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1. ORGANIZATION

• Briefly review Bayesian Simulation of San Francisco Bay Exposure
Analysis.

• Discuss in detail  for assessing Bayesian methodology relative
accident probabilities paired and their uncertainty using 
comparisons to elicit expert judgments. Approach is illustrated
using expert judgment data elicited for The Washington State
Ferry Risk Assessment in 1999.

• Propagate simulation uncertainty and expert judgment uncertainty
in  using WSF expert judgment anda proof of concept case study
SF bay exposure simulation
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2. WHY ADDRESS UNCERTAINTY?
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One problem with the representations in figures above is  ofthe apparent finality
the results. The decision-maker is led to believe that the results are definitive and
are in no way uncertain. National Research Council The  performed a peer
review of the Prince William Sound Risk Assessment (the father and grand father
risk assessment of the Washington State Ferry Risk Assessment and San Francisco
Bay Exposure Assessment, respectively) and concluded that the underlying
methodology shows "promise" to serve as a systematic approach for making risk
management decisions for marine systems, but uncertainty in results needs to be
addressed.

"Risk management … should answer whether evidence is sufficient to prove
specific risks and benefits"

(A. Elmer, President, SeaRiver Maritime,
Inc. in National Research Council, 2000).

"Since the truth is, we always have uncertainty, we say that speaking in
probability curves is telling the truth".

(see, e.g., Kaplan, 1997, p. 412)
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1. BAYESIAN SIMULATION IN A NUTSHELL

Bayesian simulation differs from classical simulation analysis in that probability
distributions are used to represent the uncertainty about model parameters rather
than point estimates and confidence intervals. Such treatment is applied to both
random inputs to the model and the outputs from the model.

Bayesian San Francisco Bay Exposure Analysis:

1. Bayesian Poisson process models of traffic arrivals were created for all 5,277
arrivals processes (excluding the Ferries since these run on a tight schedule).

2. Gamma Prior DistributionFor each arrival process a  was postulated for the
arrival rate  of the .- exponential distributed inter arrival time

3. Gamma Posterior distributionFor each arrival process a  for the arrival rate -
was determined by a  utilizing the inter arrivalconjugate Bayesian analysis
data for that process.
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4. first samples an arrival rate In the simulation, for each arrival one  from its-
Gamma distribution and next sample the inter arrival time from the
exponential distribution utilizing the sampled arrival rate , etc.-

HENCE, BAYESIAN SIMULATION TECHNIQUES
 ADDRESS BOTH:

THE RANDOMNESS WITHIN
THE SYSTEM UNDER CONSIDERATION

 (I.E. ALEATORY UNCERTAINTY)

AND

LACK OF KNOWLEDGE ABOUT THE SYSTEM
(I.E. EPISTEMIC UNCERTAINTY)
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5. As our output data is in the form of (i.e. number of interactions per grida count 
cell or total number of interaction), this number of vessel interactions can be
naturally modeled using , with a conjugatea Poisson distribution with rate -
prior gamma distribution with shape  and scale .α #

6. For replications the posterior distribution of the number of vessel interactions=
is again a Poisson distribution with rate , with a conjugate posterior gamma-

distribution with , where  is the number ofshape  and scale α # 8  =
4œ"

=

4 84

counts observed in the j-th replication and  is the total number of (independent)=
replications of the simulation.

7. Our predictive distribution for the number of interactions (per grid cell) is then a
Poisson Gamma distribution.
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See, e.g., Bernardo and Smith (1994), WileyBayesian Theory, 
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3. SF BAY EXPOSURE ASSESSMENT RESULTS
 WITH UNCERTAINTY

After 1 day of simulation

 

Posterior 5-th 
percentile

Posterior 50-th 
percentile

Posterior 95-th 
percentile
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3. SF BAY EXPOSURE ASSESSMENT RESULTS
 WITH UNCERTAINTY

After 50 years of Simulation

 

