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A Link between Two-Sided Power and Asymmetric Laplace Distributions:

with Applications to Mean and Variance Approximations
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ABSTRACT: Motivated by our investigations of refinements of the Project Evaluation and Review

Technique (PERT), we have developed a reparameterization of the asymmetric Laplace distribution and

found it to be an useful tool for extending and improving various three-point approximations of

continuous distributions (pioneered by Pearson and Tukey, 1965) by specifying the values of two

quantiles and the mode.
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1. INTRODUCTION

The classical representation of the three-parameter asymmetric Laplace distribution is given by the

density
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with 0 (a scale parameter), the mode  and  (see, e.g., Hinkley and Revankar, 1977,5 ‘ , 7 −  !

Kozubowski and Podgórski, 2000, and Kotz et al., 2001)  An alternative parameterization is in terms ofÞ

the parameters  and  where. 5ß 7
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(See Kotz et al., 2001, for details.) Note that in both parameterizations and  the parameters  and Ð"Ñ Ð#Ñ , .

have no apparent interpretation.

Another recently discovered three-parameter reparameterization (see Kotz and van Dorp, 2004)

involves the mode  and two quantiles  and  such that7 + ,: <

!  :  "ß !  <  "ß +  7  , Ð$Ñ: < 

and the ratio
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that follows from . Note that is the relative distance of the mode  to the lower quantile  over theÐ$Ñ 7 +$ :

range from to the upper quantile  and thus . We have for the pdf of the reparameterized+ , − Ð!ß "Ñ: < $

asymmetric Laplace distribution

0 ÐBl+ ß7ß , Ñ œ Ð&Ñ
;Ð∞Ñ IB:  Ð7  BÑ B Ÿ 7

Ö"  ;Ð∞Ñ× IB:  ÐB 7Ñ B  7
\ : <

Ú
ÛÜ

š ›
š ›

T T

U U ,  

where the coefficients  and  areT U

T Uœ œ Ð'Ñ
P91 P91

7  + , 7

š › š ›;Ð∞Ñ ";Ð∞Ñ
: "<

: <
 and 

and the constant  in is the unique solution of the equation;Ð∞Ñ Ð&Ñ

;Ð∞Ñ ;Ð∞Ñ "  ;Ð∞Ñ "  ;Ð∞Ñ
P91 œ P91 Ð(Ñ

: "  "  <$ $
š › š ›.

From  it follows that  is the probability mass to the left of the mode . The motivation for theÐ&Ñ ;Ð∞Ñ 7

designation  of this probability mass will be given in Section 3. Reparameterization is found to;Ð∞Ñ Ð&Ñ

be useful for extending three-point approximations of arbitrary continuous distributions of the Pearson-

Tukey (1965) type. In this note, we shall discuss the latter topic in Section 4 and present a link between
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Ð&Ñ Ð)Ñ $ and Two-Sided Power distributions  in Section . In Section 2 we provide some background

related to PERT (see, e.g., Winston, 1993) that led to our results in Sections 3 and 4.

2. A PERT MOTIVATION FOR THE TSP DISTRIBUTION

Consider a r.v. X with the cdf
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The four parameters  and   in are the lower bound, upper bound, the mode and shape+ß ,ß7 8  ! Ð)Ñ

parameters, respectively.  The cdf is a Two-Sided Power distribution  (van Dorp and Kotz, 2002) andÐ)Ñ

is denoted by . For  ( ) in we obtain the triangular (uniform) distribution.XWTÐ+ß7ß ,ß 8Ñ 8 œ # 8 œ " Ð)Ñ

In the context of PERT, Malcolm  (1959) utilized lower and upper bound estimates  ,  and aet al. + ,s s

most likely estimate  to fit a four-parameter distribution given by the pdf7 F/>+Ð+ß ,ß ß Ñs α "
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by equating   and , setting+ œ + , œ ,s s
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and using the method of moments technique to solve for the remaining beta parameters  and .α "

Application of ( ) by Malcolm et al. (1959) for an  of  and  resulted in a vigorous"! indirect elicitation α "

discussion regarding their appropriateness that has been ongoing by now for some 40 years (see, e.g.,

Clark (1962), Grubbs (1962), Moder and Rodgers (1968), Keefer and Verdini (1993), Kamburowski

(1997), Lau  (1998), among others). Kamburowski (1997) emphasizes that: "et al. Despite the criticisms and the

abundance of new estimates, the PERT mean and variance (10) can be found in almost every textbook on OR/MS and

P/OM, and are employed in much project management software."

