-time projects exist
–Therefore, parallel real-time programming logically cannot be

impossibly difficult
–Instead, it is merely mind-crushingly difficult

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation41

Parallel Real Time: Impossibly Difficult?

Again, on the theory that there is no example quite like a
good counter-example...

–Parallel real-time projects exist
–Therefore, parallel real-time programming logically cannot be

impossibly difficult
–Instead, it is merely mind-crushingly difficult
–It will get easier as we gain experience with it, just as has been the

case with each and every new technology that has been invented over
the past several centuries

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation42

Parallel Real Time: Impossibly Difficult?

Again, on the theory that there is no example quite like a
good counter-example...

–Parallel real-time projects exist
–Therefore, parallel real-time programming logically cannot be

impossibly difficult
–Instead, it is merely mind-crushingly difficult
–It will get easier as we gain experience with it, just as has been the

case with each and every new technology that has been invented over
the past several centuries

–Consider the choices of university education for a 15th-century German
merchant's son...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation43

Parallel real-time programming: 15th Century Analogy

“There is a story of a German merchant of the fifteenth century, which I have not
succeeded in authenticating, but it is so characteristic of the situation then existing
that I cannot resist the temptation of telling it. It appears that the merchant had a
son whom he desired to give an advanced commercial education. He appealed to
a prominent professor of a university for advice as to where he should send his
son. The reply was that if the mathematical curriculum of the young man was to
be confined to adding and subtracting, he perhaps could obtain the instruction in a
German university; but the art of multiplying and dividing, he continued, had been
greatly developed in Italy which, in his opinion, was the only country where such
advanced instruction could be obtained.”

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Source: Swetz, “Capitalism and Arithmetic: The New Math of the 15 th Century” pp 13-14, quoting Tobias Dantzig

© 2009 IBM Corporation44

Parallel real-time programming: 15th Century Analogy

“There is a story of a German merchant of the fifteenth century, which I have not
succeeded in authenticating, but it is so characteristic of the situation then existing
that I cannot resist the temptation of telling it. It appears that the merchant had a
son whom he desired to give an advanced commercial education. He appealed to
a prominent professor of a university for advice as to where he should send his
son. The reply was that if the mathematical curriculum of the young man was to
be confined to adding and subtracting, he perhaps could obtain the instruction in a
German university; but the art of multiplying and dividing, he continued, had been
greatly developed in Italy which, in his opinion, was the only country where such
advanced instruction could be obtained.”

Perhaps parallel real-time programming is to the 21st century as multiplying and
dividing was to the 15th century.

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Source: Swetz, “Capitalism and Arithmetic: The New Math of the 15 th Century” pp 13-14, quoting Tobias Dantzig

© 2009 IBM Corporation45

Boundary Between SMP and Real Time: A Good Place
for Challenging New Research and Development

Real-Time Response on Multicore Systems: It is Bigger Than You Think

As with plate tectonics, the boundaries are where most of the action is!
This image is in the public domain because it contains materials that originally came from the
United States Geological Survey, an agency of the United States Department of Interior.

© 2009 IBM Corporation46

Real-Time Response on Multicore Systems: It is Bigger Than You Think

I Believe That “SMP and Embedded Real Time” Has
Stood the Test of Time

© 2009 IBM Corporation47

Real-Time Response on Multicore Systems: It is Bigger Than You Think

I Believe That “SMP and Embedded Real Time” Has
Stood the Test of Time

However, I Did Make One Big Error in
“SMP and Embedded Real Time”

© 2009 IBM Corporation48

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Large Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”

© 2009 IBM Corporation49

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Large Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”
–Further down in Dimitri's email: NR_CPUS=4096

© 2009 IBM Corporation50

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Large Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”
–Further down in Dimitri's email: NR_CPUS=4096

• “You mean it took only 200 microseconds?”

© 2009 IBM Corporation51

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Large Error in “SMP and Embedded Real Time”

February 8, 2012
–Dimitri Sivanic reports 200+ microsecond latency spikes from RCU
–My initial response, based on lots of experience otherwise:

• “You must be joking!!!”
–Further down in Dimitri's email: NR_CPUS=4096

• “You mean it took only 200 microseconds?”