Posterior 5-th 
percentile

Posterior 50-th 
percentile

Posterior 95-th 
percentile
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4. AGGREGATE SF BAY EXPOSURE ASSESSMENT
RESULTS  WITH UNCERTAINTY
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5. AGGREGATE SF BAY EXPOSURE ASSESSMENT
COMPARISON RESULTS  WITH UNCERTAINTY
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6. CONCLUSION OF BAYESIAN SIMULATION
OF SF BAY MTS IN A NUTSHELL

The uncertainty in the random arrival patterns of non-ferry traffic
does not seem to affect in this particular study the conclusions
regarding the different expansion scenarios (Base Case, Alternative 3,
Alternative 2 and Alternative 1) from an Exposure Perspective.
(which could be explained by the fact that interactions are
predominantly FERRY to FERRY interactions which run on a
tight schedule).

For more detailed information see:
Merrick, J. R. W., J. R. van Dorp and V. Dinesh (2003).  Assessing Uncertainty in Simulation

Based Maritime Risk Assessments. Submitted to .Risk Analysis
Merrick, J. R. W., V. Dinesh, A. Singh, J. R. van Dorp and T. Mazzuchi (2003). Propagation

of Uncertainty in a Simulation-Based Maritime Risk Assessment Model Utilizing Bayesian
Simulation Techniques.   2003 Proceedings.Winter Simulation Conference
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7. ACCIDENT PROBABILITY ASSESSMENT USING
BAYESIAN PAIRED COMPARISON ELICITATION

• An important class of elicitation techniques consists of the psychological scaling
models that use the concept of paired comparisons. Origins can be traced back to
Thurstone's (1927)  and Bradley (1953)).

• Another popular paired comparison elicitation technique is called the Analytical
Hierarchy Process (AHP) Saaty (1977, 1980). developed by  The AHP Process
is primarily used for the construction of value functions involving multipleZ Ð Ñ\
contributing factors (see, e.g. Foreman and Selly (2002)).\ œ Ð\ ß\ ß á ß\ Ñ" # :

• The  can perhaps be contributedpopularity of the paired comparison method
to the observation that experts are  making  comparisonsmore comfortable
rather than directly assessing a quantity of interest.
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• To the best of our knowledge,  was first to introduce aPulkkinen (1993, 1994)
Bayesian paired comparison aggregation method for the elements of a
multivariate random vector  by multiple experts. Pulkkinen's" œ Ð ß ß á ß Ñ" " "" # :

(1993, 1994) exposition is mainly theoretical and limited to a discussion of
mathematical propertiesÞ

• Similar to the AHP process, we are interested in the functional relationship
between   and an accidentcontributing factors \ œ Ð\ ß\ ß á ß\ Ñ" # :

probability  ) defined byT<ÐE--3./8>l M8-3./8>ß \

T<ÐE--3./8>lM8-3./8>ß œ T IB: Ð"Ñ\ \) .!
Xˆ ‰"

•   describes  during which an incident (e.g. a\ œ Ð\ ß\ ßá ß\ Ñ" # : a system state
mechanical failure) occurred.

• The accident probability model  resembles the well-known Ð"Ñ proportional
hazards model Cox (1972) originally proposed by  and builds on the assumption
that accident risk behaves  rather than linearly with changes inexponentially
covariate values.
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• Our goal is to establish the uncertainty distribution of the accident probability
T<ÐE--3./8>lM8-3./8>ß\ ) in entirety rather than a point estimate.

Accident ConsequencesIncident

Organizational
Factors

Situational
Factors

Sequence Influence
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Table 1. Description of 0 contributing factors"

to | , ) in WSF Risk AssessmentT<ÐE--3./8> M8-3./8> \

H/=318+>398 H/=-<3:>398 H3=-</>3D+>398
\ #'
\ "$
\

"

#

$

FR_FC Ferry route-class combination
TT_1 1st interacting vessel type
TS_1 Scenario of 1st interaction
TP_1 Proximity of 1st interaction
TT_2 2nd interacting vessel type
TS_2 Scenario of 2nd interaction
TP_

%
\ F38+<C
\ &
\ %
\

%

&

'

