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Abstract 

Recent work in the assessment of risk in maritime transportation systems has used 

simulation-based probabilistic risk assessment techniques. In the Prince William Sound 

and Washington State Ferries risk assessments, the studies’ recommendations were 

backed up by estimates of their impact made using such techniques and all 

recommendations were implemented. However, the level of uncertainty about these 

estimates was not available, leaving the decision-makers unsure whether the evidence 

was sufficient to assess specific risks and benefits. The first step towards assessing the 

impact of uncertainty in maritime risk assessments is to model the uncertainty in the 

simulation models used. In this paper, a study of the impact of proposed ferry service 

expansions in San Francisco Bay is used as a case study to demonstrate the use of 

Bayesian simulation techniques to propagate uncertainty throughout the analysis. The 

conclusions drawn in the original study are shown, in this case, to be robust to the 

inherent uncertainties. The main intellectual merit of this work is the development of 

Bayesian simulation technique to model uncertainty in the assessment of maritime risk. 

However, Bayesian simulations have only been implemented as theoretical 

demonstrations. Their use in a large, complex system may be considered state of the art 

in the field of computational sciences. 
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1. Introduction 

The grounding of the Exxon Valdez in Prince William Sound, the capsize of the Herald of 

Free Enterprise and the Estonia passenger ferries are some of the most widely publicized 

accidents in marine transportation systems. The consequences of these accidents range 

from severe environmental damage to large-scale loss of life, which leads to the 

immediate questions of how to prevent such accidents in the future and how to mitigate 

their consequences if they should occur. 

The presence of uncertainty in analyzing risk is well recognized and discussed in the 

literature. However, these uncertainties are often ignored or under-reported in studies of 

controversial or politically sensitive issues [1]. Two types of uncertainty discussed in the 

literature are aleatory uncertainty (the randomness of the system itself) and epistemic 

uncertainty (the lack of knowledge about the system). In a modeling sense, aleatory 

uncertainty is represented by probability models that give probabilistic risk analysis its 

name [2], while epistemic uncertainty is represented by lack of knowledge concerning the 

parameters of the model [3].  In the same manner that addressing aleatory uncertainty is 

critical through probabilistic risk analysis, addressing epistemic uncertainty is critical to 

allow meaningful decision-making. Several examples have been published of the 

conclusions of an analysis changing when uncertainty is correctly modeled [4].  There is 

one other type of uncertainty and that is uncertainty about the model itself [5].  

Previous work in maritime risk assessment has considered aleatory uncertainty, but 

not epistemic uncertainty nor model uncertainty. Early work in maritime risk assessment 

concentrated on assessing the safety of individual vessels or marine structures, such as 

nuclear powered vessels [6], vessels transporting liquefied natural gas [7] and offshore oil 
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and gas platforms [8]. Later, the USCG attempted to prioritize federal spending to 

improve port infrastructures using a classical statistical analysis of nationwide accident 

data [9,10]. More recently, quantitive risk assessment (QRA) has been introduced in the 

assessment of risk in the maritime domain [11-18]. Pate-Cornell [1] defines six levels of 

treatment of uncertainty in risk analysis: 0. Identification of hazards; 1. Worst case 

analysis; 2. Plausible upper bound analysis; 3. Best estimates; 4. Probability and risk 

analysis; 5. Display of risk uncertainties. On this scale, the early work in maritime risk 

assessment could be classified as level 3, providing best estimates of accident risk, while 

the later work using QRA can be classified as level 4. None of the work has considered 

epistemic uncertainty or the dynamic nature of the aleatory uncertainty. 

In a maritime transportation system (MTS) traffic patterns change over time in a 

complex manner causing inherent aleatory uncertainty. System simulation has been 

proposed to model aleatory uncertainty in analyzing port operations [19-21]. In addition 

to the dynamic nature of traffic patterns, situational variables such as wind, visibility and 

ice conditions change over time making risk a dynamic property of the system. The 

Prince William Sound (PWS) Risk Assessment [22,23] and the Washington State Ferries 

(WSF) Risk Assessment [24] differ from previous maritime risk assessments as the 

dynamic nature of risk was captured by integrating system simulation [25] with available 

techniques in the field of QRA [2] and expert judgment elicitation [26]. The PWS and 

WSF Risk Assessments were conducted at level 4 on the scale of Pate-Cornell [1], 

considering aleatory uncertainty in a more explicit manner than non-simulation based 

approaches. However, epistemic uncertainty was not considered.  
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The simulation in a maritime risk assessment model is used to estimate the 

frequency of the various possible system states. Random processes control the arrival of 

vessels and environmental conditions in to the simulation. The parameters of the random 

processes must be estimated from data collected from the system. This introduces 

inherent epistemic uncertainty in the inputs to the simulation. There is also model 

uncertainty in selecting appropriate random arrival processes. Output estimates of from 

simulations are also uncertain as the simulation cannot be run infinitely many times or for 

an infinite run time. Thus there is output uncertainty, both epistemic and aleatory.  

