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Abstract— Treating “resting” contacts (i.e., contacts with zero
normal relative velocity), using forces is problematic due to
inconsistent configurations. For this reason, treating resting
contacts with impulses instead of forces has become common,
but this approach also suffers from a significant problem:
applying impulses at the time-of-contact can keep the simulation
from advancing. This scenario is analogous to one of the
paradoxes devised by the philosopher Zeno, and has been
referred to as a Zeno point in the simulation community. I
describe how to avoid Zeno points without violating the theo-
retical dynamic behavior of the simulated bodies and without
permitting interpenetration. Two experiments demonstrate that
the method works as desired where alternative approaches that
required accepting interpenetration or longer running times
were previously required.

I. INTRODUCTION

Classical mechanics has separated the concept of contact
into two classes: resting contact and impacting contact. The
former uses forces to prevent interpenetration and apply
friction, while the latter uses impulses to achieve the same
effect. Computer-based rigid and multibody simulation has
attempted to use this dichotomy as well, but with less
success: there exist inconsistent contact configurations, in
which no set of non-impulsive forces can both prevent
interpenetration and model Coulomb friction. As a result,
impulse-based methods that treat all contacts– both resting
and impacting– using impulses are the most widely used
approaches for modeling contact.

Impulse-based methods generally are subject to a particu-
lar problem when modeling resting contact: Zeno points [1]
keep the simulation from progressing. Zeno points can occur
when impulses are applied to bodies in resting contact (i.e.,
the bodies are neither moving toward nor away from each
other along the contact model): impulses are applied at the
time-of-contact (TOC), which is always the current simula-
tion time for bodies in resting contact. Figure 2 shows that
an infinite loop occurs for the simple case of a box resting on
a planar surface. This loop occurs because impacts must be
treated (using impulses) before the simulation can progress,
which triggers a chain of events: forces are reapplied to
the box (applying impulses clears force accumulators1), the
equations of motion are integrated, and the collision detector
again detects contact at the current time. Note that a simple
reordering of the simulation process will fix this problem but

1An impulse is a force applied over an infinitesimally small interval of
time; the magnitude of any external forces within this interval is zero.

introduce new ones; for example, if integration is done after
contacts are treated, external forces (wind, gravity, etc.) will
be ignored.

Previous approaches to avoiding Zeno points in simulation
consist of methods described by Mirtich [2], Anitescu and
Potra [3], and Guendelman et al [4]. These approaches
exhibit excessive impulse propagation (and thus running
time) for stacked bodies, require computationally expensive
implicit integration, and permit interpenetration, respectively.
This paper introduces a simple approach that avoids Zeno
points when treating contacts– both resting and impacting–
using only impulses. Unlike the previous approaches, run-
ning times are low, computationally expensive implicit inte-
gration is not required and interpenetration does not occur.
Only continuous collision detection with extensive time-of-
contact reporting (described later) is required. The introduced
method is compared against the implicit integration approach
of Anitescu and Potra [3] and against a naı̈ve, explicit
integration approach in several experiments on multiple
scenarios.

II. BACKGROUND

A. Previous approaches to managing Zeno points

Previous approaches to managing Zeno points treat resting
contacts using superelastic (i.e., energy adding) coefficients
of restitution, by using implicit integration, or by not stop-
ping the simulation at the time-of-contact.

1) Treating resting contacts as impacts with superelastic
restitution: The first approach, introduced by Mirtich [2],
treats bodies in resting contact using microcollisions (i.e.,
superelastic coefficients of restitution). Mirtich notes that
this approach is subject to problems in scenarios requiring
impulse propagation (e.g., for stacked objects).

2) Anitescu and Potra’s method: Anitescu and Potra [3]
introduced a method that utilizes implicit integration for
resting contact and a Poisson collision model for impacting
contact. Their method is able to avoid Zeno points, though
the solution to a linear complementarity problem (O(n3)
expected time complexity [5], exponential worst-case com-
plexity [6]) is required on every time step. Additionally,
extending their method to work with higher order or variable
step integrators is non-trivial. Finally, the method of Anitescu
and Potra requires a threshold value between resting and im-
pacting contact; the effect of fixing this threshold parameter



has yet to be studied.2
3) Stepping method of Guendelman et al.: The third

approach for managing Zeno points was introduced by
Guendelman et al. [4] and steps the simulation past times
of contact. As a result, interpenetration is possible, though
Guendelman et al. use semi-implicit integration to mitigate
its occurrence. Aside from exhibiting interpenetration and re-
quiring semi-implicit integration, their approach experiences
one more issue: impact is not handled at the proper time, so
the states of the bodies in contact will be different from at
the true time-of-impact. Therefore, their method for treating
impact will operate using incorrect dynamics.