Perhaps to resolve the "controversy" surrounding the use of estimators , D. Johnson (1997) (andÐ"!Ñ

possibly also others before him) have suggested that the three-parameter triangular distribution (  in8 œ #
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the cdf  be used as an alternative to the beta distribution , since the parameters and  in ( ) are in( )) ) +ß7 , )

one-to-one correspondence with the estimates ,  and . This results in an intuitive appeal of the+ 7 ,s s s

triangular distribution for practical applications (Williams, 1992). Extending Johnson's approach, Van

Dorp and Kotz (2002) and Kotz and Van Dorp (2004) suggest a more flexible four-parameter

XWTÐ+ß7ß ,ß 8Ñ Ð)Ñ distribution  as a proxy for the beta distribution, in particular in problems involving

an assessment of risk and uncertainty (similar to PERT).

During the last few decades it has been verified that  of extreme values orassessment + ,s s and  

quantiles in their vicinity, such as the  and 0.  percentiles (Alpert and Raiffa, 1982), is quite often!Þ!" **

beyond one's accumulated experience. Keefer and Verdini (1993) observed that the  and !Þ"! !Þ*!

quantiles have been found to be more reliable than the extreme  and  percentiles (see Selvidge,!Þ!" !Þ**

1980) or even the "intermediate"  and  values (Davidson and Cooper, 1980). Our investigations!Þ!& !Þ*&

(Kotz and Van Dorp, 2004) to solve for the lower and upper bounds  and  of a TSP distribution + , Ð)Ñ

given quantile estimates and a most likely estimate, led us to the results presented in Sections 3 and 4.

3. A LINK BETWEEN TSP AND ASYMMETRIC LAPLACE DISTRIBUTIONS

 Let  and suppose a lower percentile  (i.e. ) an upper\ µ XWTÐ+ß7ß ,ß 8Ñ + T<Ð\ Ÿ + Ñ œ : ß: :

percentile  and the most likely value  of  are pre-specified in the manner that, 7 \<

+  +  7  ,  , Ð""Ñ: < .

To uniquely solve for the lower and uppers bounds  and   of given the shape parameter  of a TSP+ , Ð)Ñ 8

distribution, the standardized quantity (appearing in the cdf )Ð)Ñ

; œ Ð7  +ÑÎÐ,  +Ñ Ð"#Ñ

is employed. The quantity  (whose value is 1) represents the relative distance of the mode  to the; Ÿ 7

lower bound  with respect to the support . It follows immediately from the cdf  that+ Ò+ß ,Ó Ð)Ñ

T<Ð\ Ÿ 7Ñ œ œ ; Ð"$Ñ
7  +

,  +
,

and thus  equals also the probability mass to the left of the mode . From  and  we have; 7 Ð""Ñ Ð"$Ñ
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From  and the definition of  it follows thatÐ)Ñ +:

+ œ +  Ð7  +Ñ :Î; Ð"&Ñ:
È8 .

Solving the equation for  and recalling the condition , we obtainÐ"&Ñ + Ð""Ñ

+ ´ +Ð;l8Ñ œ  œ + Þ Ð"'Ñ
+ 7 :Î; +  + :Î;

"  :Î; "  :Î;
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(We use here the notation  instead of to emphasize that the lower bound  is a function of given+Ð;l8Ñ + + ;

the shape parameter ,  the -the percentile  and the most likely value  are specified).8 : + 7provided :

Analogously to , we have for  (using the notation  in place of )Ð"'Ñ 7  , ,Ð;l8Ñ ,<

, ´ ,Ð;l8Ñ œ  œ , Þ Ð"(Ñ
,  7 ,  ,
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Substituting and  as given by  and  into , we arrive at the following basic+Ð;l8Ñ ,Ð;l8Ñ Ð"'Ñ Ð"(Ñ Ð"$Ñ

equation

1Ð;l8Ñ œ ; Ð")Ñ

where

1Ð;l8Ñ ´ œ Þ Ð"*Ñ
7  +Ð;l8Ñ

,Ð;l8Ñ  +Ð;l8Ñ

Ð7  + Ñ " 
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Equation Ð")Ñ defines a continuous implicit function  with domain , where is the;Ð8Ñ 8  ! ;Ð8Ñ

probability mass to the left of the mode  for a  of the shape parameter  Compare with .7 8Þ Ð"#Ñgiven value

(Detailed straightforward calculations leading to  are available from the authors upon request).Ð"*Ñ

Next, one can calculate the lower bound  [ ] and the upper bound  [ ] of+Ö;Ð8Ñl8× Ð"'Ñ ,Ö;Ð8Ñl8× Ð"(Ñ

the TSP distribution with the cdf
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with pre-specified percentiles  and the mode  satisfying+ ß , 7: <

+Ö;Ð8Ñl8×  +  7  ,  ,Ö;Ð8Ñl8× Ð#"Ñ: < . 

