The George Washington University School of Engineering and Applied Science **Department of Electrical and Computer Engineering ECE 20 - LAB** Experiment # 4

Characterization of an NPN Bipolar Junction Transistor (BJT)

Components:

Kit Part #	Spice Part Name	Part Description	Symbol Name (used in schematics throughout this lab manual)			
2N3904	Q2N3904	NPN Bipolar Junction	Q1			
		Transistor (BJT)				
Resistor	R	100kΩ Resistor	RB			
Resistor	R	1kΩ Resistor	RC			
Table 1.1						

Objectives:

- To characterize a BJT using the Tektronix Model 571 Curve Tracer •
- To characterize the base-emitter pn-junction (BEJ) and base-collector pn-junction (BCJ) of a BJT using the Tektronix Model 571 Curve Tracer
- To characterize a BJT using a Power Supply & Keithley Model 175 DMM •
- To compare measured characterization results to manufacturer specifications

Prelab: (Submit electronically prior to lab meeting, also have a printed copy for yourself during lab)

- 1. Read through lab, generate an equipment list.
- 2. Create a table called: Table P.1 with the following cell headings:

Calculated Values				Simulated Values			Measured Values									
Ι _Β	V_{CE}	I _C	V_{BE}	βeta	Ι _Β	V_{CE}	I _C	V_{BE}	βeta	Ι _Β	V_{CC}	V_{CE}	Ι _C	V_{BB}	V_{BE}	βeta

- Build & simulate the circuit in figure P.1 using SPICE
 - a) Using the "Parametric Sweep Simulation of a BJT" SPICE tutorial on the lab website to generate an IV Curve (I_C vs V_{CE}) for the 2N3904 BJT transistor:
 - b) Sweep V_{CE} from 0 to 10V, in .2V increments
 - c) Set I_B to be the "parameter" and step it from 10μ to 50μ A in 20μ A steps
 - d) Use a current probe to plot I_C vs. V_{CE} at each step of I_B to generate 3 curves
 - e) Place markers at V_{CE}=2V on each curve
 - Record the values for: V_{CE} , I_C , and I_B from the curve markers in Table P.1, the values f) for V_{BE} will be found in step i)
 - g) Delete the $I_{\rm C}$ current probe & place a voltage probe at node V_B as shown in fig P.2
 - h) Re-run the same simulation, place markers at V_{CE}=2V on each curve
 - Record the values for: V_{BE} , from the curve markers in Table P.1 i)
 - Calculate the value of the DC current gain (β eta = I_C / I_B) for each row of table P.1 i)

Figure P.1- Circuit to generate I_C vs. V_{CE} curve (*IB curves*)

Figure P.2 Circuit to generate I_C vs. V_{CE} curve (V_{BE} curves)

- 4. Use equation P.1 to calculate I_c and record the values in the "calculated value" section of table P.1

 - a) Calculate I_C for each value of V_{BE} collected in step 3 b) Assume Is=6.734fA, and the typical value for V_T \approx 26mA (thermal voltage)
 - c) Calculate the value of the DC current gain (β eta = I_C / I_B) for each row of table P.1

$$I_C \cong I_S \begin{pmatrix} \frac{V_{BE}}{V_T} \\ e \end{pmatrix}$$

Equation P.1 – Collector Current of NPN BJT in the active region of operation (Assumptions: V_A >>V_{CE} and n=1)

5. In the simulation above, we have swept V_{CE} from 0 to 10V, and I_B from 10μ to 50μ A. But the 2N3904 BJT can handle a significantly higher set of values. From the specification sheet for the 2N3904 BJT, gather the following specifications:

Parameter	Value (with units)
Maximum Collector-Emitter Voltage (V _{CEO})	
Maximum Emitter-Base Voltage (V _{EBO})	
Maximum Continuous Collector Current (I _C)	
Maximum Collector-Base Voltage (V _{CBO})	
Maximum DC Current Gain (βeta or h _{FE})	
Base-Emitter ON Voltage (V_{BE}) when V_{CE} =5V	
and I_{C} =10mA at room temperature	
(note: see graph section of spec)	

LAB:

Part I – Transistor Characterization using a Curve Tracer:

