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Abstract. In this paper we propose and analyze a bounded density function with a jump

discontinuity at a threshold. Its properties are presented and a maximum likelihood estimation

(MLE) procedure for the threshold location and jump size is developed. The distribution seems

be appropriate in the context of financial engineering, production analysis, standard auction

models and the equilibrium job search problem. An example of the MLE procedure is given

utilizing an i.i.d. sample of standardized log differences of bi-monthly US Certificate Deposit

interest rates for the period from 1966 - 2002. The corresponding time series was constructed

using an Auto-Regressive Conditional Heteroscedastic (ARCH) model.
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1. Introduction

The concept of symmetry permeates a multitude of phenomena in the physical world and plays

an important role in numerous human activities, in particular in Arts and Sciences. The classical

book by H. Weyl (1952) delineates numerous situations which involve symmetry. In architecture
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the ancient Greeks were the promoters of symmetry in their classical structures and monuments.

In modern arts, the Dutch artist M.C. Escher (1889 - 1972) achieved striking effects in his work

exploring mathematical symmetry (see, e.g., Escher 1989). The basic symmetry operations:

reflection, rotation, double reflection and translation constitute the symmetry group for an object

or a figure. It has direct applications in crystallography, amongst other fields. The distinction of

symmetries with respect to a given point (center of symmetry), a line (axis of symmetry) and a

plane (plane of symmetry) are also important for applications. Human beings and many animals

have symmetric proportions. A line from a human's nose to the ground would divide him/her into

equal symmetric parts - manifesting bilateral symmetry . The symmetry of a wheel generates

radial symmetry, which is present in many statistical distributions including the basic

multivariate Gaussian (or normal) distribution. For a more recent discussion on the topic of

symmetry see Zabell (1988).

 Figure 1A below depicts the symmetric two-parameter Gaussian distribution together with

an empirical probability density function (pdf) of standardized (to ensure homoscedasticity) log-

differences of bi-monthly US certificate deposit (CD) rates. The time series of these standardized

log differences were constructed utilizing the Auto-Regressive Conditional Heteroscedastic

(ARCH) model due to Engle (1982) (see Section 5 for further details). Similarly to the analysis

in Klein (1993) (who studied interest rate data on 30-year Treasury bonds from 1977 to 1990)

Figure 1A shows that the empirical pdf of the financial data by far is too peaked to be captured

by a normal pdf. Figure 1B displays the three-parameter  Laplace with the pdfasymmetric
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5 ,ß  !ß suggested by Kozubowski and Podg rski (1999) to capture such a peak which seems toó

be a characteristic of financial data. Along these lines, Van Dorp and Kotz (2002a,b) proposed a

bounded four-parameter Two-Sided Power (TSP) distribution (Figure 1C)
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Fig. 1. Empirical PDF of two-step log differences and ML fitted distributions. A: Gaussian (or Normal); B:

Asymmetric Laplace; C: Two Sided Power (TSP) ; D: Uneven Two Sided Power (UTSP)

Finally, Figure 1D depicts an apparently novel  generalization of the TSP distributionasymmetric

that allows for unequal powers in the branches and a jump discontinuity at . All four)

distributions in Figure 1 were fitted via MLE procedures. It will be shown herein that amongst
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the distributions in Figure 1, the  generalization of the TSP distribution, to be referredasymmetric

as Uneven TSP (UTSP) distribution, provides the "better fit" to the empirical pdf of standardized

log differences of bi-monthly US certificate deposit (CD) rates from 1966-2002.

Modifications of the type shown in Figure 1D have been available for the Gaussian

distributions for a long time, notably with applications in communication theory and signal

detection (see, e.g., Fechner 1897; Kanefsky and Thomas 1965; Barnard 1989). Figure 2 displays

an example of an asymmetric Gaussian distribution with a jump discontinuity analogous to the

one in Figure 1D.
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Fig. 2. Example of an Asymmetric Gaussian Distribution

Distributions of the type depicted in Figure 2 are also used with an increasing frequency in

econometric applications as error terms in linear regression models. Aigner et al. (1976) were

apparently the first to propose a model with a conditional density jump in the context of

production analysis; more recent applications can be found, for example, in standard auction

models and the equilibrium job search problems. In standard auction models (see, e.g., Donald

and Paarsch 1996) the density jumps from zero to a positive value and in the equilibrium job

search applications the density jumps from one level to another, inducing kinks in the cumulative
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distribution function (cdf) (see, e.g., 2001).  and Hong (2001)Bowlus et al. Chernozhukov

discuss recently the regression inference problem for the model originally suggested by Aigner

et al. mentioned above.

It turns out that for the TSP distribution given by an analogous structure can be obtainedÐ#Ñ

by appropriately manipulating the central part of the so-called generalized trapezoidal

distributions (cf. Van Dorp and Kotz 2003a) which has originally been constructed to imitate

three stage uncertainty phenomena that often occur in the physical world. In this context,

trapezoidal distributions have been used  in the screening and detection of cancer (see, e.g.,

Flehinger and Kimmel 1987; Brown 1999). By shrinking the central part of the generalized

trapezoidal distribution to a single point we arrive at the UTSP distribution involving four

parameters (in the case when the boundaries, determining the range, are assumed to be known).

Note that the transition from the continuous generalized trapezoidal case to the discontinuous

UTSP case can easily be achieved by just one single operation.

In Section 2, the density of the UTSP distribution will be derived. Some properties of UTSP

distributions are discussed in Section 3. While in inference problems for asymmetric Gaussian

distributions the threshold parameter is often assumed to be known, a maximum likelihood

procedure is developed in Section 4 for UTSP distributions with  threshold parameter,unknown

unknown unknown powers size of the jump discontinuity, as well as  in the respective branches

of the pdf curve (but with known boundary parameters). In Section 5 the MLE procedure derived

in Section 4 will be exemplified using standardized log differences of bi-monthly US certificate

deposit (CD) rates for the period 1966 - 2002. We shall also compare the ML fitted UTSP

distribution to ML fitted Gaussian, asymmetric Laplace and TSP  distributions presented in

Figure 1. Details of derivations for the MLE procedure for UTSP distributions are presented in

the Appendix.
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2. Uneven two-sided power distribution

Trapezoidal distributions have been advocated in risk analysis problems by Pouliquen (1970)

and more recently by Powell and Wilson (1997), among others. These distributions have also

found application as membership functions in fuzzy set theory (see, e.g., Chen and Hwang

1992). However, trapezoidal distributions consisting of three stages are somewhat restrictive,

since the growth and decay (in the first and third stages)  are limited in this case to linear

functions while the middle stage represents complete (flat) stability rather than a possible (mild)

incline or decline (see Figure 3A). The trapezoidal probability density function (depicted in

Figure 3A) is of the form
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Fig. 3.  A: A Trapezoidal distribution with parameters  and + œ !ß , œ !Þ$ß - œ !Þ) . œ "Þ

B: A Generalized Trapezoidal Distribution with parameters
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Generalized trapezoidal distributions (see Van Dorp and Kotz 2003a) inherit the four basic

trapezoidal parameters  and , and require, for its complete description, two additional+ß ,ß - .

parameters  and  specifying the growth and decay rates at the first and third stages of the8 8" $

distribution respectively, and the boundary ratio parameter  satisfyingα  !