( 2 Proximity of 2nd interaction
VIS Visibility
WD Wind direction
WS Wind speed

F38+<C
\ F38+<C
\ F38+<C
\

)

*

"! G98>38?9?=

• ,  and  The covariate  are\ − Ò!ß "Ó − T − Ð!ß "ÑÞ \ ß 3 œ "ßá ß :: :
! 3" ‘

normalized "worst" case scenario so that  describes the  and  \ œ " \ œ !3 3

describes the "best" case scenario.
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Question: 32 48
Situation 1 Attribute Situation 2 

Super Ferry Class - 
SEA-BAI Ferry Route - 

Naval Vessel 1st Interacting Vessel - 
Crossing the bow Traffic Scenario 1st Vessel - 

1 to 5 miles Traffic Proximity 1st Vessel - 
Deep Draft 2nd Interacting Vessel - 

Crossing the bow Traffic Scenario 2nd Vessel - 
1 to 5 miles Traffic Proximity 2nd Vessel - 

more than 0.5 mile Visibility less than 0.5 mile 
Along Ferry Wind Direction - 

40 knots Wind Speed - 
 9   8   7   6   5   4   3   2   1   2   3   4   5   6   7   8   9  

Situation 1 is worse  <====================X====================>  Situation 2 is worse 
 

An example question appearing in one
 of the questionnaires used in the WSF risk assessment

TÐ Ñ œ IB:  − Ò!ß∞ÓÞ Ð#Ñ\ \ \ \" # X " #, |" "˜ ˆ ‰™
P91 T Ð Ñ œ  − Ð ∞ß∞Ñ Ð$Ñ˜ ™ ˆ ‰\ \ \ \" # X " #, |" "
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8. THE LIKELIHOOD OF A SINGLE EXPERT'S RESPONSE

] œ ß
T<ÐE--3./8>lM8-3./8>ß

T <ÐE--3./8>lM8-3./8>ß
4

4
"

4
#

Experts response to ratio 
)

 )
\

\

^ œ P91 ] 4 œ "ßá ß 84 4, .

The response of the expert to such a question is uncertain and will assumed to
be  such thatnormal distributed

Ð^ ß <Ñ µ R Ð ß <Ñß < œ "Î Ð%Ñ4 44
#|. . 5

.4 4
X " #
4 4 4œ ; œ  Ð&Ñ"  , (  ); \ \

0 ÐD Ñ º < /B:  ÐD  Ñ Ð'Ñ
<

#
^ 4 4 4

#
4

È œ . .
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• Expert answers  defined by 8 paired comparison questions ;4 4 4
" #œ Ð \ \  ),

4 œ "ßá ß 8 U : ‚ 8, Define  to be the  matrix and  to be the vector with logm
responses of expert

U œ Ò œ ÐD ßá ß D Ñ Ð(Ñ; ;1, , , á Ó8 m  ." 8

• may be derivedLikelihood of an expert responding to questionnaire m Uß
from as being proportional toÐ'Ñ

_ mÐ l < UÑ º < /B:  Ð -   E Þ Ð*Ñ
<

#
 , , 2  "

8
# œ ,X " " "T Ñ

where

E œ œ - œ D Ð"!Ñ
4œ" 4œ" 4œ"

8 8 8

4
#; ; ;4 4 4

X
4; ; , D

If columns of spanU ‘: the matrix  can be shown to be symmetric  positiveE ß
definite and henceforth invertible.
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9. PRIOR DISTRIBUTION

• To allow for a conjugate Bayesian analysis a multivariate normal/gamma prior
is proposed for the joint distribution of Ð ß <Ñ" similar to the one described in
West and Harrison (1989).

$ Ð < l Ñ œ < /B:Ð  Þ Ð""Ñ
Ð Ñ

α /
>

/
, , i.e. 

/

α
#

#

"

α

α#

#
<

# # #
Ñ K+77+Ð ß Ñ/

α

$ œ Ð l < Ñ º < /B:  Ð  Ñ Ð  Ñ QZ RÐ ß < ÑÞÐ"#Ñ
<

#
  , i.e. " " "

:
# 7 7 7X? ?

