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Summary. An extension of the three-parameter triangular distribution utilized in risk analysis is
discussed. Special cases of the resulting four-parameter family include the triangular distribution,
the power function distribution and the uniform distribution. Expert judgment elicitation of its
parameters is discussed as well as moment estimation and maximum likelihood estimation of
its parameters by using sample data.
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1. Introduction

In recent years two papers dealing with triangular distributions and their extensions have
appeared in The Statistician. Johnson (1997) and Johnson and Kotz (1999) dealt with neglected
applications of this distribution as an alternative to the beta distribution which suffers from
difficulties involved in its maximum likelihood parameter estimation and whose parameters
do not have a clear-cut meaning. Johnson (1997) is particularly relevant to the current work.
Johnson used triangular distributions as a proxy to the beta distribution, specifically in prob-
lems of assessment of risk and uncertainty, such as the project evaluation and review technique
(PERT). The parameters of a triangular distribution have a one-to-one correspondence with
an optimistic estimate a, most likely estimate m and pessimistic estimate b of a quantity un-
der consideration, providing to the triangular distribution its intuitive appeal (see, for example
Williams (1992)). Similarly to the beta distribution, the triangular distribution can be positively
or negatively skewed (or symmetrical) but must remain unimodal. Johnson (1997) pointed out
that there is no triangular distribution which would reasonably approximate uniform, J-shaped
or U-shaped distributions.

In this paper we investigate an extension of the three-parameter triangular distribution, to
be called the two-sided power (TSP) distribution, as a meaningful alternative to the beta dis-
tribution. The four-parameter distribution proposed herein does allow for J-shaped and U-
shaped forms. Since the TSP distribution extends the triangular distribution it should inherit its
intuitive appeal and meaningful parameters. In addition, TSP distributions have the attractive
property that their maximum likelihood estimation (MLE), although ingenious, is computa-
tionally straightforward and apparently robust, involving only elementary functions. Also, the
cumulative distribution function of a TSP variable and its inverse can be derived in closed form,
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allowing straightforward and efficient use of this distribution in Monte-Carlo-type uncertainty
or risk analyses. It has been brought to our attention by one of the referees that because of its
flexibility the TSP family may also serve as a rich family of prior distributions in a Bayesian
analysis. In such analyses parameters need to be assessed as well, either by using expert judgment
or data. This paper concentrates on the estimation of the parameters of the TSP distribution
by using a variety of methods. Some properties of the two-parameter TSP distribution with
support |0; 1| have been discussed in van Dorp and Kotz (2002).

In Section 2, the TSP distribution is briefly introduced. We discuss an expert judgment elicita-
tion method for its four parameters in Section 3 followed by the method of moments for a TSP
distribution with known support in Section 4. The method of moments discussed herein uses a
classical method for solving cubic equations known as Cardano’s method. This method was first
discovered by Tartaglia in 1539 and later published by Cardano in 1545 (see Cardano (1993) for
full details). In Section 5, the two-parameter MLE procedure for TSP distributions with known
support is briefly reviewed. To the best of our knowledge MLE of the three-parameter triangular
distribution has not been investigated, but it follows naturally from the two-parameter MLE
procedure described in Section 5 and will be discussed in Section 6. In Section 7, we expand
the three-parameter MLE procedure in Section 6 to an MLE procedure for the four-parameter
TSP distribution. Finally, we provide some concluding remarks in Section 8. To the best of our
knowledge the TSP family is mentioned only in passing in Nadarajah (1999). We could not
locate other literature citations.

2. Two-sided power distributions

Let X be a random variable with probability density function given by

f.x|a; m; b; n/ =




n

b − a

(
x − a

m − a

)n−1

a < x � m;

n

b − a

(
b − x

b − m

)n−1

m � x < b:

(1)

The random variable X is said to follow a TSP distribution; TSP.a; m; b; n/; a � m � b; n > 0.
For n > 1, the mode of the density function is at m and the value of the probability density
function at the mode is always n=.b − a/. For 0 � n < 1 and a < m < b the mode of the density
function is at a or b and f.·|a; m; b; n/ → ∞ at its modes. For n = 1; f.·|a; m; b; n/ simplifies
to a uniform[a; b] distribution. For n = 2, f.·|a; m; b; n/ reduces to a triangular distribution
triang.a; m; b/. Finally, for a = 0 and m = b = 1, f.·|a; m; b; n/ corresponds to a power
function distribution and for a = m = 0 and b = 1 to its reflection. Fig. 1 provides examples
of symmetric TSP.0; m; 1; n/ distributions, i.e. m = 0:5, including uniform, triangular and
some U-shaped distributions. Fig. 2 presents examples of positively and negatively skewed
TSP.0; m; 1; n/ distributions, including examples of triangular distributions. Finally, Fig. 3
provides examples of J-shaped TSP.0; m; 1; n/ distributions. van Dorp and Kotz (2002) refer to
TSP distributions on |0; 1| as standard TSP distributions.