0 Ð,Ñ œ 0 Ð-Ñ\ \ . (5)α
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By collapsing the central part in to a single point we arrive at the UTSP distribution(6) 

involving 4 parameters (the boundaries are assumed to be known). Specifically, letting we- Æ ,
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Figure 4 displays the resulting UTSP distribution generated from the generalized trapezoidal

distribution in Figure 3B.  Substituting  and  into (13) we arrive at the pdf ofα œ " 8 œ 8 œ 8" $

the TSP distribution given by (2). Note that, the distribution (2) can be also be obtained directly

by generalizing the triangular family of distributions see, e.g., Van Dorp and Kotz 2002a .� �
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Fig. 4. Example of an Uneven Two-sided Power Distribution with parameters
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3. Some properties of the uneven STSP distribution

In deriving the properties we shall restrict ourselves to Uneven STSP (USTSP) distributions

with the support  by setting and  ( in (13). This yields theÒ!ß "Ó + œ !ß . œ " , œ ! Ÿ Ÿ "Ñ) )

density
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where the single mixing probability  is given by:
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to be the vector of the four parameters, where ! Ÿ Ÿ "ß) 8  !ß 8  !  ! Ð" $ ,  Compare withα

the more general expressions (12) for  and the pdf (13) for the standardized density (15)) .:
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Properties for the general case (13) follow directly from those obtained in the standardized case

(15) by utilizing a simple scale transformation. The possible geometrical shapes of the USTSP

pdf given by (15) are similar to those of the STSP distribution (or of the beta distribution, see

Van Dorp and Kotz 2002a) including the J-shaped and U-shaped forms and in addition allow for

a jump discontinuity at .)

Setting  in (15) and (16) yields a  generalization of the Standard Two-Sidedα œ " continuous

Power (STSP) distribution (with two parameters)
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by allowing for different powers  and  in the two respective branches of the STSP density8 8" $

given by (18). We shall refer to the densities given by (19) as Generalized STSP (GSTSP)

distributions. In the limiting cases  and , (15) simplifies to a power distribution or its) )œ " œ !

reflection, respectively. We thus have in the increasing order of complexity: Triangular

distributions (cf. (2) with Trapezoidal distributions (cf. (3)), Standard TSP distributions8 œ #Ñß

(STSP, cf. (18)), four-parameter TSP distributions (cf. (2)), Generalized Standard TSP

distributions (GSTSP, cf. (19)), Generalized TSP distributions (GTSP, cf. (13) with ),α œ "

Uneven Standard TSP distributions (USTSP cf. (15)), the six-parameter Uneven TSP

distributions (cf. (13))  and the seven-parameter Generalized Trapezoidal Distributions (cf. (6)).

The reader is advised to produce a table of these nine distributions and the corresponding pdf

graph.
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From (20) (the cdf of the USTSP case) we obtain that
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Hence, the total probability mass is split into two parts  and  cf. (16)) at . For the: Ð"  :Ñ Ð )

STSP distribution cf. ) expression (21) simplifies to Ð (18)  regardless of the value ofJ Ð l Ñ œ\ ) )@

8. The latter property is referred to as the "hinge" property of the STSP family (see, e.g., Van

Dorp and Kotz 2002a).
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While in case of a generalized trapezoidal distribution  was referred to as a boundary ratioα

parameter, for the USTSP distribution   could be interpreted as a  parameter. In caseα 4?7:

α ) α αœ "  " Ð  "Ñ, there is no jump at the threshold parameter , in case  the density jumps

down (up) at , with larger (smaller) values of the density indicating a larger jump down (up).)

The size of the jump discontinuity at the threshold parameter  may be derived utilizing (22) and)

the definition of (16) to be:
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(Recall that for USTSP distributions and + œ !ß . œ " , œ ÑÞ)
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Moments of USTSP distributions (15) follow immediately using the (inherited) mixture

structure (7), the mixing weight (16) and the moments of a (one-sided) power distribution on:

Ò!ß Ó Ò ß "Ó) ) and its reflection on , yielding
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Substituting for  as given by  into and (26) we arrive at the expressions for the first two: (16) (25)

moments  in terms of the four parameters and , respectively. A derivation of a closed8 ß 8 ß" $ ) α

form expression for the variance ( ) is somewhat tedious, but straightforwardly follows5#

utilizing , and (26) and the definition(16) (25)

5 @ @# # #  (27)œ IÒ\ l Ó  I Ò\l ÓÞ 

Using modern computational facilities one may easily calculate higher moments of USTSP

distribution from (24) including skewness and kurtosis, which definitely may be of practical

interest.

The behavior of the mixing probability  given by (16) as a function of the jump parameter : α

and of the threshold parameter  may be of interest (recall that the jumps in the value of the)

density occur at ).  Figure 5 displays the mixture probability  as function of  for five different) ):

values of  from  up to for the case when Setting , in (16)α α!Þ" "! 8 œ 8 œ #Þ œ " 8 œ 8 œ #" $ " $

and (15) results in the well known triangular distribution in this case with the : œ )

property that the probability mass to the left of the mode equals the distance of the mode to the

lower bound relative to the range of the  support. This property is preserved by the TSPwhole



To appear in Statictical Methods and Applications August 2004

13

generalization (2) of the triangular distribution and follows by substituting , α œ " 8 œ 8 œ 8" $

into (16). From Figure 5 we conclude that in the USTSP distribution case with  (or8 œ 8 œ 8" $

equivalently, the probability mass to the left of the threshold parameter is less8 Î8 œ "Ñ" $

(larger) than its relative distance from the lower bound when the density jumps up, i.e.  α  "ß

(down i.e. ) at the threshold. Finally, when ( )  in a USTSP distributionß  "ß 8 Î8  " Ð  "Ñα " $

(cf. (15) and (16)) an even smaller (larger) probability mass is assigned to the left of the

threshold parameter than it is in the case . 8 Î8 œ "" $ The limiting behavior of the mixing

probability  as a function of one of the parameters and , while keeping the others: 8 ß 8 ß" $ α )

fixed, follows directly from . In fact,  when , or , or , or(16) : :Æ ! Ð Å "Ñ 8 Ä ∞ 8 Æ ! Æ !" $ α

) α )Æ ! 8 Æ ! 8 Ä ∞ Ä ∞ Å " (when , or , or , or )." $
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Fig. 5.  Behavior of Mixture Probability  as a function of the threshold:

parameter  for different values of the jump parameter  for .) α 8 œ 8 œ #" $

The behavior of the mean  (25) as a function of the jump parameter  (while keepingIÒ\l Ó@ α

the other parameters fixed) follows directly from (25) and (16). In fact, when increases, theα

mixture probability  increases, assigning a larger weight to the mean value of the power:
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distribution on in (25) Ò!ß Ó) (and a smaller weight to the mean value of the reflected power

distribution on  and hence results In a similar manner one canÒ ß "ÓÑ)  in a decrease of . IÒ\l Ó@

derive the behavior of  as a function of the other parameters as well.IÒ\l Ó@

Table 1 summarizes the limiting behavior of the mixture probability  the limiting pdf: ß(16)

of  with the mean   under a variety of limiting scenarios. All the parameters in(15) (25)IÒ\l Ó@

the parameter vector  (17) that  appear in the first column of Table 1 are assumed to be@ do not

fixed.