B. Mirtich’s Timewarp algorithm
Mirtich [7] introduced an approach that some researchers

(e.g., Lacoursière [1]) have stated can mitigate the problem
of Zeno points. I note that this view is incorrect: Mirtich’s
“timewarp” algorithm only parallelizes the simulation such
that impacts do not require the states of all bodies to be
rolled back to a previous time. Mirtich’s algorithm requires
that bodies can be rolled back to a contact-free state before
the impact occurred. For bodies in resting contact treated
with impulses, part of the simulation (i.e., all of the bodies
in contact with the bodies in resting contact) will not be able
to step forward. Not coincidentally, Mirtich uses a penalty
method for treating resting contacts in that work.

C. Time stepping methods
Time-stepping methods, surveyed comprehensively by

Brogliato et al. [8], avoids the problem of Zeno points
altogether. Exemplified by the methods of Anitescu and Potra
[9] and Stewart and Trinkle [10], these methods solve a
differential algebraic equation (DAE) on every time step–
existence of solutions is generally proven– and do not solve
for times-of-impact. Obviating the process of solving for
times-of-impact is a considerable advantage and permits
the simulation to always advance. However, time stepping
methods currently suffer from their own set of problems,
including difficulty of efficiently determining the set of
contacts and computational expense of solving the linear and
nonlinear complementarity problems into which the DAEs
are generally cast.

III. METHOD

The following discussion differentiates between active
contact constraints, where the bodies in contact are either
approaching or resting at a contact point, and inactive
contact constraints, where the bodies bodies in contact are
separating at a contact point.3 The discussion assumes the
existence of a function treat-impacts(.), that ensures that none
of the contact constraints will be active after treatment; this
post-condition is key to the success of my approach.

2Such an effect may be negligible, but will certainly be measurable, as
the Anitescu-Potra method consists of two slightly different methods for
treating contact (corresponding to the cases of resting contact and impacting
contact).

3Given the relative velocity vab of bodies a and b at a contact point with
contact normal n̂ pointing toward body a, the bodies are approaching or
resting if n̂Tvab ≤ 0 and separating if n̂Tvab > 0.

Fig. 1: A box resting on a plane. This is a prime scenario for
Zeno’s method, though failure to advance the simulation will
not be obvious in this example: there are no other dynamic
bodies.

A naı̈ve approach to stepping rigid and multibody simula-
tions is listed in Algorithm 1. Zeno’s paradox may be readily
observed with this approach for the scenario of a box resting
on a plane (seen in Figure 1). In line 6, a contact will be
reported; as the bodies are already in contact, the time-of-
contact is equal to the current time (i.e., tc = t) on line 7.
The simulation is regressed to time tc– thus, it does not move
forward– and the process repeats indefinitely. If the scenario
consists only of a motionless box resting on a plane, the
user may be oblivious to the occurrence of the Zeno point;
however, if the box were moving– sliding along the plane,
for example– or the scenario incorporated multiple dynamic
bodies, the simulation would appear to freeze.

Algorithm 1 Naı̈ve approach to stepping impulse-based
simulations

1: t← 0
2: while true do
3: determine centrifugal, Coriolis, constraint, and exter-

nal forces on all bodies
4: calculate forward dynamics for all bodies
5: integrate states of all bodies forward by h
6: if impact ∈ [t, t + h] then
7: backup body states to time-of-contact, tc
8: treat-impacts(.)
9: t← tc

10: else
11: t← t + h
12: clear force accumulators

The high-level idea behind my approach is that resting
contact can be ignored: the bodies will either continue resting
or begin separating (in either case, no impulses need be
applied) or will start to impact in the near future; impulses
can be applied at that time. A set of contacts must consist
of at least a single impacting contact for contact treatment
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ẍ = −9.8

Integrate state of box 
forward by h = 0.1
x = 0
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(a) Simulating a box resting on a plane using a naı̈ve step with a purely impulse-based
method
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(b) Simulating a box resting on a plane using the introduced method

Fig. 2: The process of simulating a box resting on a plane with impulse-based methods. Figure (a) shows how the box would
traditionally be simulated; the Zeno point is indicated by the loop, which keeps the simulation from progressing. Figure (b)
shows how the box is simulated using the introduced method, which allows the simulation to advance correctly.