The cumulative distribution function of a TSP.a; m; b; n/ distribution follows from expression
(1) as

F.x|a; m; b; n/ =




m − a

b − a
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)n

a � x � m;

1 − .b − m/

.b − a/

(
b − x

b − m

)n

m � x � b.
(2)
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Fig. 1. Symmetric TSP(0, m, 1, n) distributions (m = 0.5): � � � � � � , n = 0.05; , n = 0.5; � � � � � , n = 1;
- - - - - -, n = 1.5; — —, n = 2; , n = 3

The expressions for the mean and the variance can be obtained from expression (1) and simplify
to

E.X/ = a + .n − 1/m + b

n + 1
(3)

and

var.X/ = .b − a/2 n − 2.n − 1/.m − a/=.b − a/ × .b − m/=.b − a/

.n + 2/.n + 1/2 : (4)

The meaning of the parameters is as follows: a and b are the end points of the support, n is the
shape parameter and m is the threshold parameter for a change in the form of the probability
density function. The parameters a and b may be related to pessimistic and optimistic estimates of
the associated TSP.a; m; b; n/ variable. For n > 1, m coincides with the most likely estimate (the
mode) of a TSP.a; m; b; n/ variable. These interpretations mirror those for the three-parameter
triang.a; m; b/ distribution. Regardless of the value of n, the parameter m identifies the 100.m−
a/=.b − a/th percentile of the TSP distribution.

3. Elicitation of two-sided power parameters

Johnson (1997) proposed the triangular distribution as an alternative to the beta distribution
(see, for example, Johnson et al. (1995)) as its parameters have a one-to-one correspondence
with an optimistic estimate a, a most likely estimate m and a pessimistic estimate b of an activity
duration T in a PERT network. Over 40 years ago, Malcolm et al. (1959) fitted a beta distribution
to such estimates a, m and b by using the method of moments to overcome the difficulty with
interpreting the beta parameters by setting

E.T / = a + 4m + b

6
;

var.T / = 1
36

.b − a/2:
(5)
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Fig. 2. Positively skewed TSP(0, m, 1, n) distributions (m > 0.5 and n > 1) and negatively skewed TSP(0, m,
1, n) distributions (m < 0.5 and n > 1): - - - - -, m = 0.25, n = 1.5; — —, m = 0.25, n = 2; , m = 0.25, n =
4; � � � � � � , m = 0.75, n = 1.5 � � � � �, m = 0.75, n = 2; , m = 0.75, n = 4

Fig. 3. Some J-shaped TSP(0, m, 1, n) distributions: � � � � � � , m = 0, n = 0.5; — —, m = 0, n = 2; ,
m = 0, n = 5; - - - - -, m = 1, n = 0.5;� � � � �, m = 1, n = 2; , m = 1, n = 5

Solving for the beta parameters using expression (5) is somewhat controversial (see for example
Clark (1962) and Grubbs (1962)) and its use is still (see for example Kamburowksi (1997)) subject
to discussion. From equations (3) and (4) it follows that for a triangular distribution .n = 2/

E.X/ = a + m + b

3
; (6)

3
72

.b − a/2 � var.X/ � 1
18

.b − a/2: (7)

From equation (6) it follows that E.X/ may overestimate or underestimate E.T / in expression
.5/ depending on whether m is less or greater than the midpoint .a + b/=2. More importantly, it
follows from inequality (7) that var.X/ of a triangular distribution is always larger than var.T /

in expression (5), regardless of the values for a; m and b. This may partially explain the existing
controversy around using expression (5) to fit the beta parameters.
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Instead of using a triangular distribution we may also use the more general TSP.a; m; b; n/

distribution as an alternative to the beta distribution. Specifically, setting n = 5 and utilizing
equations (3) and (4) we have

E.X/ = a + 4m + b

6
; (8)

1
84

.b − a/2 � var.X/ � 5
252

.b − a/2: (9)

Hence, in the latter case the mean values E.T / in expression (5) and E.X/ in equation (8) agree,
but now var.X/ in inequality (9) is always less than var.T / in expression (5), regardless of the
values for a; m and b, perhaps adding additional fuel to the controversy surrounding the use of
expression (5).