Table 1. Limiting behavior of the mixture probability  the pdf  and the mean   under a: ß IÒ\l Ó(16) (15) (25)@

variety of scenarios. Parameters not mentioned in the first column are assumed to be fixed.
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Some brief comments on the indicative results presented in Table 1 are in order. The

scenarios in Rows 2) ; 3) ; 6)  and 8)  all result in a single point) )Æ ! 8 Ä ∞ Å " 8 Ä ∞" $

limiting density at the values of  (or specifically, limiting values or  of  in rows 2 and 6,) )! "

respectively). Also the last two limiting scenarios in Table 1 (the 9-th and 10-th row) keeping
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8 Î8 œ : :" $ " constant result in the same value of the mixture probability  (since as given in (16)

depends on the ratio ), but yield very different limiting distributions: a single point mass at8 Î8" $

) when  and a two-point Bernoulli distribution (with parameter ) at  and  when8 ß 8 Ä ∞ : ! "" $

8 ß 8 Æ ! 8 ß 8 Æ !" $ " $. This is because when  the structure of the original pdf  becomes U-(15)

shaped with an anti-mode at . The two situations in rows 1 ( ) and 4 ( )  result in) α Ä ∞ 8 Æ !$

the same limiting density ( on [  and equivalently  and  (in rows 5 and 7 )BÎ Ñ !ß Ó Æ ! 8 Æ !) ) α8
"

"

both yield the density 1 1  on 1 .ÖÐ  BÑÎÐ  Ñ× Ò ß Ó) )8 "$

4. MLE procedure for USTSP distributions

Here, we shall derive a maximum likelihood procedure for USTSP distributions that is

algorithmically straightforward in terms of elementary function evaluations. Let for a sample of

size  with the values = ( ) the order statistics be 7 \ ßá ß\ \  \  á  \ Þ\ " 7 Ð"Ñ Ð#Ñ Ð7Ñ

U he likelihood for tilizing (15) and (16), t | ) is, by definition,_Ð\ \@

$ $   
3œ" 3œ<"

< 7
" $ " $

$ " $ "

Ð3Ñ Ð3Ñ

8 " 8 "
α

α) ) ) α) ) )

8 8 8 8

8  Ð  Ñ8 8  Ð  Ñ8 

\ \

1 1 1
1" $

(28)

where  is defined so that . Collecting the terms< \ Ÿ  \ ßÐ<Ñ Ð<"Ñ) with \ ´ !ß \ ´ "Ð!Ñ Ð7"Ñ

in (28) we obtain

_Ð œ\ | )@

Ð8 8 Ñ Þ
Ö 8  Ð  Ñ8 × " 

\ " \
" $

7
<

$ "
7

3œ" 3œ<"

< 7
Ð3Ñ Ð3Ñ

8 " 8 "

” •– — – —$ $α

α) ) ) )1
 

(29)
" $

The difficulty in maximizing (29) as a function of the parameters  and  is due to an8 ß 8 ß" $ α )

irregular behavior of . Figure 6 depicts an_Ð\ | ) as a function of the threshold parameter @ )

example of _ ) αÐ 8 œ 8 œ # œ "\ | ) as function of the  for the case  and  and the eight@ " $

(  order statistics7 œ )Ñ

\ œ !Þ"!à\ œ !Þ#&à\ œ !Þ$!à\ œ !Þ%!à

\ œ !Þ%&à\ œ !Þ'!à\ œ !Þ(&à\ œ !Þ)!
Ð"Ñ Ð#Ñ Ð$Ñ Ð%Ñ

Ð%Ñ Ð'Ñ Ð(Ñ Ð)Ñ .
(30)
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When  and  in | ) is simplified to the likelihood associated with8 œ 8 œ 8 œ " ß Ð" $ α _(29) \ @

the STSP distribution given by (18). Van Dorp and Kotz (2002a) have shown that for the STSP

distribution with  the maximum of | ) as a function of is attained at one of the8   " Ð_ )\ @

order statistics  (as it happens to be in Figure 6). This may not be the case for\ ß 3 œ "ßá ß7Ð3Ñ

the more general likelihood given by (29). The following numerical algorithm  to determine the

maximum of (29) and hence the maximum likelihood estimators ,   and  is proposed forα )s s s8 ß 8 s
" $

the case and . 8   " 8   "" $ An empirical pdf of the data under consideration (see Figure 1) could

confirm the precondition  and  of the numerical algorithm. The precondition8   " 8   "" $

( ) for the ML procedure below can be relaxed to allow for the remaining parameter8   "ß 8   "" $

scenarios ( ), ( , ) and ( , ) by8   "ß ! Ÿ 8 Ÿ " ! Ÿ 8 Ÿ " 8   " ! Ÿ 8 Ÿ " ! Ÿ 8 Ÿ "" $ $ " $3

appropriate modifications of the details regarding Step 4 (provided in the Appendix). The readers

are encouraged to investigate these details on their own.

M>/<+>398 5 À Ð5 œ "ß #ßá Ñ

(Don't confuse this ordinal  with the order of the moments in (24))5

W>/: " Ð8 Ñ ß ß Ð8 Ñ: Given  and  maximize  for $ 5 5 5 " 5"α ) _Ð\ | )@

W>/: # Ð8 Ñ ß ß Ð8 Ñ: Given  and  maximize  for " 5" 5 5 $ 5"α ) _Ð\ | )@

W>/: $ Ð8 Ñ Ð8 Ñ: Given and  and  maximize for " 5" $ 5" 5 5") α_Ð\ | ) @

W>/: % Ð8 Ñ Ð8 Ñ: Given and  and  maximize  for " 5" $ 5" 5" 5"α )_Ð\ | )@

W>/: & W>/: ": Go back to , unless the pre-assigned convergence criterion has been met.