Hence,  on   follows from  and  to bethe joint prior distribution Ð ß <Ñ Ð""Ñ Ð"#Ñ"

$ œ Ð ß < Ñ º < /B:Ð  < /B:  Ð  Ñ Ð  Ñ Ð"$Ñ
<

#
 ." " "

α
# #

:" X<

#
Ñ ‚/ ?7 7
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• The marginal distribution of may be derived from yielding" Ð"%Ñß

$ ” •Ð Ñ º "  Ð  Ñ Ð  Ñ Ð"%Ñ
"

 " " "
/

?7 7X
α:

#

and is recognized as a  with : >-dimensional multivariate -distribution α
degrees of freedom, location vector  and precision matrix .7 α

/ ?

• From and  follows that the Ð"%Ñ Ð$Ñ log-relative probability
P91 T Ð Ñ˜ ™\ \" #, |  has a  with mean and precision" prior -distribution>

7 \ \ \ \ \ \X " # " # " #Xˆ ‰ ˆ ‰ ˆ ‰   Ð"&Ñ, 
α

/
?

9.1. Prior Parameter Specification

• A  with  degrees of freedom (equivalent to aprior chi-squared distribution α
gamma distribution  with  and K+77+Ð ß Ñ œ "Ñα

# #
/ / IÒ<l ß Ó œα / α=1 .
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• The prior parameter  will be set equal to  of α the reciprocal of the variance an
expert responding at random and depends on the scale that is used in the
paired comparison questions to collect the expert responses.

α α /œ IÒ<l ß Ó œ ÖP91Ð5Ñ× ¸ !Þ$)!$%"Þ Ð"'Ñ
#

"(
=1 š ›

5œ#

*
#

"

• For distribution of  we may select  and the Ð l<Ñ" a location vector unit precision
matrix

7 , ,œ Ð!ßá ß !Ñ œ Ð"(Ñ
" g

ä
g "

X ?
Î Ñ
Ï Ò

as long as the prior distribution on the relative accident probabilities  are flatÐ#Ñ Þ

• The  in our previous question is a pdf of the relative accident probability log->
distribution (see, e.g., with prior parametersMcDonald and Butler (1987)) 

7 \ \ \ \ \ \X " # " # " #
33

Xˆ ‰ ˆ ‰ ˆ ‰ œ ! œ !Þ$)!$%"ß œ " ß œ   œ %, .α / $ ?
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•  (indicating indifference inThe prior median of , |  equals TÐ Ñ "\ \" # "
collision likelihood between system states  and ).\ \" #

• of , |  in the figure above equalsA % credibility interval&!  TÐ Ñ\ \" # "
Ò!Þ")"ß &Þ&"&Ó.  of , |  equalsA % credibility interval(& TÐ Ñ\ \" # "
Ò#Þ!"# † "! ß %Þ*(" † "! Ó& %  (which is quite wide)Þ

Table 2. Interaction Variables associated with
 the contributing factors in Table 1.

R+7/ H/=-<3:>398 H3=-</>3D+>398
\ † "$
\ † "$
\ † %
\ †

"

"#

"$

"%

1 FR_FC TT_1 Interaction
FR_FC TS_1 Interaction
FR_FC VIS Interaction
TT_1 TS_1 Interaction F38+<C

\ † "$
\ † %

"&

"'

TT_1 VIS Interaction
TS_1 VIS Interaction
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10. POSTERIOR ANALYSIS

Applying Bayes theorem utilizing the likelihood the prior distribution Ð*Ñ ß Ð"$Ñ
and it follows that the posterior distribution  is proportional to# Ð ß < l ß U Ñ" m

$ œ Š ‹
œ Š ‹ ‘  ‘

Ð ß < l ß U Ñ º < /B:  "  -  ‚ Ð")Ñ

< /B:   #   E
<

#

 

.

"

" " "

m ?

? ?