In place of using comparisons with expression (5) to specify the parameter n of a TSP.a; m; b; n/

distribution, we may indirectly elicit n by asking an expert for the relative importance of the
already elicited most likely value m compared with the bounds a or b. From equation (3) it fol-
lows that n+1 may be interpreted as the sample size of a virtual sample with n−1 observations
m, with one additional observation a and one additional observation b. Suppose that an expert
assigns the relative importance of the most likely value m to be y = n − 1; it then follows from
the interpretation above that

n = y + 1: (10)

Hence, if an expert responds that the most likely estimate m is as important as the bounds a or b

(i.e. y = 1), it follows from equation (10) that a triangular distribution .n = 2/ models the expert’s
uncertainty. If an expert responds that the most likely estimate m is more (or, correspondingly,
less) important than the bounds a or b, the elicitation will yield a TSP distribution with variance
smaller (or, correspondingly, larger) than that of the triangular distribution. An expert would
have to assign relative importance y = 4 for the mean of the resulting TSP variable E.X/ to
agree with E.T / in expression (5).

In the following sections, more classical estimation procedures for the TSP.a; m; b; n/ distri-
bution are discussed using data.

4. Two-parameter moment estimation

Consider a hypothetical example in Table 1 of eight completed replications xi; i = 1; : : :; 8, of
an activity duration in a PERT context known to take at least 2 hours and not more than 12
hours. The third column of Table 1 contains standardized replications x′

i = .xi − 2/=10.
Without loss of generality, we may apply the method of moments to a TSP.0; m′; 1; n/ variable

using the x′
i-values in Table 1 (instead of to a TSP.a; m; b; n/ variable using the original data)

with m′ = .m − a/=.b − a/ and fixed a = 2 and b = 12. The advantage is that population
quantities E.X/ and var.X/ (see equations (3) and (4)) simplify to

E.X/ = .n − 1/m′ + 1
n + 1

;

var.X/ = n − 2.n − 1/ m′.1 − m′/
.n + 2/.n + 1/2 :

(11)
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Table 1. Replications of an activity
duration known to be completed within
2–12 hours

i Original Standardized or
data xi scaled data x′

i

1 3 0.10
2 4.5 0.25
3 5 0.30
4 6 0.40
5 6.5 0.45
6 8 0.60
7 9.5 0.75
8 10 0.80

Equating sample quantities

x̄′ = 1
8

8∑
i=1

x′
i;

σ̂2 = 1
7

8∑
i=1

.x′
i − x̄′/2

with their population equivalents (see expression (11)), we obtain the following cubic equation
in parameter n:

cn3 + dn2 + en + f = 0, (12)

where the coefficients are given by

c = 1
2 σ̂2;

d = σ̂2;

e = −{.x̄′ − 1
2 /2 + 1

2 σ̂2 + 1
4};

f = 1
4 − .x̄′ − 1

2 /2 − σ̂2:




(13)

After solving the cubic equation for n; the estimate of m′ follows from

m̂′ = 1
2

+ n + 1
n − 1

(
x̄′ − 1

2

)
(14)

and that of m is given by

m̂ = m̂′.b − a/ + a: (15)

Expression (12) may be solved by using Cardano’s method briefly described in Appendix A.
Utilizing the standardized data in Table 1 we have x̄′ = 0:45625 and σ̂2 = 0:060313. Substituting
these values in equations (13) yields c = 0:030156; d = 0:0603125; e = −0:282070 and
f = 0:187773. Using the values for c; d; e and f in equation (44) (Appendix A) and solving for
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p and q yields p = −3:562320 and q = 6:527513. With q2 + p3 = −2:597847, the following
three real-valued solutions are calculated (see equation (43) and the left-hand side column of
Table 4 in Appendix A):

ŷ1 = −3:762539; ŷ2 = 2:144776; ŷ3 = 1:617762:

Utilizing the values for c; d and equation (43) yields the following three solutions for equa-
tion (12):

n̂1 = −4:429201; n̂2 = 1:478109; n̂3 = 0:951095:

The first solution n̂1 is unacceptable since we must have n > 0. Hence, we solve for m̂′
2 and m̂′

3
using n̂2; n̂3 and equation (14), yielding

m̂′
2 = 0:273; m̂′

3 = 2:245:

The third solution is disqualified since we must have 0 < m′ < 1. Substituting a = 2, b = 12
and m̂′

2 in equation (15) the unique moment estimators are

m̂2 = 4:7308;

n̂2 = 1:478109:
(16)

In the next section, we shall briefly review two-parameter MLE for a TSP.a; m; b; n/ distri-
bution with fixed a and b using the original data in Table 1.