Here denote the values  and  at the -th iteration, respectively The convergenceÐ8 Ñ ß Ð8 Ñ 8 8 5" 5 $ 5 " $

criterion in  corresponds to the failure of an increase in W>/: & _Ð\ | ) at a pre assigned@

tolerance level. A natural starting point for the algorithm to maximize  are the MLE's for the(29)

STSP distribution (18) given in Van Dorp and Kotz (2002a):
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Fig. 6.  Example of likelihood (29)_ @ )Ð\ | ) given by  as a function of 

for the order statistics given by (30) and , 8 œ 8 œ # œ "Þ" $ α

Ú
ÛÜ
)! Ð<Ñs

" ! $ ! Ð<Ñs

œ \

Ð8 Ñ œ Ð8 Ñ œ 

œ "

=
P91Q

!α

(31)

where   and< œ +<17+B QÐ<Ñs
< − Ö"ßá ß =×

QÐ<Ñ œ $ $
3œ" 3œ<"

<" =
Ð3Ñ Ð3Ñ

Ð<Ñ Ð<Ñ

\ Ð"  \ Ñ

\ Ð"  \ Ñ
. (32)

Among the first four steps in a -th iteration described above,  is the most involved5 W>/: %

(although straightforward) since it requires maximization of the likelihood over (29) 7 "

separate intervals \ Ÿ  \ ß < œ !ßá ß7ßÐ<Ñ Ð<"Ñ)  . Detailswith \ ´ !ß \ ´ "Ð!Ñ Ð7"Ñ

regarding these four steps are presented in the Appendix. Finally note that the numerical

algorithm described above can easily be modified by omitting  to provide a maximumW>/: $

likelihood estimation procedure for the GSTSP distribution given by the density (19) which does

not involve .α
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5. An example

We shall illustrate the MLE Procedure for the USTSP distribution utilizing the monthly USA

Certificate Deposit rates for the period from 1966-200 . Our aim is to construct a realization of a#

time series , from this data, where the  are i.i.d. random variables. This/ /5 5ß 5 œ !ß "ß #ßá

would provide us with an i.i.d. sample for our MLE procedure. To construct such a realization

we shall use the by now quite common Auto-Regressive Conditional Heteroscedastic (ARCH)

time series model devised by the 2003 Nobel Laureate R.F. Engle in 1982.

The time series of the monthly CD rates is displayed in Figure 7A consisting of 446 data

points. Denoting the CD rate after month  by , our starting point will be one of the simplest5 35

financial engineering models for the random behavior of the CD rate, i.e. the multiplicative

model

3 œ 3 †Ð5"Ñ6 56 5ß6% , (33)

where  and  are i.i.d. random variables (see, e.g.,6 œ "ß #ßá ß %%'ß 5 œ !ßá ß Ú%%'Î6  "Û %5ß6

Leunberger 1998). Figure 7B depicts the time series of the one-step (i.e. monthly) log

differences (  in (33)6 œ " Ñ

P8Ð Ñ œ P8Ð3 Ñ  P8Ð3 Ñ%5ß" 5" 5  (34)

totaling 445 data points and  is the monthly CD rate in December of 1965. Table 2 contains the3!

values of the auto-correlation function

EGJÐ ß "Ñ œ G9<<ÒP8Ð Ñß P8Ð ÑÓ- % %5 ß" 5ß"- (35)

with lags  together with the Ljung-Box Q statistics (see - -œ "ßá ß '  PFUÐ Ñ  Ljung and

Box 1978) and their p-values for testing the null hypothesis that the auto-correlations for all lags

up to lag  equal zero. - Tsay (2002) asserts that (  performs better (in terms- ¸ P8 %%'Ñ œ 'Þ"!!

of statistical power) than any other values. Table 2 thus contains the values of the PFUÐ Ñ-

statistic up to . - œ ' From the corresponding p-values it follows immediately that this null

hypothesis is rejected for all lags - œ "ßá ß 'Þ
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Fig. 7.  Monthly US Certificate Deposit Rates from 1966 - 2002 A: Time Series of CD Rates

 B: Time Series of One-Step Log Differences; C: Time Series of Two-Step Log Differences.
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Table 2. Auto-correlation Function, Ljung-Box Q Statistic and p-values  for one step log differences P8Ð Ñ%"ß5

(cf. (34)) and two-step log differences  (cf. (36)) with Lags 1, ,6P8Ð Ñ á%#ß5

Lag ACF LBQ p-value ACF LBQ p-value
1 0.349 54.541 1.52E-13 0.134 4.037 0.04
2 0.092 58.321 2.17E-13 0.040 4.404 0.11
3 0.066 60.291 5.09E-13 -0.034 4.670 0.20
4 0.014 60.378 2.42E-12 0.111 7.478 0.11
5 0.007 60.401 1.00E-11 0.060 8.305 0.14
6 -0.029 60.772 3.14E-11 0.108 10.980 0.09

Two-Step Log DifferencesOne-Step Log Differences

Figure 7C depict  the time series of the two-step (i.e. bi-monthly) log differences (  in= 6 œ #

(33))

P8Ð Ñ œ P8Ð3 Ñ  P8Ð3 Ñ%5ß# #5# #5  (36)

consisting of 222 data points where as before  is the monthly CD-rate inÚ%%'Î#  "Û œ 3!

December 1965. Table 2 also presents the values of the auto-correlation function

EGJÐ ß #Ñ œ G9<<ÒP8Ð Ñß P8Ð ÑÓ- % % (37)5 ß# 5ß#-

with lags  together with the corresponding statistics and their p-values.- -œ "ßá ß ' PFUÐ Ñ

Note that from the p-values associated with the  step differences  it follows that thetwo P8Ð Ñ%5ß#

null hypothesis (i.e. that auto-correlations for all lags up to lag  equal zero) is  for all- accepted

lags  (at the significance level of  %). In the case of the  data points of the time- œ "ßá ß ' % ###

series (36), the lag statistical power resulting- ¸ P8 ###Ñ œ &Þ%!$(   performs better in terms of 

in a -value of  in the fifth row of Table 2. Hence, we may reasonably conclude that the time: !Þ"%

series  given by (36) is serially uncorrelated.P8Ð Ñ%5ß#

To test for homoscedasticity ( i.e. a constant variance in the time series (36) and a necessary

condition for  given by (36) to be i.i.d.) we shall utilize the systematic framework forP8Ð Ñ%5ß#

volatility modeling provided by the above mentioned ARCH model of Engle (1982).

Specifically, an  model assumes thatEVGLÐ7Ñ
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+ œ œ  + á  +5 5 5 ! " 7
# # #
5 5" 575 / 5 α α α,  (38)

where  is serially uncorrelated and  is a sequence of i.i.d. random variables with mean zero+5 5/

and variance 1. For the data in Figure 7.1C, involving , we haveP8Ð Ñ%5ß#

P8Ð Ñ œ P8Ð Ñ œ !Þ!!&'"
"

###

= œ ÐP8Ð Ñ  P8Ð ÑÑ œ "Þ%"*/  #
"

##"

% %

% %

5ß# 5ß#

5œ!

##"

#

5œ!

##"

5ß# 5ß#

�
�

; (39)

.

(  is the sample variance estimator of  , ). Hence, the time series= P8Ð Ñ 5 œ "ßá ß ####
5ß#%

+ œ
P8Ð Ñ

=
5

5ß#%
(40)

may be considered a  of (38) (to avoid cumbersome notation we use the same symbolrealization

+ ÑÞ P8Ð Ñ5 5ß#It would seem that using (39) and rescaling  as in (40), one achieves the conditions%

of a zero mean and variance  of  in (38). To further test these conditions, we present in Table" /5

3 the values of its Auto-Correlation Function (ACF) and Partial Auto-correlation Function

(PACF) of the time series of   up to the lag of  (since + &2
5 P8 ###Ñ œ &Þ%!$( ).