Algorithm 2 Top-level simulation process
1: t← 0
2: while true do
3: determine centrifugal, Coriolis, constraint, and exter-

nal forces on all bodies
4: calculate forward dynamics for all bodies
5: step forward by h (Stepping Algorithm)
6: t← t + h
7: clear force accumulators

Algorithm 3 Steps the simulation from t0 to t0+dt, possibly
in the presence of impacts.

1: t← t0
2: {tc, C} = find-TOC(t, t + dt)
3: integrate states of all bodies forward by dt
4: if tc − t ≤ dt then
5: while dt > 0 do
6: backup all bodies to dynamic states at t
7: integrate states of all bodies forward to tc
8: treat− impacts(.)
9: re-apply forces to treated bodies

10: dt← dt− tc
11: t← tc
12: {tc, C} = find-TOC(t, t + dt)
13: integrate states of all bodies forward by dt
14: if tc > dt then
15: break {no impacts in [t, t + dt]}

to occur; otherwise, the simulation is stepped to the next
time-of-contact. Once an impact between two bodies is
detected and then treated, the bodies will not impact again
for some non-zero length of time (as a post-condition of
treat-impacts(.)).

My approach requires the use of a continuous collision
detection method (e.g., [11], [12], [13]) that can compute all
times-of-contact (i.e., not just the first) over an interval of
time. This requirement imposed on the continuous collision
detection system is described below.

A. Description of algorithms

My method consists of Algorithms 2, 3, and 4. Al-
gorithm 2 is the top-level replacement for Algorithm 1;
lines 5–11 of this latter algorithm are replaced by a call to
Algorithm 3 in the new approach.

Algorithm 3 is responsible for advancing the simulation
up to, and over, times of contact. Again, this algorithm is
similar to lines 5–11 of Algorithm 1. The most significant
changes are on lines 2 and 12, where find-TOC(.) locates the
next time-of-contact.

It is this function, find-TOC(.), that is listed in Algorithm 4.
Line 1 of the algorithm retrieves the set of pairs of times-
of-contact and corresponding contact data (i.e., contact point
and normal) between the bodies in the simulation from the
continuous collision detection method. Lines 5–10 locate the
earliest time-of-contact; the case of multiple earliest times-
of-contact (i.e., simultaneous contact) is treated on line 9 and

all such contacts are inserted into the set C. If the earliest
time-of-contact lies outside of the time interval, the function
returns without any contact points (lines 11–12). If at least
one contact corresponds to impacting contact, the function
returns with the time-of-contact and the set of contacts.
Otherwise, the search for the earliest contact repeats, after
first removing the contacts just examined (i.e., those contacts
that do not indicate an impact has occurred) from further
consideration (line 16). If no contacts are impacting at any
point throughout the interval, the function returns without
any contact points (line 19).

Finally, note that lines 15–17 are the motivation behind
the requirement that the collision detection system return all
points of contact: the earliest points of contact may indicate
resting or separating contact (thereby causing those points
to be removed from consideration) although there may exist
other points of contact between the two bodies that, shortly
thereafter, will indicate impact. If the continuous collision
detection system reports only the first times of contact, there
will be no means to find this impact.

IV. EXPERIMENTS

Two experiments test the ability of simulator stepping
methods to deal with Zeno points. The first experiment, a
pair of spinning boxes, uses a bouncing ball to mark passage
of time and, hence, detect any Zeno points. The second
experiment utilizes two sliding boxes to mark the passage
of time; if a Zeno point occurs, the boxes will not slide.

Fig. 3: The scenario of the first example as the simulation
begins. The naı̈ve integration approach freezes the simulation
at this point.

Each experiment uses a different simulated scenario and
each scenario is tested on three methods: the naı̈ve integra-
tion approach, the implicit integration method of Anitescu
and Potra,4 and the method introduced in this paper (the
method of Guendelman et al. [4] is used to treat impacts). All

4A sixteen sided polygon is used to approximate the friction cone. A
Schur complement and Lemke’s algorithm [14], [6], [5] is used to solve the
mixed linear complementarity problem.