While epistemic uncertainty can be addressed through frequentist statistical 

techniques such as bootstrap or likelihood based methods [27], the Bayesian paradigm is 

widely accepted as a method for dealing with both types of uncertainty [26,28,29,30]. 

Bayesian modeling can allow for the distinction and handle the underlying differences 

inherently when used for analyzing data and expert judgments [31-35]. To move to level 

5, epistemic uncertainties must be addressed in maritime risk assessment and we must use 

Bayesian analytical methods in building and analyzing our simulation models. There is 

an extensive literature on the theory of Bayesian simulation analysis [36-42]. The general 

paradigm of this research is that simulation analysis is a decision-making tool and 

therefore should be used under a decision-analytic framework. Barton and Schruben [43] 

show several examples of the conclusions of simulation studies changing when input 

uncertainty is incorporated rather than using mean input estimates. Chick [44] gives an 

excellent review of Bayesian methods, discussing both input and output uncertainty. 

Chick also discusses model uncertainty. However, due to the computational complexity 

of a Bayesian simulation of a port system with many different types of vessels on many 
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different routes, the scope of the development herein is restricted to aleatory and 

epistemic uncertainty. Handling model uncertainty was simply not computationally 

feasible at this point. 

The project discussed herein is funded by National Science Foundation (NSF) grants 

SES 0213627 and SES 0213700. To complete the objective of a complete theoretical 

framework for modeling uncertainty in full-scale risk assessments, such as that performed 

for PWS or the WSF, the following tasks need to be completed. 

• Task 1: Representation of Uncertainty in the Simulation 

• Task 2: Representation of Uncertainty in the Expert judgment 

• Task 3: Propagation of the Uncertainties Through the Whole Model 

• Task 4: Conduct a Trial Uncertainty Analysis 

This paper discusses the work on Task 1, specifically the incorporations of uncertainties 

in the simulation part of the overall model through Bayesian simulation techniques. 

The content of this paper is as follows. Section 2 outlines a study of the San 

Francisco Bay ferries. We will use this study to demonstrate the developments proposed 

herein.  The modeling of input uncertainty is discussed in Section 3. A method for 

modeling output uncertainty is discussed in Section 4 and the format of the display of 

these results is outlined in Section 5.  These techniques are used to create a Bayesian 

simulation of the San Francisco Bay maritime transportation system in Section 6. The 

impact of epistemic uncertainty on the results for the current ferry system and the 

comparison of the expansion alternatives are discussed in Sections 7, 8 and 9. 

Conclusions and areas for future research are given in Section 10. 
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2. Case Study: Expansion of the San Francisco Bay Ferries 

As an example of the application of uncertainty analysis in a maritime simulation model, 

we will extend an analysis performed for the San Francisco Bay Water Transit Authority 

[45]. In an effort to relieve congestion on freeways, the state of California is proposing to 

expand ferry operations on San Francisco Bay.  The three proposed expansion scenarios 

are: Alternative 3: Enhanced Existing System; Alternative 2: Robust Water Transit 

System and Alternative 1: Aggressive Water Transit System. From these, Alternative 3 is 

the least aggressive expansion scenario and Alternative 1 is the most aggressive one. As 

part of the analysis, a simulation of the maritime transportation system in San Francisco 

Bay was used to assess the effect on the level of vessel interactions of proposed changes 

[44]. A simulation model was created capable of estimating the increase in the number of 

vessel interactions in the current system as well as in three alternative expansion plans. 

Figure 1 shows a snapshot of San Francisco Bay in the simulation. For a more detailed 

look, movies of the simulation for each of the cases can be viewed at 

http://www.people.vcu.edu/~jrmerric/SFBayMovies/. 

Due to time and budget constraints a full-scale risk assessment, such as the previous 

work in the PWS or WSF Risk Assessments, was not feasible. Instead, to assess the 

impact of aggressive ferry expansion, the scope of the San Francisco Bay study was 

limited to the simulation part of the model, leaving the accident probability part to a later 

project if the expansion proposal is approved. The output of the model is a map showing 

the frequency of interactions across the study area, representing the level of congestion 

under each alternative.  Figure 2 shows the results of the simulation for the current ferry 

service. 
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This analysis models the aleatory uncertainty about the traffic patterns through the 

simulation model, but does not address sources of epistemic uncertainty, making it a level 

4 analysis on Pate-Cornell’s scale. However, the analysis of the current ferry service and 

a comparison of four proposed alternatives were submitted to the legislature as part of the 

overall analysis and will be used in the expansion decision. The incorporation of 

uncertainty in the simulation of San Francisco Bay will allow the implementation of the 

framework developed in a situation where the results will have meaning without having 

to first complete the other tasks in the project. While the main intellectual merit of this 

work is the development of an overarching framework for including uncertainty in the 

assessment of maritime risk, Bayesian simulation analysis techniques have only been 

proposed in theoretical settings, thus their use in a large complex system may be 

considered state of the art in the field of computational sciences. 