Table 3. Auto-correlation Function (ACF), Ljung-Box Q Statistic, p-values

 and Partial Auto-Correlation Function (PACF) for  (cf. (40)) with Lags 1, ,5+ á2
5

Lag ACF LBQ p-value PACF t-Statistic
1 0.096 2.067 0.15 0.096 1.428
2 0.098 4.239 0.12 0.090 1.336
3 0.231 16.395 9.41E-04 0.218 3.248
4 0.098 18.581 9.50E-04 0.058 0.866
5 0.001 18.581 2.30E-03 -0.050 -0.740

As a first check note that the values of the  statistic (and the associated p-values) and thePFU

PACF values (in particular those in the third row) in Table 3 suggest that the time series +5  given

by (40) is heteroscedastic (as opposed to homoscedastic.) From the observation that  being+5
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serially uncorrelated (because of (40) and the fact that  are serially uncorrelated) and theP8Ð Ñ%5ß#

PACF values of   in Table 3, it follows that  may be well represented by an + + EVGLÐ$Ñ2
5 5

model (see, the third row of Table 3 and Tsay 2002 for a detailed explanation). We thus obtain

the following equation for 5#
5

5# # # #
5 5" 5# 5$œ !Þ'&$&  !Þ!''&(+  !Þ!(!"*%+  !Þ#$$)#+ , (41)

where the parameters were estimated using the least squares method (cf. (38)).α œ Ð ßá ß Ñα α! $

An alternative test for conditional heteroscedasticity is the so-called Lagrange Multiplier test

also due to Engle (1982). This test is equivalent to the usual  statistic for testing J œ !ßα3

3 œ "ßá ß7 in the linear regression  (38) (see, a basic text on Time Series or Tsay 2002). For

our data we have  and the p-value of  strongly confirming the earlierJ œ %Þ*"'% #Þ&/  $

conclusion of heteroscedasticity of  as well as the setup as given by (38) and (41).+ EVGLÐ$Ñ5

Hence, the time series  is  i.i.d..+5 not

However, the set-up for  in (38) and the values of given in (41) suggest that the+5 55

standardized time series

/
5

5
5

5
œ ß 5 œ $ßá ß ##" Ð Ñ

+
, 42

where  are given by (40), should be a realization from an i.i.d time series (by design), which+ Þ5

would allows us the use of standard maximum likelihood procedures. Indeed the analysis in

Table 4 suggests that the time series  is serially uncorrelated and homoscedastic (possibly with/5

the exception of the -statistic value of  in the fourth row of Table 4). This could indicate> "Þ%#$

the suitability of an  model for . However, using the linear regression to estimateEVGLÐ%Ñ /5

the time series of in (38) for the sequence , , results in the value for the F5 /# #
5 5 5 œ $ßá ß ##"

statistic of   (to test that ) with the p-value of  which strongly!Þ)!%) œ !ß 3 œ "ßá ß % !Þ&#α3

supports the homoscedasticity hypothesis of the time series . From (36), (40) and (42) (42) it

follows that the time series /5  may be interpreted as that of standardized bi-monthly log-
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differences of US CD rates from 1966-2002 and as above  is the monthly CD-rate in December3!

1965.

Table 4. Auto-correlation Function (ACF), Ljung-Box Q Statistic, p-values for /5,

and Partial Auto-Correlation Function (PACF) for  (cf. (42)) with Lags 1, ,5/#
5 á

Lag ACF LBQ p-value PACF t-Statistic
1 0.122 3.322 0.07 -0.027 -0.406
2 0.099 5.490 0.06 -0.033 -0.484
3 0.060 6.307 0.10 -0.059 -0.874
4 -0.004 6.310 0.18 0.096 1.423
5 0.031 6.521 0.26 -0.017 -0.252

νk νk
2

The empirical pdf of the standardized bi-monthly log-differences  is depicted in Figure 1/5

of Section 1 together with MLE fitted Gaussian (Figure 1A), asymmetric Laplace (Figure 1B),

TSP (Figure 1C) and UTSP (Figure 1D) distributions. (For MLE's of Gaussian parameters see a

basic text in statistics, e.g., Mood et al., 1974.) Kotz et. al (2002) discuss a MLE procedure for

the asymmetric Laplace distribution in some detail. Noting the scale of the graphs inÒ  &ß &Ó

Figure 1, depicting the empirical pdf of  with support , the support of the TSP/5 Ò  #Þ*!ß 'Þ*(Ó

and UTSP distribution in Figure 1 was set (with an ample safety margin) to be . Ò  #&ß #&Ó ML

estimators for the TSP distribution with a given support are provided in Van Dorp and Kotz

(2002b). Before applying the MLE procedures described in Section 4 for the USTSP and GSTSP

distributions the data in Figure 7C was standardized on via a linear scale transformationÒ!ß "Ó

applied to the original support Ò  #&ß #&Ó. Table 5 contains the ML estimates of the parameters

of the pdf's in Figure 1 together with those of a GTSP distribution .(19) The parameters 7s −

Ò  #&ß #&Ó in Table 5 are obtained by applying the inverse linear scale transformation on the

threshold parameter )s − Ò!ß "Ó. Figures 8A, 8B, 8C and 8D display the empirical cdf of the

standardized bi-monthly log-differences of US CD rates together with the ML fitted asymmetric

Laplace, TSP, GTSP and UTSP cdf's, respectively.
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Table 5. Maximum Likelihood Estimators for TSP, GTSP and UTSP distributions for the data depicted in

Figure .  The Support for TSP,GTSP and UTSP distributions is " Ò  #&ß #&Ó

Gaussian (Figure 1A)
A  Laplace (Figure 1B)
TSP (Figure 1C)
GTSP

. 5

) 5 ,
7
7

s œ (Þ#%/  $ œ "Þ!*&s

W œ  #Þ"*/  # œ "Þ!$$ œ *Þ$)/  "s s s
s œ  #Þ!(/  # 8 œ $#Þ)$s
s œ  "Þ#&/  " 8 œ $)Þ#% 8 œ #*Þ"&s s
s œ %Þ'&/  # 8 œ %!Þ#* 8 œ #&Þ&) œ #Þ#&s s s

" $

" $UTSP (Figure 1D) 7 α
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Fig. 8. Empirical CDF of Two-Step Log Differences of Monthly US Certificate Deposit Rates 1966 - 2002 together

with MLE fitted distributions:  A: Asymmetric Laplace; B: TSP; C: Generalized TSP; D: Uneven TSP

 (MLE parameters are given in Table 5 above)
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From Figures 1 and 8 we observe (certainly by a careful visual comparison) that the UTSP

distribution (Figure 8D) provides a "better" fit to the empirical cdf amongst these five

distributions. The GTSP distribution (Figure 8C) and asymmetric Laplace distribution (Figure

8A) seem to perform equally well (and outperform the TSP distribution in Figure 8B). A more

formal fit analysis is conducted in Table 6.

Table 6. Goodness of Fit Analysis of MLE fitted distributions for the 1966-2002

data on standardized bi-monthly Log Differences of Monthly US CD interest rates.