α8
#

:
#

" X

X X

<

#
7 7

, 7

Defining to be and implicitly defining   satisfying? ? ?? ? ?œ E  7

’ “ ’ “, 7 7 œ Ð"*Ñ? ?
X X

? ?" "

for all it follows that" ß

, 7 7 7 , 7 œ Í œ  Ð#!ÑŠ ‹ Š ‹? ? ?? ? ? ?
"

.
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Utilizing  and  we derive from thatÐ#!Ñ œ E  Ð")Ñ? ??

# œ Š ’ “ ‹Ð ß < l ß U Ñ º < /B:  "  -   ‚ " m ? ?
α8
# " X ? ? ?

X
<
# 7 7 7 7

< /B:    Þ Ð#"Ñ
:
# œ ’ “ ’ “<

#
? ? ?

X

" "7 7?

From  it follows that whereÐ#"Ñ Ð l ß U Ñ µ QZ RÐ ß < Ñ" m ?7? ?

ÚÝÝÝÛÝÝÝÜ Š ‹ Š ‹
? ?

? ?

?

4œ"

8

? ?
"

4œ"

8

œ 

œ 
Ð$!Ñ

; ;

;

4
X
4

4 47 7D

and withÐ<l ß U Ñ µ K+77+Ð ß Ñm α /? ?

# #Ú
ÛÜ ’ “
α α

/ / ? ?

?

? # X ? ? ?
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4

X

œ  8
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11. EXAMPLE FROM WSF RISK ASSESSMENT

• 8 Experts were selected amongst WSF captains and WSF first mates who had
extensive experience with all 13 different ferry routes over an extended period of
time (more than 5 years).  of the responses of these  expertsCombination )
follows naturally by  in Section 3, 4exploiting the conjugacy of the analysis
and 5 through sequential updating.

Table 3. Expert Response to Previous Paired Comparison Question
Expert Index
Response

1 2 3 4 5 6 7 8
5 5 3 9 7 9 3 0.5

• During the WSF risk assessment in 1998 expert responses were aggregated by
taking  and using them in a geometric means of their responses classical log
linear regression analysis approach to assess relative accident probabilities
given by .  for the parameters Ð#Ñ ß 4 œ "ßá ß "'Classical point estimates "4

will be compared to their  following our BayesianBayesian counterparts
aggregation method.
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• Expert were instructed to assume that  hada navigation equipment failure
occurred on the  and were next asked to assess Washington State Ferry how
much more likely a collision is to occur in Situation 1 (good visibility in
previous question) as compared to Situation 2 (bad visibility in previous question)
taking into account the value of all the contributing factors. Total of 60
Questions.  The questions were  in order and were randomized distributed
evenly over the  contributing factors"!  in Table 1 (i.e.  questions per'
changing contributing factor).

  11.1. The elements  and  of the likelihood given by 0Eß - Ð" Ñ,

E œ Ð$#Ñ
E E
E E” •"" "#

#" ##

where  with diagonal elementsE "!‚ "!"" is a  diagonal matrix

Ð%Þ&'ß %Þ$$ß #Þ)*ß 'ß "Þ&ß #Þ%%ß 'ß 'ß 'ß !Þ$(&Ñ Ð$$Ñ

and associated with  (The matrix  inthe contributing factors .\ ßáß\" "! E""

Ð$#Ñ is a diagonal matrix since the paired comparison scenarios and \ \" 2 only
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differed in one covariate The matrix  (see ,e.g., the previous question).  inE##

Ð$#Ñ ' ‚ 'is a symmetric matrix with elements

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

$Þ%& !Þ$$ ! "Þ%% !Þ(' !
!Þ$$ $Þ%& !Þ%% !Þ$$ ! "
! !Þ%% %Þ"" ! " #Þ$*

"Þ%% !Þ$$ ! "Þ)* !Þ$' !Þ!)
!Þ(' ! " !Þ$' $Þ!# #
! " #Þ$* !Þ!) # 'Þ'(

Ð$%Ñ

and associated with the  Finally, interaction effects .\ ßáß\"" "' the matrix
E œ E#"

X
"# is a sparse matrix"! ‚ '

Ô ×Ö ÙÖ ÙÖ ÙÖ ÙÖ ÙÖ Ù
Õ Ø

" #Þ)# ! ! ! ! ! ! ! !
#Þ#' ! #Þ"# ! ! ! ! ! ! !
"Þ"$ ! ! ! ! ! ! $Þ!' ! !
! #Þ"$ !Þ&# ! ! ! ! ! ! !
! "Þ!# ! ! ! ! ! # ! !
! ! "Þ&' ! ! ! ! &Þ$$ ! !