The large error: I was thinking in terms of 4-8 CPUs, maybe
eventually as many as 16-32 CPUs

–More than two orders of magnitude too small!!!

© 2009 IBM Corporation52

Real-Time Response on Multicore Systems: It is Bigger Than You Think

RCU Initialization

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 15

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4080

Level 0: 1 rcu_node

Level 1: 4 rcu_nodes

Level 2: 256 rcu_nodes

Total: 261 rcu_nodes

© 2009 IBM Corporation53

Real-Time Response on Multicore Systems: It is Bigger Than You Think

But Who Cares About Such Huge Systems?

© 2009 IBM Corporation54

Real-Time Response on Multicore Systems: It is Bigger Than You Think

But Who Cares About Such Huge Systems?

Their users do! :-)

And you need to care about them as well

© 2009 IBM Corporation55

Real-Time Response on Multicore Systems: It is Bigger Than You Think

But Who Cares About Such Huge Systems?

Their users do! :-)

And you need to care about them as well

Systems are still getting larger
–I do remember 8-CPU systems being called “huge” only ten years ago
–Today, laptops with 8 CPUs are readily available
–And CONFIG_SMP=n is now inadequate for many smartphones
–And the guys with huge systems provide valuable testing services

Some Linux distributions build with NR_CPUS=4096
–Something about only wanting to provide a single binary...
–RCU must adjust, for example, increasing CONFIG_RCU_FANOUT

© 2009 IBM Corporation56

Real-Time Response on Multicore Systems: It is Bigger Than You Think

RCU Initialization, CONFIG_RCU_FANOUT=64

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

struct
rcu_data

CPU 63

struct
rcu_data

CPU 0

struct
rcu_data
CPU 4095

struct
rcu_data
CPU 4032

Level 0: 1 rcu_node

Level 2: 64 rcu_nodes

Total: 65 rcu_nodes

Decreases latency
from 200+ to 60-70
microseconds.
“Barely acceptable”
to users. But...

© 2009 IBM Corporation57

CONFIG_RCU_FANOUT=64 Consequences

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Scalability vs.
Energy Efficiency:

Round 1

© 2009 IBM Corporation58

CONFIG_RCU_FANOUT=64 Consequences

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Huge systems want 64 CPUs per leaf rcu_node structure

Smaller energy-efficient systems want scheduling-clock
interrupts delivered to each socket simultaneously

–Reduces the number of per-socket power transitions under light load

 If all 64 CPUs attempt to acquire their leaf rcu_node
structure's lock concurrently: Massive lock contention

© 2009 IBM Corporation59

Issues With Scheduler-Clock Synchronization

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Six-CPU package
with single power

domain

Time

Synchronized: energy
efficiency great,
lock contention bad

Unsynchronized: lock
contention great,energy
efficiency horribleP

ow
er

 C
o

ns
u

m
pt

i o
n

© 2009 IBM Corporation60

CONFIG_RCU_FANOUT=64 Consequences

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Huge systems want 64 CPUs per leaf rcu_node structure

Smaller energy-efficient systems want scheduling-clock
interrupts delivered to each socket simultaneously

–Reduces the number of per-socket power transitions under light load

 If all 64 CPUs attempt to acquire their leaf rcu_node
structure's lock concurrently: Massive lock contention

Solution: Mike Galbraith added a boot parameter controlling
scheduling-clock-interrupt skew

–Later, Frederic Weisbecker's patch should help, but still have the
possibility of all CPUs taking scheduling-clock interrupts

Longer term: schedule events for energy and scalability

© 2009 IBM Corporation61

Unintended Consequences

RCU polls CPUs to learn which are in dyntick-idle mode
–force_quiescent_state() samples per-CPU counter

Only one force_quiescent_state() at a time per RCU flavor
–Mediated by trylock

When 4096 CPUs trylock the same lock simultaneously, the
results are not pretty: massive memory contention

 Immediate solution (Dimitri Sivanic):
–Better mapping of rcu_state fields onto cachelines
–Longer delay between force_quiescent_state() invocations, but...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation62

Longer Polling Delay Consequences

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Scalability vs.
Grace-Period Latency:

Round 1

© 2009 IBM Corporation63

Increased Polling Interval Consequences

Real-Time Response on Multicore Systems: It is Bigger Than You Think

 Increasing the polling interval increases the expected grace-
period latency

And people are already complaining about the grace periods
taking too long!