UTSP GTSP TSP AS Laplace Normal
Bin LBi UBi Oi (Oi-Ei)2/Ei (Oi-Ei)2/Ei (Oi-Ei)2/Ei (Oi-Ei)2/Ei (Oi-Ei)2/Ei

1 < -25 -1.482 13 0.77 0.36 0.30 0.06 3.27
2 -1.482 -0.913 14 0.39 0.37 0.90 0.19 3.96
3 -0.913 -0.665 14 0.01 0.05 0.04 0.27 6.3E-05
4 -0.665 -0.521 13 0.44 0.73 0.98 1.43 1.82
5 -0.521 -0.373 14 1.3E-03 0.04 0.21 0.35 1.76
6 -0.373 -0.205 14 2.05 1.30 0.56 0.52 0.49
7 -0.205 -0.125 13 0.09 0.37 1.19 1.07 9.17
8 -0.125 -0.021 14 0.84 2.8E-03 1.9E-05 0.02 5.62
9 -0.021 0.025 14 2.84 11.54 8.78 7.91 33.63
10 0.025 0.108 13 0.97 1.11 0.49 0.32 7.95
11 0.108 0.315 14 0.30 2.06 2.99 3.49 0.06
12 0.315 0.443 14 3.54 1.16 0.79 0.56 2.73
13 0.443 0.713 13 0.20 1.23 1.41 1.79 1.37
14 0.713 1.103 14 0.10 0.68 0.52 0.83 3.03
15 1.103 1.845 14 0.37 0.67 0.17 0.50 6.60
16 1.845 > 25 14 0.04 0.52 3.37 1.07 0.11

Chi-Squared Statistic 12.96 22.19 22.70 20.38 81.57
Degrees of Freedom 11 12 13 12 13
P-value 0.296 0.035 0.045 0.060 < 1.00E-6
Degrees of Freedom (Disc.) 9 10 11
P-value (Discounted) 0.164 0.014 0.019
K-S Statistic 3.76% 5.58% 4.71% 7.65% 12.75%
SS 0.051 0.105 0.068 0.194 1.126
Log-Likelihood -297.04 -302.83 -304.45 -302.55 -332.39
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In Table 6 the Chi-square statistic

�� �
3œ"

"'
3 3

#

3

S  I

I
(43)

is calculated utilizing  bins ( as suggested by Banks et al. 2001 . The"' "' − Ò #"*ß #"*Î&Ó ÑÈ
boundaries of the bins are selected such that the number of observations , , inS 3 œ "ßá ß "'3

each Bin  equals 13 or 14, totaling 219 data points. Such a boundary selection procedure3

partitions the support of the range of observed data in a similar manner as the "equal-probability

method of  constructing classes" (see, e.g., Stuart et al. 1994) while keeping the bin boundaries

of the chi-square statistic the same across the five different distributions depicted in Table 6. The

corresponding values in (43) for the expected number of observations in Bin I ß 3 œ "ßá ß "'ß 33

are obtained using

I œ JÐYF ÐPF l Ð Ñ3 3 3l Ñ  J Ñßs s@ @ 44

where  JÐ † l Ñs s@ @ is the theoretical cdf,  of the MLE's for the parameters given in Table 5 for

each distribution and the bin boundaries  are presented in Table 6  ÐPF ßYF Ñ Þ3 3 Note that the

Gaussian distribution evidently produces the worst fit with 12 out of the 16 bins contributing a

value  or more to the chi-squared statistic (43). In particular the very high value  for"Þ!! $$Þ'$

Bin , containing the peak in the empirical pdf, reconfirms the conclusion from Figure 1A that*

the Gaussian distribution in no way represents such a "peak". While the other fitted distributions 

(UTSP, GTSP, TSP and asymmetric Laplace) perform much better from bin to bin as compared

to the Gaussian distribution, Bin 9 by far contributes the most to the chi-squared statistics

regardless of the type of distribution, except for the UTSP case (where it provides the second

largest value).

 The UTSP distribution yields a better value in terms of the chi-squared statistic not only due

to a substantial smaller value in Bin 9, but also because the remaining bins in the UTSP case

contribute in total the least to the overall value of the chi-squared statistic compared with the

other four distributions.  In addition, the UTSP distribution results in the largest p-value of the
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chi-squared hypothesis test taking into account  the number of parameters of each distribution to

determine the degrees of freedom. This observation also applies to the second pair of p-values

and degrees of freedom calculated by discounting two additional degrees of freedom for the

boundary parameters . (It is not quite certain that these two degrees of freedom shouldÒ  #&ß #&Ó

be discounted since the boundaries and  were not formally estimated from the data but #& #&

rather obtained by observation).

Table 6 also includes the Kolmogorov-Smirnov Statistic  (see, e.g., Stuart et al. 1994)H

H œ Q+BÖH l 3 œ "ßá ß #"*× Ð Ñ3 45

where

H œ Q+B l l ß Ð Ñ3 š ›3  " 3

#"* #"*
 JÐ\ l Ñlß  JÐ\ l Ñls s

Ð3Ñ Ð3Ñ@ @ 46

as well as "an intuitive measure of fit"

�
3œ"

#"* Š ‹3

#"*
 JÐ\ l ÑsÐ3Ñ

#

@ ß Ð Ñ47

denoted by Sum of Squares (SS) (reminiscent of the sum of squares in linear regression analysis)

and the log-likelihood

�
3œ"

#"*

Ð3ÑP8Ö0Ð\ l@sÑ× (48)

where in 46 (47) and (48), , , are the order statistics associated with theÐ Ñß \ 3 œ "ßá ß #"*Ð3Ñ

standardized bi-monthly log-differences  (see, ) and the vector /5 (42) @s  consists of the MLE's of

the parameters given in Table 5. Note that the UTSP distribution performs best for all the

statistics amongst the five distributions presented in Table 6. Somewhat(43) 45 (47) and (48)ß Ð Ñß

unexpectedly, the GTSP and TSP distributions outperform the asymmetric Laplace distribution

in terms of the Kolmogorov-Smirnov statistic  the SS the chi-Ð Ñ45 and (47), but not in terms of 

squared statistic (and its p-value) and the log-likelihood of the data involving . The(43) (48) /5

K-S statistic and the log-likelihood seem to be much less sensitive to the evident



To appear in Statictical Methods and Applications August 2004

28

inappropriateness of the Gaussian distribution in the situation at hand. In the authors' opinion the

behavior of the chi-squared statistic in the indicative Bin 9 in Table 6 (corresponding to the

values in the vicinity of the "peak") justifies the conclusion about the suitability of the UTSP

distribution for the data under consideration.

6. Concluding remarks

This paper is the fifth in the series of our papers on univariate continuous distributions on a

bounded domain which attempt to serve as a meaningful alternative to the beta distribution that

has been prominently used in practice for many decades (see, Van Dorp and Kotz, 2002a,b and

Van Dorp and Kotz 2003a,b). The first (second) paper deals with a two (four) parameter

alternative to the beta distribution. The third generalizes the trapezoidal distribution, while the

fourth one presents the general structure of continuous two-sided distributions, allowing other

generating densities besides the power density. Although the beta function in various forms can

be traced to Isaac Newton in the 17th Century (see e.g. Dutka 1981) its popularity and

widespread applicability are mainly the result of Karl Pearson's most diligent efforts in

constructing his system of empirical distributions at the beginning of the 20th century (especially

in the English language literature) and also its use as a prior distribution for the parameter  in:

binomial models. For application as a prior distribution a reparameterization of the classical beta

distribution

FÐB ß Ñ œ Ð?  +Ñ Ð,  ?Ñ .?ß
Ð,  +Ñ

Ð ß Ñ
 | α "

 α "

"Ð  Ñ

!