5. Maximum likelihood estimation procedure for two-parameter two-sided
power distribution

For a random sample X = .X1; : : :; Xs/ with size s from a TSP.a; m; b; n/ distribution, let the
order statistics be X.1/ < X.2/ : : : < X.s/. Utilizing expression (1), the likelihood for X is by
definition

L.X; a; m; b; n/ =
(

n

b − a

)s

H.X; a; m; b/n−1; (17)

where

H.X; a; m; b/ =

r∏
i=1

(X.i/ − a/
s∏

i=r+1
.b − X.i//

.m − a/r.b − m/s−r
; (18)

X.0/ ≡ a; X.s+1/ ≡ b and r is implicitly defined by X.r/ � m < X.r+1/. From the structure of
equation (17) it follows that the two-parameter MLE procedure maximizing equation (17) as a
function of m and n (with a and b fixed) is a two-stage optimization problem, namely we may
first determine m̂ at which equation (18) attains its maximum as a function of m. Next, utilizing
m̂, we may calculate n̂ maximizing L.X; a; m̂; b; n) (see equation (17)) as a function of n. Fig. 4
displays equation (18) as a function of m for the original data in Table 1 with fixed a = 2 and
b = 12. (We are indebted to the referee for providing a draft of Fig. 4.)

van Dorp and Kotz (2001) proved that equation (18) attains its maximum, for fixed a and b,
at one of the order statistics (X.1/; : : :; X.s/). Specifically,

m̂.a; b/ = X.r̂.a;b// (19)
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Fig. 4. Graph of H (X; a, m, b) (see equation (18)) for the original data in Table 1 with fixed a = 2 and b = 12

where

r̂.a; b/ = arg max
r∈{1; : : :; s}

{M.a; b; r/}; (20)

and

M.a; b; r/ =
r−1∏
i=1

X.i/ − a

X.r/ − a

s∏
i=r+1

b − X.i/

b − X.r/
: (21)

(For notational convenience the arguments a and b will occasionally be suppressed in r̂.a;b/.)
Next, utilizing H{X; a; m̂.a; b/; b} = M{a; b; r̂.a; b/}; the maximum likelihood estimator of
n, n̂.a; b/ say, maximizing equation (17) together with the maximum likelihood estimator of
m; m̂.a; b/ (see equation (19)), is

n̂.a; b/ = − s

log[M{a; b; r̂.a; b/}]
: (22)

van Dorp and Kotz (2002) applied the two-parameter MLE procedure above (with fixed a

and b) to estimate uncertainty in 294 observed monthly differences of interest data on 30-year
Treasury bonds over the period 1977–2001. The procedure for m̂.a; b/ (see equation (19)) with
fixed a and b is almost identical with the MLE procedure for a one-parameter triang.0; m; 1/

distribution discussed in Johnson and Kotz (1999). The standardized data in Table 1 coincide
with the example in Johnson and Kotz (1999) and for comparison we demonstrate the procedure
using the latter example. Consider the matrix C = .ci;r/ in Table 2, where

ci;r =




X.i/ − a

X.r/ − a
i < r;

b − X.i/

b − X.r/
i � r

is calculated utilizing the original data in Table 1 with a = 2 and b = 12. The last row in Table 2
contains products of the matrix elements in the rth column which are equal to the values of
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Table 2. Example of MLE for TSP.a; m; b; n/ with fixed a and b†

i X.i/ Estimates for the following values of r and X.r/:

r
1 2 3 4 5 6 7 8

X.r/

3.00 4.50 5.00 6.00 6.50 8.00 9.50 10.00

1 3.00 1.00000 0.40000 0.33333 0.25000 0.22222 0.16667 0.13333 0.12500
2 4.50 0.83333 1.00000 0.83333 0.62500 0.55556 0.41667 0.33333 0.31250
3 5.00 0.77778 0.93333 1.00000 0.75000 0.66667 0.50000 0.40000 0.37500
4 6.00 0.66667 0.80000 0.85714 1.00000 0.88889 0.66667 0.53333 0.50000
5 6.50 0.61111 0.73333 0.78571 0.91667 1.00000 0.75000 0.60000 0.56250
6 8.00 0.44444 0.53333 0.57143 0.66667 0.72727 1.00000 0.80000 0.75000
7 9.50 0.27778 0.33333 0.35714 0.41667 0.45455 0.62500 1.00000 0.93750
8 10.00 0.22222 0.26667 0.28571 0.33333 0.36364 0.50000 0.80000 1.00000

M.a;b;r/ 0.00725 0.01038 0.01091 0.00995 0.00879 0.00543 0.00364 0.00290

†The values in Johnson and Kotz (1999) corresponding to the last three entries in the last row contain the follow-
ing typographical errors: 0.00547 should read 0.00543, 0.00137 should replace 0.00364 and 0.00029 should be
0.00290.