© 2009 IBM Corporation64

Increased Polling Interval Consequences

Real-Time Response on Multicore Systems: It is Bigger Than You Think

 Increasing the polling interval increases the expected grace-
period latency

And people are already complaining about the grace periods
taking too long!

Short-term solution: Control polling interval via boot
parameter/sysfs; people can choose what works for them

© 2009 IBM Corporation65

Increased Polling Interval Consequences

Real-Time Response on Multicore Systems: It is Bigger Than You Think

 Increasing the polling interval increases the expected grace-
period latency

And people are already complaining about the grace periods
taking too long!

Short-term solution: Control polling interval via boot
parameter/sysfs; people can choose what works for them

Longer-term solution: Move grace period startup, polling, and
cleanup to kthread, eliminating force_quiescent_state()'s lock

–But this does not come for free...

© 2009 IBM Corporation66

RCU_FAST_NO_HZ Consequences

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Scalability vs.
Energy Efficiency:

Round 2

© 2009 IBM Corporation67

RCU_FAST_NO_HZ Consequences

Real-Time Response on Multicore Systems: It is Bigger Than You Think

When a CPU enters idle, RCU_FAST_NO_HZ can invoke
force_quiescent_state() several times in quick succession

–It is attempting to flush callbacks from the CPU for dyntick-idle entry
–(See ELCE 2012 presentation for more information.)

 If a large number of CPUs enter idle at about the same time,
the results are not pretty

Can just disable RCU_FAST_NO_HZ, but sooner or later
huge systems are going to want to save energy

But that is not all...

© 2009 IBM Corporation68

Grace-Period kthread Issues

Real-Time Response on Multicore Systems: It is Bigger Than You Think

 Increases binding between RCU and the scheduler
–Working on this: “bigrt” patch set delayed from 3.6 to 3.7

Single lock mediates kthread wait_event()/wake_up()
–But preemption points reduce PREEMPT=n latency
–So there is at least some potential benefit from taking this path

© 2009 IBM Corporation69

Grace-Period kthread Issues and Potential Benefits

Real-Time Response on Multicore Systems: It is Bigger Than You Think

 Increases binding between RCU and the scheduler
–Working on this: “bigrt” patch set delayed from 3.6 to 3.7

Single lock mediates kthread wait_event()/wake_up()
–But preemption points reduce PREEMPT=n latency
–So there is at least some potential benefit from taking this path

Estimate of latency reduction:
–Reducing rcu_node structures from 261 to 65 resulted in latency

reduction from roughly 200 to 70 microseconds
–Reducing rcu_node structures to one per preemption opportunity might

reduce latency to about 30 microseconds (linear extrapolation)
–But why not just run the test?

© 2009 IBM Corporation70

Grace-Period kthread Issues and Potential Benefits

Real-Time Response on Multicore Systems: It is Bigger Than You Think

 Increases binding between RCU and the scheduler
–Working on this: “bigrt” patch set delayed from 3.6 to 3.7

Single lock mediates kthread wait_event()/wake_up()
–But preemption points reduce PREEMPT=n latency
–So there is at least some potential benefit from taking this path

Estimate of latency reduction:
–Reducing rcu_node structures from 261 to 65 resulted in latency

reduction from roughly 200 to 70 microseconds
–Reducing rcu_node structures to one per preemption opportunity might

reduce latency to about 30 microseconds (linear extrapolation)
–But why not just run the test?