B
" "

α "
α "(

α "  α " !ß  !ß Ð œ , )
(49)

> α > "
> α "
Ð Ñ Ð Ñ
Ð  Ñ

exists that allows for a transparent interpretation of its parameters (see, e.g. Clemen and Reilly

2001). Unfortunately however, the parameters  and  in the parameter beta distributionα " four 

(49) seem to lack meaningful physical interpretation and in addition present computational

difficulties in maximum likelihood estimation (see, e.g., Mielke 1975). This was one of the

reasons that prompted us to devise an alternative family which is based on possibly more sound
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physical and statistical motivations. The general UTSP family described in this paper - to the

best of our knowledge - cannot be constructed via the beta distribution. To summarize: a new

UTSP distribution on a bounded interval with meaningful parameters (which is suitable for

description of phenomena in various sciences and engineering possessing a jump discontinuity)

and a straightforward maximum likelihood estimation procedure for its parameters have been

developed in this paper.

Appendix: The maximum likelihood algorithm

Consider the likelihood given by (29)  Below we shall provide some details regarding theÞ

first four steps in the -th iteration presented in Section 4 and the MLE procedure maximizing5

(29). (Compare this description with the procedure presented in Van Dorp and Kotz (2002a) for

a simpler case.)

W>/: " À Maximizing over the left hand side :9A/< :+<+7/>/< 8"

We shall separately consider the two cases  and E À \ Ÿ á Ÿ \ Ÿ  \ F À" Ð<Ñ Ð<"Ñ)

)  \Ð"Ñ.

G+=/ "ÞE À \ Ÿ á Ÿ \ Ÿ  \Assuming  and introducing the notation" Ð<Ñ Ð<"Ñ)

!  œ  "à œ Ð  Ñ  !à œ 8  !
\

T U ) V α)
)

$
3œ"

<
Ð3Ñ

$1 (A.1)

we may rewrite the likelihood function (29) in the form

_Ð º\ | ) ( 2)8"  . A.T
V U

8 " "

"

7
" œ 8

 8

From | ) | ) (A.1) and (A.2) it follows that  for  and_ _Ð Ð\ \! 8œ !ß  ! 8  !" "

    for  Hence attains its maximum at some stationary637 œ ! !   "Þ
8 Ä ∞"

_ _Ð Ð\ \| ) | )8 8" "T

point . Instead of maximizing  we equivalently maximize its logarithm8  !‡
" _Ð\ | )8"

Ð8  "ÑP8Ð Ñ 7P8Ð8 Ñ 7P8Ð  8 Ñ" " $T V U . (A.3)

Setting , yields.P8Ð ÑÎ.8 œ !_Ð\ | )8" "
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U T V T VP8Ð ÑÐ8 Ñ  P8Ð Ñ8 7 œ !" "
# . (A.4)

Since, the quadratic equation (A.4) has at most two real valued solutions, we conclude, noting

that  for  and    , that _ _ _ _Ð l Ð Ð Ð\ \ \ \! 8 8 8) | ) | ) | ) has aœ !ß  ! 8  ! 637 œ !
8 Ä ∞" " ""
"

unique stationary point 8  Þ‡
" 0, which may be obtained from (A.4) utilizing (A.1)

G+=/ "ÞF À  \Assuming  and rewriting (29) using (A.1) we have) Ð"Ñ

_Ð º\ | )8" œ 8

 8
"

"

7

V U
. (A.5)

Note that, the term  in (A.2) is not included in (A.5). From (A.5) it follows, taking (A.1)T8 ""

into account, that  for ,    and_ _ _Ð Ð Ð\ \ \| ) | ) | )! œ !ß 8  ! 8  ! 637 œ  !
8 Ä ∞" "
"

78" U

. ÑÎ.8 œ 7  !
8

 8  8
_Ð\ | )8" "

"

" "

7"

#œ 
V U V U

V

( )
(A.6)

for Hence, does not yield a maximum solution for . However, one may8  !Þ G+=/F" _Ð\ | )8"

rule this situation out by using the starting solution given by (31) (corresponding to the STSP

case) or  a histogram of the data of a unimodal form which contains observations on both sides

of the mode. If nevertheless this case does occur, no solution can be found and the algorithm

terminates.

W>/: # À Maximizing over the  hand side <312> :9A/< :+<+7/>/< 8$

As be before, we shall separately consider the two cases E À \ Ÿ  \  á  \Ð<Ñ Ð<"Ñ Ð7Ñ)

and .F À   \) Ð7Ñ

G+=/ #ÞE À \ Ÿ  \  á  \Assuming  and introducing the notationÐ<Ñ Ð<"Ñ Ð7Ñ)

!  œ  "à œ  !à œ Ð  Ñ8  !
" \

" 
W X α) Y )

)
$

3œ<"

7
Ð3Ñ

"1 (A.7)

we rewrite (29) in the form

_Ð º\ | ) ( 8)8$  . A.W
Y X

8 "

$

7
$ œ 8

 8
3
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Analogously to , by taking the derivative of | ) , we obtain the unique solution(A.2) P8Ö Ð ×_ \ 8$

8  !‡
$ , maximizing | ), by solving the quadratic equation_Ð\ 8$

X W Y W YP8Ð ÑÐ8 Ñ  P8Ð Ñ8 7 œ !$ $
# . (A.9)

As in Step 1 no solution can be found here for    and the algorithm terminates.G+=/ #ÞF

W>/: $ À Maximizing over the jump parameter α

Introducing the notation

Z œ ) [ )8  !à œ Ð  Ñ8  !$ "1 A.( 10)

we now rewrite  in the form(29)

_Ð º Þ\ | ) ( 11)α
α

α [

<

7Ö  ×Z
A.

As above, instead of maximizing | ), we equivalently maximize its logarithm_Ð\ α

<P8Ð Ñ 7P8Öα Zα [ ×. ( 12)A.

Setting  | ) yields.P8Ö Ð ×Î. œ !ß_ α\ α

Ð<  7ÑZα [ < œ !. ( 13)A.

From  | )W318Ò.P8Ö Ð ×Î. Ó œ W318ÖÐ<_ α\ α 7ÑZα [ < × it follows from (A.12) and

deciphering notation (A.10) that

α
[ )

)
‡ $

"
œ œ  !