M.a; b; r/ (see equation (21)). It follows immediately that

r̂.2; 12/ = 3;

M̂ .2; 12; r̂/ = 0:01091;

m̂.2; 12/ = X.3/ = 5:00;

n̂.2; 12/ = −8

log{M̂ .2; 12; r̂/} = 1:77060:




(23)

Compare these values with the global maximum of H.X; a; m; b/ depicted in Fig. 4 attained at
X.3/. Note that n̂.2; 12/ < 2, the value of n for which a TSP.a; m; b; n/ distribution reduces to
a triang.a; m; b/ distribution. This illustrates the added flexibility of the two-parameter MLE
procedure in our case. Finally, the value of n̂.2; 12/ < 2 is consistent with the moment estimates
in Section 4 (see equation (16)).

Before considering the MLE procedure for the four-parameter TSP.a; m; b; n/ distribution,
it is helpful to discuss the MLE procedure for the three-parameter triang.a; m; b/ distribution
which, to the best of our knowledge, has not been tackled before.

6. Maximum likelihood estimation procedure for three-parameter triangular
distribution

A TSP.a; m; b; 2/ distribution reduces to a triang.a; m; b/ distribution. Thus, analogously to
Section 5 for given values of a < X.1/ and b > X.s/ of a triang.a; m; b/ variable X, we have

max
a<m<b

{L.X; a; m; b; 2/} =
(

2
b − a

)s

M{a; b; r̂.a; b/}; (24)
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where L.X; a; m; b; 2), M.a; b; r/ and r̂.a; b/ are given by equations (17), (21) and (20) respec-
tively. It thus follows with equation (24) that

max
S.a;m;b/

[
log{L.X; a; m; b/}] = max

a<X.1/; b>X.s/

{s log.2/ + G.a; b/} ; (25)

where S.a; m; b/ = {.a; m; b/|a < X.1/; b > X.s/; a < m < b} and

G.a; b/ = log[M{a; b; r̂.a; b/}] − s log.b − a/: (26)

Note that the function G.a; b/ is defined for values of a and b such that a < X.1/ and b > X.s/.
Fig. 5 shows the form of the function G.a; b/ given by equation (26) for the original data in

Table 1. G.a; b/ is continuous, but partial derivatives with respect to a or b may not be defined at
a finite number of points (specifically s−1) since r̂.a; b/ is given by equation (20). The following
properties can be derived for r̂.a; b/ (see equation (20)) as a function of b, keeping a < X.1/

fixed:

(a) r̂.a; b/ is decreasing in b;
(b) limb↓X.s/

{r̂.a; b/} = s;
(c) limb→∞{r̂.a; b/} = 1;
(d) r̂.a; b/ has s − 1 discontinuities at

fb.a; r/ = X.r+1/ − X.r/ s−r
√{.X.r/ − a/=.X.r+1/ − a/}r

1 − s−r
√{.X.r/ − a/=.X.r+1/ − a/}r ; r ∈ {1; : : :; s − 1}: (27)

Similar properties can be derived for r̂.a; b/ as a function of a, keeping b > X.s/ fixed. Fig. 6
gives the form of the function r̂.a; b/ for the original data in Table 1. The function r̂.a; b/ may
be viewed as a bivariate step function or a winding staircase function, which could serve as a
promising concept for studying non-differentiable bivariate distributions.