• Because time on a 4096-CPU system is hard to come by
• Fortunately, I have a very long history of relevant experience...

© 2009 IBM Corporation71

Coping With 4096-CPU System Scarcity

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation72

About That Single Global Lock...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation73

About That Single Global Lock...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Grace-period operations are global events
–So if already running or being awakened, no action required

This situation can be handled by a variation on a tournament
lock (Graunke & Thakkar 1990)

© 2009 IBM Corporation74

About That Single Global Lock...

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Grace-period operations are global events
–So if already running or being awakened, no action required

This situation can be handled by a variation on a tournament
lock (Graunke & Thakkar 1990)

–A variation that does not share the poor performance noted by
Graunke and Thakkar

© 2009 IBM Corporation75

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Conditional Tournament Lock

struct rcu_state

struct
rcu_node

struct
rcu_node

struct
rcu_node

gp_flags

Checked at
each level

spin_trylock() at each level,
release at next level

© 2009 IBM Corporation76

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Conditional Tournament Lock Code

 1 rnp = per_cpu_ptr(rsp>rda, raw_smp_processor_id())>mynode;
 2 for (; rnp != NULL; rnp = rnp>parent) {
 3 ret = (ACCESS_ONCE(rsp>gp_flags) & RCU_GP_FLAG_FQS) ||
 4 !raw_spin_trylock(&rnp>fqslock);
 5 if (rnp_old != NULL)
 6 raw_spin_unlock(&rnp_old>fqslock);
 7 if (ret) {
 8 rsp>n_force_qs_lh++;
 9 return;
 10 }
 11 rnp_old = rnp;
 12 }

© 2009 IBM Corporation77

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Conditional Tournament Lock Code

 1 rnp = per_cpu_ptr(rsp>rda, raw_smp_processor_id())>mynode;
 2 for (; rnp != NULL; rnp = rnp>parent) {
 3 ret = (ACCESS_ONCE(rsp>gp_flags) & RCU_GP_FLAG_FQS) ||
 4 !raw_spin_trylock(&rnp>fqslock);
 5 if (rnp_old != NULL)
 6 raw_spin_unlock(&rnp_old>fqslock);
 7 if (ret) {
 8 rsp>n_force_qs_lh++;
 9 return;
 10 }
 11 rnp_old = rnp;
 12 }

Effectiveness TBD

© 2009 IBM Corporation78

Other Possible Issues

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation79

Other Possible Issues

Real-Time Response on Multicore Systems: It is Bigger Than You Think

The synchronize_*_expedited() primitives loop over all CPUs
– Parallelize? Optimize for dyntick-idle state?

The rcu_barrier() primitives loop over all CPUs
– Parallelize? Avoid running on other CPUs?

Should force_quiescent_state() make use of state in non-leaf
rcu_node structures to limit scan?

– This actually degrades worst-case behavior

Grace-period initialization and cleanup loops over all rcu_node
structures

– Parallelize?

NR_CPUS=4096 on small systems (RCU handles at boot)

And, perhaps most important...

© 2009 IBM Corporation80

Possible Issue With RCU in a kthread

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Scheduler vs.
RCU???

© 2009 IBM Corporation81

Possible Issue With RCU in a kthread

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Scheduler vs.
RCU???

When these two fight, they both lose!

© 2009 IBM Corporation82

Possible Issue With RCU in a kthread

Real-Time Response on Multicore Systems: It is Bigger Than You Think

Scheduler vs.
RCU???

When these two fight, they both lose!
Much better if they both win!!!