Ð$&Ñ

with  associated with the contributing factors and only positive elements \ ß\ ß\ \" # $ )

that are  included in the interaction effects \ ßá ß\ Þ"" "'
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element of the vector cf.  for each of the contributing factors, Ð Ð""Ñ

\ ß 3 œ "ßáß"! \ ß 3 œ ""ßáß"'3 3 in Table 1 and interaction effects in Table 2.
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Table 4. Values for  (cf.  for the  individual experts.- Ð""ÑÑ )

Expert Index 1 2 3 4 5 6 7 8
- "%*Þ!( *&Þ#) &&Þ(% "%(Þ*$ ")&Þ(" "((Þ$! "%(Þ"# %%Þ*%

11.2. Posterior Analysis
The resulting posterior parameters for the precision   are< µ K+77+Ð ß Ñα /? ?

# #

α /? ?œ %)!Þ$)ß œ &$!Þ*& Ð$'Ñ

The posterior distribution of the parameter vector   is a multivariate  distribution" >
with location vector  and precision matrix where ,  are given by7? ? ? ?α

/

?

?? α /ß

Ð$'Ñ,

? ?? œ  )E

and location vector  is depicted in the following figure.7?
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Point Estimates of Covariate Parameters
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• It can thus be concluded that traffic proximity of the first and second
interacting vessel (  and , respectively), \ \% ( traffic scenario of the second
interacting vessel wind speed  and   are the largest contributing factors\ \( "!

to accident risk. In addition, the manner in which the first interacting vessel
approaches the ferry route - ferry class combination ( , i.e. crossing,\ Ñ"#

passing or overtaking, and in what  are the largestvisibility conditions Ð\ Ñ"'

interacting factors.

• A remarkable agreement should be noted between the and Bayesian classical
point estimates provided in the figure above, except for a discrepancy associated
with the contributing factor WS (Wind Speed).

• The next figure displays the posterior distribution of the relative probability
TÐ Ñ\ \" #, |  associated with our previous pair wise comparison question."
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• Hence, Situation 2The median point estimate of , |TÐ Ñ %Þ*%Þ\ \" # "   equals
in Figure 3 is approximately 5 times more likely to result in a collision than
Situation 1 given that a navigation equipment failure occurred on the ferry.

•  Compare the % posterior credibility interval of , |  of&! T Ð Ñ\ \" # "
Ò%Þ()ß &Þ"$Ó to the In addition, the &! Ò!Þ")ß &Þ&#Ó **% prior one of . %
posterior credibility interval of  Ò%Þ$$ß &Þ''Ó is indicated in the figure above
which is remarkably narrow compared to the prior (&% credibility interval of
Ò#Þ!"# † "! ß %Þ*(" † "! Ó& % 

• Utilizing  credibilityposterior distributional results for the parameter vector "
statements can be made for any arbitrary paired comparison. For example, setting
Situation 1 best possible scenario ( ) in to the and  toÐ#Ñ \ !" œ Situation 2
the   a worst possible scenario ( )\ "# œ ** T Ð% credibility interval of ,\"

\#|" Ñ Ò$""%#ß $'(%*ÓÞ equals Therefore, collision risk in the worst possible
scenario differs at least by  to that of the best possible4 orders of magnitude
scenario  of the expert judgments while taking uncertainty into account.
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12. COMMENTS ON EXPERT JUDGMENT METHOD

•  has been developed using responses fromBayesian aggregation method
multiple experts to a  to assess thepaired comparison questionnaire
distribution of  relative accident probabilities. The classical analysis
conducted during the WSF risk assessment  ofonly resulted in  point estimates
relative accident probabilities.