We shall separately consider 4 cases: A)8 Æ !ß 8 œ "ß 8 œ #B) C) , D)8 Ä ∞Þ

Case A: Utilizing the continuity of ,  and  as a function of , it easily;Ð8Ñ +Ö;Ð8Ñl8× ,Ö;Ð8Ñl8× 8

follows that the cdf Ð#!Ñ converges to the Bernoulli distribution with the probability mass

;Ð!Ñ œ Ð##Ñ
7  +

,  +
:

< :

at  and the probability mass  at  as .+ Ö"  ;Ð!Ñ× , 8 Æ !: <

Case B: For , the cdf  is simplified to a uniform distribution with parameters8 œ " Ð#!Ñ

+ œ , œ Ð#$Ñ
<+  :, Ð"  :Ñ,  Ð"  <Ñ+

<  : Ð<  :Ñ
: < < :, 

and

;Ð"Ñ œ Ð#%Ñ
:, Ð<  :Ñ7  <+

,  +
< ; :

< :

+
.

Case C: As it was already mentioned the cdf  simplifies to a triangular distribution for . TheÐ#!Ñ 8 œ #

probability mass  in Case C has to be solved  from - .;Ð#Ñ Ð")Ñ Ð"*Ñnumerically

Case D: Finally as , the cdf  converges to the following cdf with parameters and :8 Ä ∞ Ð#!Ñ + ß7 ,: <

J ÐBl+ ß7ß , Ñ œ Ð#&Ñ
;Ð∞Ñ B Ÿ 7

"  Ö"  ;Ð∞Ñ× B  7
\ : <
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Here,  is the probability mass to the left of the mode  and the unique solution in  to the;Ð∞Ñ 7 Ò:ß <Ó

equation

2Ð;Ñ œ ; Ð#'Ñ,

where
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In the function  and the ratio  are given by and , respectively. The probability massÐ#(Ñ 1Ð;l8Ñ Ð"*Ñ Ð%Ñ$

;Ð∞Ñ Ð#'Ñ Ð#(Ñ Ð(Ñ may be solved from -  or equivalently from  utilizing a standard bisection method (see,

e.g., Press, et al.  1989) with the starting interval  From the cdf  we derive its pdf given by ß Ò:ß <ÓÞ Ð#&Ñ Ð&Ñß

Ð'Ñ Ð(Ñ and . This is a mode-upper-lower quantiles reparameterization of the asymmetric Laplace

distribution given by presented in the beginning of the introduction.Ð"Ñß

Summarizing, we have linked via the TSP family of distributions , the Bernoulli distribution withÐ)Ñ

probability mass [ ] at  and at , the uniform distribution with support  [ ],;Ð!Ñ Ð##Ñ + Ö"  ;Ð!Ñ× , Ò+ß ,Ó Ð#$Ñ: <

the triangular distribution (  in ) and the asymmetric Laplace distribution .8 œ # Ð#!Ñ Ð&Ñ

3.1 Moments of the reparameterized asymmetric Laplace distribution with pdf Ð&Ñ

Moments around zero of a random variable with cdf  and pdf  with the parametersÐ#&Ñ Ð&Ñ

+  7  ,: < are straightforwardly obtained to be

IÒ\ Ó œ B 0ÐBÑ.B œ ;Ð∞ÑPÐ5Ñ  Ö"  ;Ð∞Ñ×VÐ5Ñ Ð#)Ñ5 5

∞

∞(
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PÐ5Ñ œ B IB:  Ð7  BÑ .B œ Ð#*Ñ
Ð"Ñ 7 5x
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In particular, the mean value

IÒ\Ó œ A Ð+ 7Ñ 7A Ð, 7Ñ Ð$!Ñ " : # <

where "the weights" are given by

A œ  !ßA œ  ! Ð$"Ñ
;Ð∞Ñ "  ;Ð∞Ñ

P8 P8
" #

;Ð∞Ñ ";Ð∞Ñ
: "<š › š › .