Fig. 5. Function G(a; b) given by equation (26) for the original data in Table 1
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Fig. 6. Function r̂ (a,b) given by equation (20) for the original data in Table 1

Barring the points of discontinuity of the function r̂.a; b/, the function G.a; b/ is differentiable
with respect to a and b. From equation (26) we obtain

@

@a
G.a; b/ = @M{a; b; r̂.a; b/}=@a

M{a; b; r̂.a; b/} + s

b − a
; (28)

@

@b
G.a; b/ = @M{a; b; r̂.a; b/}=@b

M{a; b; r̂.a; b/} − s

b − a
; (29)

where

@

@a
M{a; b; r̂.a; b/} = M{a; b; r̂.a; b/}

r̂−1∑
j=1

X.j/ − X.r̂/

.X.r̂/ − a/.X.j/ − a/
< 0 (30)

and

@

@b
M{a; b; r̂.a; b/} = M{a; b; r̂.a; b/}

s∑
j=r̂+1

X.j/ − X.r̂/

.b − X.r̂//.b − X.j//
> 0: (31)

A routine BSearch has been developed utilizing equations (27), (29) and (31) to determine
b̂.a/ for fixed a, where

b̂.a/ = arg max
b>X.s/

{G.a; b/}: (32)

This routine follows a bisection approach (see, for example Press et al. (1989)) and is described
in Appendix B. With BSearch to determine b̂.a/ for fixed a, a routine ABSearch determines
â and b̂.â/ such that

â = arg max
a<X.1/

[G{a; b̂.a/}]:
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The latter routine utilizes equations (28) and (30), also follows a bisection approach and is
described in Appendix B as well. The routine ABSearch evaluates equation (25) by successively
utilizing BSearch and yields maximum likelihood estimators

â; b̂ = b̂.â/; m̂.â; b̂/ = X.r̂.â;b̂//;

where b̂.·/ and r̂.a; b/ are given by equations (32) and (20) respectively. For the original data in
Table 1 ABSearch calculates the following maximum likelihood estimates:

â = 2:0762;
b̂ = 11:9393;

m̂.â; b̂/ = 5:00000:


 (33)

Note that â < X.1/ = 3:0 and b̂ > X.s/ = 10:00. Observe that m̂.â; b̂/ in equation (33) for a
triang.a; m; b/ distribution coincides with the maximum likelihood estimator m̂.2; 12/ in equa-
tion (23) for the two-parameter TSP.2; m; 12; n/ distribution with fixed a = 2 and b = 12.

7. Maximum likelihood estimation procedure for four-parameter two-sided
power distribution

Only minor modifications are needed in the procedure for the three-parameter triang.a; m; b/ dis-
tribution established above to derive the MLE procedure for the four-parameter TSP.a; m; b; n/

distribution. Analogously to Section 5, it follows that, for given values of a < X.1/ and b > X.s/

of a TSP.a; m; b; n/ variable X, we have

max
n>0;a<m<b

{L.X; a; m; b; n/} = max
n>0

(
n

b − a

)s [
M{a; b; r̂.a; b/}]n−1

; (34)

where, as above, L.X; a; m; b; n/; M.a; b; r/ and r̂.a; b/ are given by equations (17), (21) and (20)
respectively. The global maximum in equation (34) is attained at

n̂.a; b/ = − s

log[M{a; b; r̂.a; b/}]
(35)

for given values of a and b (see equation (22)). It thus follows from equations (34) and (35) that

max
S.a;m;b;n/

[
log{L.X; a; m; b; n/}] = max

a<X.1/;b>X.s/

{G.a; b/} ; (36)

where S.a; m; b; n/ = {.a; m; b; n/| a < X.1/; b > X.s/; a < m < b; n > 0} and

G.a; b/ = s

[
log

{
n̂.a; b/

b − a

}
− n̂.a; b/ − 1

n̂.a; b/

]
: (37)

We are using the same notation for equation (37) as in equation (26) since both functions play
a similar role in the MLE routine ABSearch described in Appendix B. Barring the points of
discontinuity of r̂.a; b/ (see equation (20)), it follows that

@

@a
G.a; b/ = @M.a; b/=@a

M.a; b/

[ −s

log{M.a; b/} − 1
]

+ s

b − a
; (38)

@

@b
G.a; b/ = @M.a; b/=@b

M.a; b/

[ −s

log{M.a; b/} − 1
]

− s

.b − a/
: (39)
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where @M.a; b/=@a and @M.a; b/=@b are given by equations (30) and (31) respectively. The routine
to evaluate equation (36) is analogous to the routineABSearchpresented in the previous section
to evaluate equation (25) and is described in Appendix B by making appropriate changes with
respect to G.a; b/, @G.a; b/=@a and @G.a; b/=@b.

Fig. 7 provides the form of the function G.a; b/ given by equation (37) for the original data
in Table 1. The peak in Fig. 7 coincides with the point .a; b/ = .X.1/; X.s// and for these data
ABSearch calculates the following maximum likelihood estimates:

â = 3:0000;
b̂ = 10:0000;

m̂.â; b̂/ = 10:0000;
n̂.â; b̂/ = 0:2632:




(40)

In equations (40), m̂.â; b̂/ = X.s/; which is perhaps a surprising result comparing the numerical
values for m̂.· ; ·/ in equations (23) and (33). This discrepancy may be attributed to using a small
sample size of 8 to estimate four parameters.