For more detailed information see:
P. Szwed,  J. R. van Dorp, J. R. W.  Merrick, T. A. Mazzuchi and A. Singh (2004). A

Bayesian Paired Comparison Approach for Relative Accident Probability Assessment with
Covariate Information. , Vol. 161 (1), pp. 240-255.European Journal of Operational Research

PREVIOUS EXPERT AGGREGATION METHOD UTILIZED
SEQUENTIAL UPDATING WHICH ESSENTIALLY MEANS

 THAT GIVEN THE PARAMETER VECTOR  AND"
 THE PRECISION  THE EXPERTS<

ARE STATISTICALLY INDEPENDENT.
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THE LATTER ASSUMPTION CAN BE RELAXED! ESSENTIALLY BY
UTILIZING A MULTIVARIATE BAYESIAN REGRESSION APPROACH
TO THE PAIRED COMPARISON QUESTIONS INVOLVING A PRIOR
MULTIVARIATE NORMAL ON ( | ) WHERE  IS THE INVERSE" D D

VARIANCE COVARIANCE MATRIX AND  OR .A WISHART PRIOR D

(see, e.g., Press, S. J. 1982. Applied Multivariate Analysis Using Bayesian and Frequentist
Methods and Inference. 2nd Edition. Robert E. Krieger Publishing Company, Malabar,
Florida).

For more detailed information on our specific application see:
Merrick, J. R. W., J. R. van Dorp and A. Singh (2003). Analysis of Correlated Expert

Judgments from Pairwise Comparisons. Re-submitted to  , SeptemberDecision Analysis
2004, First Revision.

• A  result is that the  here results in asurprising incorporation of dependence
reduction of  of the elements of the parameters vector the predictive variance "
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13. PUTTING IT ALL TOGETHER IN A PROOF OF
CONCEPT CASE STUDY
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Whereas an  ranking in terms of almost certain the expected yearly number of
situations, this is not true for t .he expected yearly number of accidents

0.00005

0.00006

0.00007

0.00008

Base Case

# 
Ye

ar
ly

 A
cc

id
en

ts

A

0.00005

0.00006

0.00007

0.00008

Alternative 3

# 
Ye

ar
ly

 A
cc

id
en

ts

B

SEPARATE BOX PLOTS A-B OF PREVIOUS SLIDE

The box plots for the Base Case and Alternative 3 show that the range of their
distributions do indeed overlap and the best we can say is that Alternative 3
stochastically dominates the Base Case in the sense that their cumulative
distribution functions do not cross.
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Reason for  and  of theStochastic Dominance not Deterministic Dominance
Alternative 3 and the Base Case is a reduction in the average accident
probability per occurring situation.
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Reason for a reduction in the average accident probability per occurring
situation is a reduction in Alternative 3 of the number of second interacting
vessels within a 1 mile distance. (Recall that Traffic Proximity of second interacting
vessel was a dominant factor in the accident probability in a given interaction.)
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TENTATIVE OBSERVATION:

The reduction in accident probability per interaction could be an indication of what
might be achieved when looking at the  as a SF Bay Ferry operation System of
interconnected Ferry Routes and by designing a Comprehensive Ferry
Schedule that aims to reduce the number of interactions and the number of
vessels that are interacting in given situation.

For more detailed information on this proof of concept case
study see:
Merrick, J. R. W. and J. R. van Dorp (2004). Speaking the Truth in Maritime Risk
Assessment. Submitted to , August 2004.Management Science

QUESTIONS?
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14. MARITIME RISK ASSESSMENT LINKS

Faculty Home Page of J. Rene van Dorp:
http://www.seas.gwu.edu/~dorpjr

and

Faculty Home Page of Jason R.W. Merrick:
http://www.people.vcu.edu/~jrmerric

Available for downloading:
Presentations,
Journal Papers,
Proceedings,

Reports
SF Bay Simulation Movies