Similarly, somewhat more tedious  direct calculations show that the varianceß
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Z +<Ò\Ó œ ? ÐA Ñ Ð7  + Ñ  ? ÐA Ñ Ð, 7Ñ  #A A Ð7  + ÑÐ, 7Ñ Ð$#Ñ" " : # # < " # : <
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where "the weights"  (  are as above and the additional two coefficients are givenA 3 œ "ß #Ñ ? Ð3 œ "ß #Ñ3 3

by

? œ  !ß ? œ  ! Ð$$Ñ
"  Ö"  ;Ð∞Ñ× "  ;Ð∞Ñ

;Ð∞Ñ "  ;Ð∞Ñ
" # .

Note that expression for  involves a mixed term containing the product of deviationsÐ$#Ñ Z +<Ò\Ó

Ð7  + Ñ Ð, 7ÑÞ < œ "  : 7 œ Ð+  , ÑÎ#: : ": and  In particular, for the (symmetric) case where  and <

(the mode coinciding with the median ) we have

A œ A œ  Ö#P91Ð#:Ñ× Ð$%Ñ" #
"

and from the general expression  for  we arrive at  (independently of the value of Ð$!Ñ IÒ\Ó IÒ\Ó œ 7 :ÑÞ

Moreover, one obtains that in this case

Z +<Ò\Ó œ Ð$&Ñ
,  +

#P91Ð#:Ñ
š ": :

#È ›
which is reminiscent of the formula for the variance of a uniform  distribution in which caseÒ+ß ,Ó

Z +<Ò\Ó œ Þ Ð$'Ñ
,  +

"#
š È ›#

Evidently,  in  as  and vanishes as .Z +<Ò\Ó Ä ∞ Ð$&Ñ : Å : Æ !"
#

Similarly to the above, we set in the asymmetric case  and here ,"  < œ : 7 œ Ð,  + Ñ  +": : :$

$ − Ò!ß "Ó Ð$!Ñ IÒ\Ó. From the expression  for  we now have

IÒ\Ó ´ A +  Ð"  A  A Ñ7  A , œ +  ÐA ßA ß ÑÐ,  + Ñ Ð$(Ñ" : " # # ": : " # ": : V $

where

V $ $ $ÐA ß A ß Ñ œ Ð"  A Ñ  A Ð"  Ñ Ð$)Ñ" # " # .

Recalling  that  we rewrite  as< œ "  : Ð$"Ñ

A œ  ! A œ  ! Ð$*Ñ
;Ð∞Ñ "  ;Ð∞Ñ

P91Ö;Ð∞Ñ×  P91Ð:Ñ P91Ö"  ;Ð∞Ñ×  P91Ð:Ñ
" # and .
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(Note that for , we have  and  reduces to .) In a similar manner we$ œ ;Ð∞Ñ œ "  ;Ð∞Ñ œ IÒ\Ó 7" "
# #

obtain

Z +<Ò\Ó œ Ð%!Ñ
,  +

ÐA ßA ß ? ß ? ß Ñ
š ": :

" # " #

#

i $
›

where

Ö ÐA ßA ß ? ß ? ß Ñ× œ ? ÐA Ñ  ? ÐA Ñ Ð"  Ñ  #A A Ð"  Ñ Ð%"Ñi $ $ $ $ $" # " # " " # # " #
# # # # # .

Here are given by  and  by .  (Compare with expression  for the symmetric? ß ? Ð$$Ñ A ßA Ð$*Ñ Ð%!Ñ Ð$&Ñ" # " #

case corresponding to ). The factors  and  , which can be$ V $ i $œ ÐA ßA ß Ñ Ð$)Ñ ÐA ßA ß ? ß ? ß Ñ Ð%"Ñ"
# " # " # " #

interpreted as the mean relative distance and the variance skewness correction factors, respectively, are

plotted in Figs. 1A and 1B as a function of the relative distance  of the mode to the lower$ − Ò!ß "Ó

quantile  over the range  .+ Ò+ ß , Ó: : ":
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Figure 1. A: Mean relative distance as a function of  $ Ð%Ñ

B: Variance skewness correction factor as a function of  .$ Ð%Ñ

From Fig. 1A one observes that while the location of the mode  may change from  ( to 7 + œ !Ñ ,: ":$