To test the four-parameter MLE procedure for a larger sample, consider the sample of size
50 in Table 3 from a TSP.2; 7; 12; 2:5/ distribution. Fig. 8 provides the form of the function
G.a; b/ given by equation (37) for the data in Table 3.

For these values the routine ABSearch in Appendix B calculates the following maximum
likelihood estimates:

â = 2:7694;
b̂ = 11:3742;

m̂.â; b̂/ = 7:100;
n̂.â; b̂/ = 2:5630:




(41)

Fig. 7. Function G(a,b) given by equation (37) for the original data in Table 1
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Table 3. Ordered sample (of size 50) from
a TSP(2,7,12, 2.5) distribution

3.469 5.820 6.846 7.323 8.615
4.366 6.040 6.871 7.469 8.893
4.639 6.210 6.964 7.541 8.991
4.770 6.422 7.001 7.687 9.035
5.025 6.448 7.064 7.714 9.265
5.040 6.515 7.100 7.720 9.280
5.132 6.537 7.129 7.743 9.340
5.317 6.681 7.204 8.076 9.350
5.326 6.721 7.270 8.347 9.651
5.625 6.743 7.300 8.459 10.662

Fig. 8. Function G(a,b) given by equation (37) for the data in Table 3

Note that â < X.1/ = 3:469 and b̂ > X.s/ = 10:662: Compare this with the estimators of these
two parameters for a smaller sample of size 8 given in equation (33). In the present case the
estimators â and b̂ are somewhat closer to the corresponding extreme order statistics. In addition,
it may be observed that the maximum likelihood estimates in equation (41) are quite consistent
with the parameters of the TSP.2; 7; 12; 2:5/ distribution from which the sample in Table 3 was
generated.

8. Concluding remarks

A new four-parameter family of TSP.a; m; b; n/ distributions was proposed which has some
attractive properties, especially those related to the meaning of the parameters involved and the
structure of its expected value as a function of its parameters, as well as an instructive and algo-
rithmically quite straightforward new MLE procedure. The family of TSP distributions naturally
extends the three-parameter triangular distributions. The new four-parameter TSP.a; m; b; n/

distribution seems to be a useful and a more flexible competitor to the four-parameter beta dis-
tribution than the triangular distribution, specifically in, but not limited to, PERT applications
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emphasized in this paper. It is our hope that the introduction of the proposed distribution into
statistical practice will assist in the basic goals of applied statistical work.
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Appendix A: Cardano’s method

We shall briefly discuss a version of Cardano’s method for solving the cubic equation

cn3 + dn2 + en + f = 0: (42)

After dividing equation (42) by c and introducing

y = n + d

3c
(43)

we have y3 + 3py + 2q = 0; where

3p = 3ce − d2

3c2
;

2q = 2d3

27c3
− de

3c2
+ f

c
:

(44)

Table 4 summarizes the solution method for solving equation (42).

Appendix B: Maximum likelihood estimation procedure in pseudo-Pascal

The numerical routines below in pseudo-Pascal require separate algorithms to evaluate M.ak; bk; rk/ (see
equation (21)) G.ak; bk; rk/ (see equation (26)) for triang.a; m; b/ MLE or G.ak; bk; rk/ (see equation (37))
for TSP.a; m; b; n/ MLE, @G.ak; bk; rk/=@a (see equation (28)) for triang.a; m; b/ MLE or @G.ak; bk; rk/=@a
(see equation (38)) for TSP.a; m; b; n/ MLE, @G.ak; bk; rk/=@b (see equation (29)) triang.a; m; b/ MLE or
@G.ak; bk; rk/=@b (see equation (39)) for TSP.a; m; b; n/ MLE, @M.ak; bk; rk/=@a (see equation (30)) and
finally @M.ak; bk; rk/=@b (see equation (31)). The output parameters of routines are indicated in bold italics.