Generating an I_C vs. V_{CE} IV-Curve for the BJT:

- a. Allow the GTA to demonstrate using the Tektronix Model 571 Curve Tracer for an NPN device.
- b. Set the Tektronix Model 571 Curve Tracer to generate 3 IV-curves for the 2N3904 Transistor with the following limits:
 - Limit I_c to be no greater than 10mA
 - Set V_{CE} to be swept from 0 to 10V
 - Step I_B from 10μ to 50μ A in 20μ A steps to generate the 3 curves
 - Print the resulting family of curves, annotate I_B on each curve (by hand), and indicate the limits of your setup in the lab write-up. Be sure to scan the printout into your lab write-up.

Generating the IV-Curve for BEJ and CEJ for the BJT pn-junctions:

- c. Set the Tektronix Model 571 Curve Tracer to generate the forward IV characteristic curve for the Base-Emitter Junction of the 2N3904 Transistor.
 - Determine the limits for the B-E junction using the manufacturer specification sheet as done in lab 1
 - Print the resulting curve, indicate the voltage & current limits and scan the printout into your lab write-up
- d. Set the Tektronix Model 571 Curve Tracer to generate the forward IV characteristic curve for the Base-Collector Junction of the 2N3904 Transistor.
 - Determine the limits for the B-E junction using the manufacturer specification sheet as done in lab 1
 - Print the resulting curve, indicate the voltage & current limits and scan the printout into your lab write-up

Part II – Transistor Characterization Using a Test Circuit -Generating the I_c vs. V_{CE} family of IV-Curves for a BJT:

In this lab, you will generate only 3 IV-Curves (IC vs. VBE) as you did in the prelab. IB will be the 'parameter' whose value will step from IB=10uA to 50uA in 20uA steps.

In the prelab you generated an IV-Curve for the 2N3904 using the schematic in figure P.1. You were able to generate base current IB in the range of 0 to 50uA. In the lab, the power supply can behave as a current source, but it cannot produce a current as small as 50uA. To create the same family of IV-Curve in the lab, we must use the circuit in figure L.1. The voltage source combined with the 100k Ω resistor at the base will behave as the 0 to 50uA current source from figure P.1.

The data collected during this section of lab is to be recorded under the "Measured Values" section of Table P.1

Measuring the IB=10uA curve

- a. Build the circuit depicted in figure L.1 using the 2N3904 BJT
- b. Measure the exact resistance of RB using the Ohm meter, record this value
- c. Measure the exact resistance of RC using the Ohm meter, record this value
- d. Use a DMM to measure the voltage at node VB in the circuit L.1, this is VBE
- e. Use a DMM to measure the voltage at node VC in the circuit L.1, this is VCE
- f. Adjust VCC until VCE equals 2V
- g. Adjust VBB until VBE equals the value found in prelab when IB=10uA & VCE=2V
- h. Now, readjust VCC until VCE equals 0 V
- i. Record VCC, VCE, VBB, & VBE in table P.1
- j. Calculate the voltage across RB to calculated and record current IB in table P.1
- k. Calculate the voltage across RC to calculated and record current IC in table P.1
- I. Adjust VCE from 0V to 2V in .2V steps, repeating steps (i)-(k) at each step
- m. Adjust VCE from 2V to 10V in 1V steps, repeating steps (i)-(k) at each step.
- n. Calculate β eta for each recorded value of IC and IB

Measuring the IB=30uA curve

a. Repeat steps (a)-(n) above, but in step (g) adjust VBB until IB=30uA; you will need to calculate the current IB from the voltage across RB.

Measuring the IB=50uA curve

a. Repeat steps (a)-(n) above, but in step (g) adjust VBB until IB=50uA; you will need to calculate the current IB from the voltage across RB.

Figure L.1 - Test circuit to generate family of IV-curves for an NPN BJT

Part III – Data Analysis

- 1. Plot a family of IV-Curves for the data collected for *Calculated Values* & *Measured Values*, in table P.1
- 2. Extract a few values for IB, VCE, IC, and VBE from the curve-tracer plots, place these in another set of columns in table P.1
- 3. Compare the Calculated, Simulated, Measured (curve-tracer & keithley measured values) via graphs (overlaying them where possible) and percentage error in all cases.