( ), the mean value changes over % (from to ), % and % of the range  for$ œ " &' !Þ## !Þ() $' "* Ò+ ß , Ó: ":
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: œ !Þ!"ß : œ !Þ!& : œ !Þ"!and , respectively. Hence, a substantially smaller sensitivity in the mean

IÒ\Ó 7 + , is observed due to the relative locations of the mode , with respect to  and , as the tail: ":

probability  increases. Recalling once again that  is the mode relative distance it follows from Fig. 1A: $

that for   the mean  is larger (smaller) than the mode .$ $ Ð  Ñ IÒ\Ó 7" "
# #

Figure 1B plots the variance skewness correction factor . From Fig. 1B it followsi $ÐA ß A ß ? ß ? ß Ñ" # " #

that the maximum correction factor  values of  and  (and hence thei $ÐA ß A ß ? ß ? ß Ñ &Þ&$#ß $Þ#&' #Þ#(&" # " #

minimum variance) are attained at  (the symmetric case) for  and ,$ œ : œ !Þ!"ß : œ !Þ!& : œ !Þ"!"
#

respectively. The maximum variance (or the minimum correction factor) of an asymmetric Laplace

distribution is attained at  or .  Finally, note that similarly to the case$ $œ ! Ð7 œ + Ñ œ " Ð7 œ , Ñ: ":

of the mean here a  sensitivity in the variance  is observed  (with regard to theIÒ\Óß Z +<Ð\Ñsmaller

relative locations of the mode , with respect to  and ) when the tail probability  .7 + , :: ": increases

4. AN APPLICATION TO THREE-POINT APPROXIMATIONS

One of the earliest and widely used three-point approximation of a continuous distributions

representing a random variable  in applications, with the aim to produce accurate estimates of its mean\

and variance, is due to Pearson and Tukey (1965). Their approximation is given as:

IÒ\Ó œ !Þ")& +  B Ñ  B  !Þ")& ,  B Ñ œ Ð%#Ñ

!Þ")& +  !Þ'$! B  !Þ")& , ß

Z +<Ò\Ó œ
,  +

$Þ#&

 ( (

,

!Þ!& !Þ&! !Þ&! !Þ*& !Þ&!

!Þ!& !Þ&! !Þ*&

!Þ*& !Þ!&
#š ›

where  is the median of  We note that for the symmetric parameterization of the LaplaceB \Þ!Þ&!

distribution where  we obtain from  that: œ "  < œ !Þ!&ß 7 œ Ð+  , ÑÎ# œ B Ð$%Ñ: < !Þ&!

A œ A œ !Þ#"( !Þ")& Ð%#Ñ" #  instead of  as given in  the Pearson-Tukey approximation . The difference

can apparently be explained by the fact that the Pearson-Tukey method was designed to approximate the

mean for  symmetric and skewed distributions, not specifically the asymmetric Laplace (AL)both

distribution. Larger weights  are assigned to the Laplace tails since the LaplaceA œ A œ !Þ#"(" #

distribution is one of the "heavy-tails" cases (as compared to, e.g., the normal distribution). On the other

hand we have for : œ !Þ!&
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l #P91Ð#:Ñl œ $Þ#&'È  

in which agrees remarkably well with the Pearson-Tukey approximation factor of .Ð$&Ñ $Þ#&

Keefer and Bodily (1983) suggested the three-point  approximation with thediscrete distribution

outcomes  and  and the coefficients and  (interpreted as probabilities) in+ ß B , !Þ")&ß !Þ'$! !Þ")&: !Þ&! ":

Ð%#Ñ (and a corresponding variance approximation) and termed it the Extended Pearson-Tukey method,

popularized in Decision Analysis textbooks (see, e.g., Clemen and Reilly, 2001). Some other researchers

have suggested using the mode  rather than the median  The general form of these approximations7 B Þ!Þ&!

is

IÒ\Ó œ +   , Ð%$Ñ

Z +<Ð\Ñ œ Ð Ñ
,  +

1 1 . 1

9

" : # $ ":

": : #

 ,

,

where  is either  or the mode , (  sum to one and is a strictly positive constant. See. 1 1 1 9B 7 ß ß Ñ!Þ&! " # $

Table 1 for several specific formulas and references and note that in Table 1 the weights ,13ß 3 œ "ß #ß $

are strictly positive. (For the three empty cells of column ,  is calculated here as the variance of9 Z +<Ð\Ñ

an approximating three-point  with outcomes  and  by interpreting thediscrete distribution + ß7 ,: ":

weights  as probabilities). We shall reflect on the approximations in Table 1 using our results1 1 1" # $ß ß

derived in Section 3.