B.1. BSearch
Let G.a; b/ be the function defined by equation (26) (or equation (37)). For any given a the set of discon-
tinuities in b of the function G.a; b/ is a null set and we could utilize equation (29) (or equation (39)) and

Table 4. Version of Cardano’s method for solving a cubic equation

r = sgn(q)
√|p|

p < 0 p > 0
q2 + p3 � 0 q2 + p3 > 0

cos.ϕ/ = q=r3 cosh.ϕ/ = q=r3 sinh.ϕ/ = q=r3

y1 = −2r cos.ϕ=3/ y1 = −2r cosh.ϕ=3/ y1 = −2r sinh.ϕ=3/
y2 = 2r cos.60◦ − ϕ=3/ y2 = r cosh.ϕ=3/ + i

√
3r sinh.ϕ=3/ y2 = r sinh.ϕ=3/ + i

√
3r cosh.ϕ=3/

y2 = 2r cos.60◦ + ϕ=3/ y3 = r cosh.ϕ=3/ − i
√

3r sinh.ϕ=3/ y3 = r sinh.ϕ=3/ − i
√

3r cosh.ϕ=3/
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equation (31) to determine an ascending search direction with respect to G.a; b/ for b. Define

B.a/ = max
r∈{1; : : :; s−1}

{fb.a; r/} ; (45)

where fb.a; r/ is given by equation (27). From the properties of r̂.a; b/ (see equation (20)) mentioned in
Section 6 it follows that for b > B.a/

G.a; b/ = log
(

s∏
i=2

b − X.i/

b − X.1/

)
− s log.b − a/

and

@

@a
G.a; b/ = s

b − a
> 0: (46)

Hence, from equation (46) it follows that necessary conditions for a local maximum of G.a; b/ with a fixed
cannot be satisfied for b > B.a/. Thus, BSearch maximizing G.a; b/ as a function of b with a fixed may
be confined to the interval .X.s/; B.a// only. The routine BSearch below evaluates equation (32), follows
a bisection approach (see, for example, Press et al. (1989)) and requires a separate algorithm to evaluate
equation (45).

B.1.1. BSearch(ak; X; b̂k; Mk; rk)

Step1: lbk = X.s/:

Step2: ub
k = B.ak/; b̂k = .lbk + ub

k/=2; Mk = M.ak; bk; rk/; Gk = @G.ak; bk; Mk; rk/=@b:

Step3: if abs.Gk/ � δ then
if Gk < 0 then ub

k = b̂k

else lbk = b̂k

else stop:

Step 4: if .ub
k − lbk/ � δ go to step 2

else stop:

B.2. ABSearch
Let G.a; b/ be the function defined by equation (26) (or equation (37)). For any given b the set of dis-
continuities in a of the function G.a; b/ is a null set and we could utilize equation (28) (or equation (38))
and equation (30) to determine an ascending search direction with respect to G.a; b/ for a. The routine
ABSearch starts by establishing an interval [A; X.1/] such that

@

@a
G

{
A; b̂.A/

}
> 0: (47)

To determine A in equation (47) we may utilize equation (28) (or equation (38)) and equation (30). From

lim
a→−∞

{r̂.a; b/} = s;

where r̂.a; b/ is given by equation (20), it follows that for any given b there is a sufficiently small a such that

G.a; b/ = log
(

s−1∏
i=1

X.i/ − a

X.s/ − a

)
− s log.b − a/

and

@

@a
G.a; b/ =

s−1∑
i=1

X.i/ − X.s/

.X.i/ − a/.X.s/ − a/
+ s

b − a
: (48)

From equation (48) it follows that for any given b there is an a sufficiently small such that @G.a; b/=@a > 0.
It is conjectured that an A given by equation (47) does exist. A numerical analysis supports this conjecture.
Having established [A; X.1/]; ABSearch follows a bisection approach (see, for example Press et al. (1989))
and evaluates equation (25) (or equation (36)) by successively utilizing the routine BSearch.
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B.2.1. ABSearch(X, âk, b̂k, mk, nk)

Step1: ua
k = X.1/; lak = X.1/ − .X.s/ − X.1//:

Step2: BSearch.lak; X; b̂k; Mk; rk/; Gk = @G.lak; b̂k; Mk; rk/=@a:

Step3: if Gk < 0 then
ua

k = lak; lak = lak − .X.s/ − X.1//

go to step 2:

Step4: âk = .lak + ua
k/=2; BSearch.âk; X; bk; Mk; rk/; Gk = @G.âk; b̂k; Mk; rk/=@a:

Step5: if abs.Gk/ � δ then
if Gk < 0 then ua

k = âk

else lak = âk

else go to step 7:

Step6: if .ua
k − lak/ � δ go to step 4

else go to step 7:

Step7: mk = X.rk/:

Step8: nk = −s=log.Mk/

(Step 8 should be omitted for triang.a; m; b/ MLE.)
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