© 2009 IBM Corporation83

The Linux Scheduler and RCU

Real-Time Response on Multicore Systems: It is Bigger Than You Think

RCU uses the scheduler and the scheduler uses RCU
–Plenty of opportunity for both RCU and the scheduler to lose big time!
–See for example: http://lwn.net/Articles/453002/
–Or this more-recent deadlock: https://lkml.org/lkml/2012/7/2/163

© 2009 IBM Corporation84

The Linux Scheduler and RCU

Real-Time Response on Multicore Systems: It is Bigger Than You Think

RCU uses the scheduler and the scheduler uses RCU
–Plenty of opportunity for both RCU and the scheduler to lose big time!
–See for example: http://lwn.net/Articles/453002/
–Or this more-recent deadlock: https://lkml.org/lkml/2012/7/2/163

But driving RCU's grace periods from a kthread should be OK

© 2009 IBM Corporation85

The Linux Scheduler and RCU

Real-Time Response on Multicore Systems: It is Bigger Than You Think

RCU uses the scheduler and the scheduler uses RCU
–Plenty of opportunity for both RCU and the scheduler to lose big time!
–See for example: http://lwn.net/Articles/453002/
–Or this more-recent deadlock: https://lkml.org/lkml/2012/7/2/163

But driving RCU's grace periods from a kthread should be OK
–As long as the scheduler doesn't wait for a grace period on any of its

wake-up or context-switch fast paths

© 2009 IBM Corporation86

The Linux Scheduler and RCU

Real-Time Response on Multicore Systems: It is Bigger Than You Think

RCU uses the scheduler and the scheduler uses RCU
–Plenty of opportunity for both RCU and the scheduler to lose big time!
–See for example: http://lwn.net/Articles/453002/
–Or this more-recent deadlock: https://lkml.org/lkml/2012/7/2/163

But driving RCU's grace periods from a kthread should be OK
–As long as the scheduler doesn't wait for a grace period on any of its

wake-up or context-switch fast paths
• Either directly or indirectly

© 2009 IBM Corporation87

The Linux Scheduler and RCU

Real-Time Response on Multicore Systems: It is Bigger Than You Think

RCU uses the scheduler and the scheduler uses RCU
–Plenty of opportunity for both RCU and the scheduler to lose big time!
–See for example: http://lwn.net/Articles/453002/
–Or this more-recent deadlock: https://lkml.org/lkml/2012/7/2/163

But driving RCU's grace periods from a kthread should be OK
–As long as the scheduler doesn't wait for a grace period on any of its

wake-up or context-switch fast paths
• Either directly or indirectly

–And as long as the scheduler doesn't exit an RCU read-side critical
section while holding a runqueue or pi lock if that RCU read-side
critical section had any chance of being preempted

© 2009 IBM Corporation88

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation89

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it

© 2009 IBM Corporation90

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

© 2009 IBM Corporation91

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible

© 2009 IBM Corporation92

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible
• It will only require a little mind crushing ;-)

© 2009 IBM Corporation93

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible
• It will only require a little mind crushing ;-)

There is still much work to be done on the Linux kernel
–But even more work required for open-source applications

The major large-system challenges are at the design level

© 2009 IBM Corporation94

Conclusions

Real-Time Response on Multicore Systems: It is Bigger Than You Think

They say that the best way to predict the future is to invent it
–I am here to tell you that even this method is not foolproof

SMP, real time, and energy efficiency are each well known
–The real opportunities for new work involve combinations of them

Some need for 10s-of-microseconds latency on 4096 CPUs
–Translates to mainstream need on tens or hundreds of CPUs

• Supporting this is not impossible
• It will only require a little mind crushing ;-)

There is still much work to be done on the Linux kernel
–But even more work required for open-source applications

The major large-system challenges are at the design level
–Pity that design issues receive little emphasis in the CS curriculum!!!

© 2009 IBM Corporation95

Legal Statement

This work represents the view of the author and does not
necessarily represent the view of IBM.

 IBM and IBM (logo) are trademarks or registered trademarks
of International Business Machines Corporation in the United
States and/or other countries.

Linux is a registered trademark of Linus Torvalds.

Other company, product, and service names may be
trademarks or service marks of others.

Real-Time Response on Multicore Systems: It is Bigger Than You Think

© 2009 IBM Corporation96

Questions?

Real-Time Response on Multicore Systems: It is Bigger Than You Think

	IBM Presentation Template Full Version
	Slide 2
	Slide 3
	Slide 4
	Selecting a template
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96