Table 1. Examples of three-point approximations of

 the mean and the variance utilizing appearing in the literature.

µ p π1 π2 π3 Φ
Pearson Tukey (1965) x0.50 0.05 0.185 0.630 0.185 3.25
Moder and Rogers (1968) m 0.05 1/6 2/3 1/6 3.20
Moder and Rogers (1968) m 0.10 1/6 2/3 1/6 2.70
Perry and Greig (1975) m 0.05 0.339 0.322 0.339
Megill (1977) x0.50 0.10 2/7 2/5 2/7
Davidson and Cooper (1980) m 0.10 1/4 1/2 1/4 2.65
Keefer and Bodily (1983) m 0.10 0.42 0.16 0.42
Kerzner (1992) m 0.01 1/6 2/3 1/6 6
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Since the mean  can be viewed as the center of gravity of the probability mass, a three pointIÒ\Ó

approximation of it using  should involve the distances between  and ,  and the tailÐ+ ß ß , Ñ + , ß: ": : ":. . .

probability  (in both tails) and the probability masses to the left and the right of  (as indicated in the: .

title of Pearson and Tukey,1965). Examining the approximations of  as given in Table 1, we noteIÒ\Ó

that all values  and  presented therein are equal. However, those expressions approximating 1 1" $ IÒ\Ó

that involve the mode  can be exact  in the  case, where it was verified in  for the7 Ð$%Ñonly symmetric

symmetric Laplace case  that indeed  and hence  (Compare  and . For three-A œ A œ Ð$!Ñ Ð%$ÑÑ" # " $1 1

point approximations of  involving the mode  in the  case, the coefficient  should beIÒ\Ó 7 asymmetric 1"

different from  since the probability mass to the left of the mode  does not equal that to its right.1$ 7

Moreover, all the methods of variance approximations presented in Table 1 do not take into account

the relative distance  , where as it was shown in Fig. 1B that the relative$ œ Ð7  + ÑÎÐ,  + Ñ: ": :

distance  affects the value of  (which we believe to be the case even when  is replaced by $ Z +<Ð\Ñ 7 B!Þ&!

and ). Hence, from  and  which together form an exact expression for theB Á Ð+  , ÑÎ# Ð%!Ñ Ð%"Ñ Ð!Þ&! : ":

variance of an asymmetric Laplace distribution in the  parameterization defined in Eq. ),Ð+ ß7ß , Ñ Ð&Ñ: ":

it would seem that the relative distance  ought to enter in the construction of a three-point approximating$

formula for the variance of skewed continuous distributions.

Finally, in the asymmetric Laplace case and  it follows from  that we may solve for< œ "  : Ð(Ñ

different values of the probability mass in to the left of the mode  for fixed , for increasing;Ð∞Ñ Ð(Ñ 7 $

values of the tail probability . Figure 2 plots the modal weight  in  calculated via : Ð"  A  A Ñ Ð$(Ñ Ð$*Ñ" #

as a function of the tail probability  for ,  and . It follows from Figure 2 that,: œ !Þ!& œ !Þ#& œ !Þ&$ $ $

for example, for all values of  the modal weight is . This is also true for:   !Þ#! Ð"  A  A Ñ" # negative

the  case  when the mode  equals the median. Apparently, this has not beensymmetric Ð œ !Þ&Ñ 7$

previously noticed since only values of  were considered in the literature (see Table 1). The: Ÿ !Þ"!

analysis in Figure 2 is not inconsistent with the original Pearson and Tukey (1965) method, who did not

interpret the coefficients in the first expression of  as probabilities, but calls in question thisÐ%#Ñ

interpretation in various other approximations presented in Table 1.
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Consequently it would seem that for skewed asymmetric distributions the three-point approximations

of and in Table 1 may not be adequate and more refined approaches are desirableIÒ\Ó Z +<Ð\Ñ

involving the relative distance  (see and  for  and and  for ).$ Ð$(Ñ Ð$)Ñ IÒ\Ó Ð%!Ñ Ð%"Ñ Z +<Ð\Ñ
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Figure 2. Modal weight  in  as a function of"  A  A Ð$(Ñ" #

the tail probability  for different values of  .: Ð%Ñ$
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