Algorithm 4 FIND-TOC(t0, tf )
1: T = CCD(t0, tf ) {Get contact times and data from CCD}
2: C ← ∅
3: tmin =∞ {Init time of first contact}
4: repeat
5: for all (t, c) ∈ T do
6: if t < tmin then {new first TOC}
7: C ← {c}
8: tmin ← t
9: else if t = tmin then {TOC equal to first TOC (simultaneous contact)}

10: C ← C ∪ {c}
11: if tmin > tf then {first contact after t0 + dt}
12: return {∞, ∅}
13: if ∃c ∈ C s.t. c indicates bodies are impacting then
14: return {tmin, C} {Return all contacts that occur at tmin}
15: else {no contacts in C are impacting}
16: for all c ∈ C do
17: T ← T − (tmin, c) {Do not examine this contact further}
18: tmin =∞ {Reset tmin}
19: until [no contacts remaining] T = ∅
20: return {∞, ∅} {indicate no contact in [t0, tf ]}

examples set acceleration due to gravity to -9.8m/s2 and use
a step size of 0.001 with Euler integration. The continuous
collision detection method of Shell and Drumwright [13]
determines times-of-contact as well as contact points and
normals. The author’s freely available multibody dynamics
library, Moby [15], is used to simulate all experiments.
Timing information for the Anitescu-Potra and the introduced
method are provided in Table I; the timings include all as-
pects of the simulation process, including collision detection
and contact treatment.

A. Spinning boxes with bouncing ball
The scenario in the first example consists of two spinning,

stacked boxes and a bouncing ball, as seen in Figure 3.
The coefficient of restitution between each of the boxes is
zero (i.e., fully inelastic collision), as is the coefficient of
restitution between the bottom box and the ground plane;
the ground plane has infinite inertia, so it is immobile. The
coefficient of restitution between the ball and the ground
plane is 1.0 (i.e., fully elastic collision). The coefficients of
friction between all pairs of objects in the scenario are zero.
The top box spins with an angular speed of 20 rad/s and
the bottom box spins with an angular speed of 10 rad/s. The
angular velocity of the sphere is zero initially, and the linear
velocities of all bodies are zero.

As can be seen from Figure 4, the boxes are able to
spin as the ball falls and bounces. Given that the example
begins with the boxes in resting contact, a Zeno point occurs
immediately and the simulation freezes when modeling this
scenario with naı̈ve integration: the boxes do not rotate and
the ball remains suspended in mid-air. Both the Anitescu
and Potra approach and the method introduced in this paper
are able to simulate this scenario properly– as seen in
Figure 4– though the LCP solver used by the former method

experiences numerical difficulties and fails after one second
of simulation time.5

B. Sliding boxes

The second experiment consists of two 1m3, 1kg boxes
(see Figure 5). The coefficients of kinetic restitution between
the boxes and the ground plane (which is immobile) are
zero, and the coefficient of restitution between the boxes is
zero. The coefficients of friction between all pairs of bodies
are zero. When the simulation starts, one box moves with a
linear velocity of 10 m/s while the other is stationary; as the
simulation begins, the boxes are about to collide. According
to nonrelativistic classical mechanics and Newton’s model of
restitution, both boxes will move together at 5 m/s after the
collision.

This simple example tests three bodies in fully connected
contact: each box is in contact with the ground, and the boxes
are also in contact with each other. As can be seen from
Figure 5, the algorithm keeps the boxes from falling through
the floor while correctly handling the impact between the
boxes. As with the previous example, the naı̈ve integration
approach does not allow the simulation to progress; the boxes
rest on the ground but do not slide. Both the Anitescu-
Potra method and the introduced method are able to correctly
simulate the sliding boxes for ten seconds of simulation time.

V. CONCLUSIONS

I have presented an algorithm that provides an alternative
means to deal with the issue of Zeno points in impulse-
based rigid body simulation. Interpenetration is prevented
and any type of integration scheme can be readily employed.

5Increasing the robustness of LCP solvers is the subject of current
research; see e.g., [16].



Fig. 4: Snapshots taken over the execution of the bouncing ball example. Note that both boxes are spinning at the same
time the ball is bouncing and that the boxes are undergoing resting contact (one box is resting on the other, and that box
is resting on the ground).

Fig. 5: Snapshots taken over the execution of the sliding boxes example

TABLE I: “Wall clock” timings for methods on the sce-
narios. The naı̈ve method is unable to step the simulation
through the desired amount of simulation time because of
Zeno points.

Introduced Anitescu-Potra naı̈ve
method method method

Boxes and sphere 3.20s 25.73s ∞
(1.25s simulation time)

Sliding boxes 5.17s 6.29s ∞
(10s simulation time)

The Moby simulation library uses the introduced approach
to simulate resting contact for Newton, Mirtich, Anitescu-
Potra, and convex optimization based impact models (among
others). The primary advantage over the implicit integration
method of Anitescu and Potra is the lower running time that
such alternative methods can yield, as the results in Table I
can testify. The experiments illustrate that the algorithm both
prevents Zeno points from occurring and correctly models
the dynamics of rigid bodies.
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