< < 8

Ð  Ñ8Ð7 Ð7 <Ñ  <ÑZ 1
(A.14)

maximizes A._ )Ð Þ\ | ) in ( 11)  (Note that an increase in  increases the value of the jumpα

parameter  as stated indicated in Section 3).α

W>/: % À Maximizing over the threshold parameter  for the case  and .) 8   " 8   "" $

Instead of maximizing (29)_ )Ð\ | ) given by  as a function of , we minimize its reciprocal@

"

Ð
º

_ \ | ))
α ) ) )ÐÐ 8  8 Ñ  8 Ñ Ð"  Ñ$ " "

7 Ð8 "Ñ< Ð8 "ÑÐ7<Ñ" $ (A.15)

over the set
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\ Ÿ  \ ß ! Ÿ < Ÿ 7ßÐ<Ñ Ð<"Ñ) (A.16)

with \ ´ !ß \ ´ "Ð!Ñ Ð7"Ñ . This is the basic quantity which will be manipulated in all the cases

of Step 4. The difficulty in minimizing (A.15) over the set of values (A.16) is that Ð7  "Ñ

separate disjoint bounded intervals ought to be considered, each of which could potentially

contain the solution minimizing (A.15). To minimize the reciprocal of the likelihood (A.15), we

shall separately consider the three cases

G+=/ %ÞE À \ Ÿ  \ ß " Ÿ < Ÿ 7 "ß  (A.17)Ð<Ñ Ð<"Ñ)

G+=/ %ÞF À ! Ÿ  \ ß < œ !à) Ð"Ñ   (A.18)

G+=/ %ÞG À \ Ÿ Ÿ "ß < œ 7ÞÐ7Ñ )  (A.19)

Each of these cases yields a potential solution for : and , respectively. Next, we) ) ) )E F Gß

evaluate (A.15) at these three values and  and select the one that yields the lowest) ) )E F Gß

value of  (A.15)_"Ð\ | ) given in) Þ

G+=/ %ÞE À \ Ÿ  \ ß " Ÿ < Ÿ 7 "Ð<Ñ Ð<"Ñ) : When minimizing (A.15) over

\ Ÿ  \ < \ \Ð<Ñ Ð<"Ñ Ð<Ñ Ð<"Ñ)  for a specific value of , the minimum is attained at either  or  or at

a stationary point such that Introducing the notation) )‡ ‡
Ð<Ñ Ð<"Ñ\ Ÿ  \ Þ

^ `œ Ð8  "Ñ<à œ Ð8  "ÑÐ7  <Ñ" $   , (A.20)

the function

1 Ð Ñ œ Ð"  ÑE ) ) )^ ` (A.21)

and setting ._ )"Ð Î. œ !ß\ | ) we have)

ÐÐ 8  8 Ñ  8 Ñ 71 Ð Ñ  ÐÐ 8  8 Ñ  8 Ñ1 Ð Ñ œ ! Íα ) ) α ) )$ " " $ " "
7" w

E E” •  

either  or . (A.22))
α )

α ) )
œ œ

8 ÐÐ 8  8 Ñ  8 Ñ  1 Ð Ñ

8  8 7 1 Ð Ñ
" $ " "

" $

E

E
w
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Since for all values of , the first solution in (A.22) is less than  or larger than  and8 ß 8 ß  ! ! "" $ α

only the second one can provide a solution  . Hence, we have using (A.20)\ Ÿ  \Ð<Ñ Ð<"Ñ
‡)

that

ÐÐ 8  8 Ñ  8 Ñ Ð"  Ñ

7  Ð  Ñ
œ Í

α ) ) )

^ ^ ` )
$ " "

 ÖÐ 8  8 ÑÐ  Ñ 7×  Ö7 8 Ð  Ñ  Ð 8  8 Ñ ×  8 œ !α ^ ` ) ^ ` α ^ ) ^$ " " $ " "
# (A.23)

Expression (A.23) is a simple quadratic equation which possesses at most two solutions. Hence,

to minimize (A.15) over  for a specific value of  we evaluate the reciprocal\ Ÿ  \ ß <ßÐ<Ñ Ð<"Ñ)

of the likelihood (A.15) at ,  and the solutions of the quadratic equation) )‡ ‡
Ð<Ñ Ð<"Ñœ \ œ \

(A.23) provided these solutions  satisfy , and set  to that value of ß \ Ÿ  \) ) ) )‡ ‡ ‡
Ð<Ñ Ð<"Ñ Ð<Ñ

that yields the minimum of  (A.15) amongst these two to four possibilities._"Ð\ | ) given in)

Next, we evaluate (A.15) at  for  and set to be the value of  that yields) ) )Ð<Ñ Ð<Ñ
E< œ "ßá ß7 "

the minimum of (A.15) over the set of values defined by (A.17).

G+=/ %ÞF À ! Ÿ  \ ß < œ ! ! Ÿ  \) )Ð"Ñ Ð"Ñ : When minimizing (A.15) over , the

minimum is attained at either  or  or at a stationary point such that ! \ ! Ÿ  \ ÞÐ"Ñ Ð"Ñ
‡ ‡) )

Analogously to  additional solutions for  may be found by solvingG+=/ %ÞE ! Ÿ  \)‡ Ð"Ñ

ÐÐ 8  8 Ñ  8 Ñ  1 Ð Ñ

7 1 Ð Ñ
œ

α ) )

)
$ " " F

F
w

(A.24)

where

1 Ð Ñ œ Ð"  ÑF ) ) ` (A.25)

and  is given by (A.20) for . Hence, we have` < œ !

)
α

‡ " $

" $ $
œ

"  8 Ð8  "Ñ

"  Ð8  8 ÑÐ8  "Ñ
. (A.26)

In summary, to minimize (A.15) over   we evaluate (A.15) at ,! Ÿ  \ ß < œ ! œ !) )Ð"Ñ
‡

) ) )‡ ‡ ‡
Ð"Ñœ \  and  given by equation (A.26) (provided that this solution  satisfies
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! Ÿ  \) ) )‡ F ‡
Ð"Ñ) and then set to be the value of  which yields the minimum of (A.15)

amongst these three possibilities.

G+=/ %ÞG À \ Ÿ Ÿ " < œ 7 \ Ÿ Ÿ "Ð7Ñ Ð7Ñ) ), : When minimizing (A.15) over  the

minimum is attained at either  or 1 or at a stationary point such that \ \ Ÿ Ÿ "ÞÐ7Ñ Ð7Ñ
‡) )

Analogously to  additional solutions  may be found by solvingG+=/E \ Ÿ Ÿ "Ð7Ñ
‡)

ÐÐ 8  8 Ñ  8 Ñ  1 Ð Ñ

7 1 Ð Ñ
œ

α ) )

)
$ " " G

G
w

(A.27)

where

1 Ð Ñ œG ) )^ (A.28)

and  is given in (A.20) by setting now Hence, we have^ < œ 7Þ

)
α

‡ " "

" $ "
œ

8 Ð8  "Ñ

Ð8  8 ÑÐ8  "Ñ  "
. (A.29)

(Compare with (A.26)). Thus, to minimize (A.15) over  , we evaluate\ Ÿ Ÿ "ß < œ 7Ð7Ñ )

(A.15) at , 1 and  given by equation (A.29) (provided that this solution ) ) ) )‡ ‡ ‡ ‡
Ð7Ñœ \ œ

satisfies  ) and set to be the value of  which yields the minimum of (A.29)\ Ÿ Ÿ "Ð7Ñ
G ‡) ) )

amongst these three possibilities.
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