3. Modeling Input Uncertainty 

Input uncertainty should be incorporated in the analysis to reflect the limited data 

available to populate the parameters of the arrival processes in a simulation model [41]. 

In the San Francisco Bay study, if we consider traffic arrivals to the system only, there 

were 5,277 separate arrival processes for various types of vessels and routes [45]. These 

arrival processes can be modeled by the standard renewal process [46], with a probability 

distribution chosen to model the inter-arrival times. Historical inter-arrival times are 

calculated from data supplied by the Vessel Traffic Service on Treasure Island. Let 

k
m

k
kTT ,,1 …  be the km independent inter-arrival times for the k -th arrival process 

( 5277,,1…=k ).  
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In a classical simulation approach, the probability model is usually chosen by 

determining best estimates of the parameters from the data for several possible families 

of distributions and comparing the fit of each distribution to the data using fit statistics 

such as the Andersen Darling, Chi-square or Kolmogorov-Smirnov statistics [46]. 

Suppose ),|( 11
kk tF Θ ,… )|( k

p
k
p tF Θ  are p  families of probability distribution, such as the 

exponential, Weibull, gamma or log-normal distributions. The superscript k is included 

throughout as each arrival process can be modeled by a different probability distribution 

and will certainly have different parameter values. Best estimates of each set of 

parameters, k
jΘ̂ , are obtained from the data { }k

m
k

m
kkk

kk tTtTD === ,,11 … , using maximum 

likelihood, method of moments or other estimation procedures. The best fit distribution is 

then chosen by taking either the fitted distribution with the lowest appropriate fit statistic 

or at least a fitted distribution that is not rejected by the corresponding hypothesis test and 

that has desirable properties, such as simple manipulation of the mean or variance. Thus 

aleatory uncertainty is modeled by the renewal process, but as only best estimates are 

used for the parameters of the generating probability distribution, the uncertainty about 

their true values is not included in the model. 

Under the Bayesian paradigm, prior distributions are specified for the parameters of 

the postulated distributions, denoted by )(,),( 11
k
p

k
p

kk ΘΘ ππ … , and the data is used to 

update these priors using the standard Bayesian machinery to obtain posterior 

distributions denoted by )|(,),|( 11
kk

p
k
p

kkk DD ΘΘ ππ … . To demonstrate, Bayesian 

updating procedures let us consider container ships arriving from an offshore anchor 

point passing under the Golden Gate Bridge and birthing in the Oakland Outer Harbor. 

Overall 176 such transits occurred from 7/31/1998 and 12/31/2001, with an average of 
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4.44 days between transits. We will consider the exponential distribution. For the 

exponential distribution with parameter kλ , the gamma distribution is a natural conjugate 

prior for kλ . That is, if kλ  is assumed a priori to be drawn from a gamma distribution 

with shape parameter ka  and scale parameter kb , then after updating with the inter-

arrival time data, kλ  will be gamma distribution with shape parameter 
1

km
k k

ia t+∑  and 

scale parameter k kb m+ . For our container route, we assume a vague prior by setting 

0.001ka =  and 0.001kb = , which corresponds to a prior mean of 1  and a prior variance 

of 1000 . For this route, 44.781
1

=∑
km

k
it  and, as previously mentioned, 176=km , thus a 

posterior, 781.441ka =  and 176.001kb = . In the simulation, inter-arrival times for this 

process could then be sampled by first sampling from a gamma distribution with shape 

441.781  and scale 001.176  to obtain a sample for kλ  and then sampling from an 

exponential distribution with the parameter set to the sampled value of kλ  (Chick 2000). 

Equivalently, inter-arrival times could be sampled from a Pareto distribution with shape 

441.781  and scale 001.176 [2, ch. 4]. 

The most difficult problem in the Bayesian approach is choosing the best fitting 

probability model. Recent work in the field of Bayesian statistics has included criteria 

such as Bayes factors [47], posterior predictive densities [48] and the recently proposed 

Decision Information Criterion [49]. We will demonstrate the use of the Decision 

Information Criterion (DIC). The Bayesian deviance is defined as 

)(ln2)|(ln2)( kk
j

kk
j DfDpD +Θ−=Θ  
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where )( kDf  is some fully specified standardizing term that is a function of the data 

alone and thus does not affect the model comparison. The model fit is then represented by 

=D  ]|)([ kk
j DDE Θ , the expected Bayesian deviance after updating with the available 

data. An estimate of the effective number of parameters is given by =Dp  

])[(]|)([ k
j

kk
j EDDDE Θ−Θ , the difference between the expected Bayesian deviance after 

updating with the available data and the Bayesian deviance calculated at the expected 

value of the parameters after updating with the available data. The DIC is then equal to 

DpD − , the model fit penalized by the number of parameters of the model.  

To demonstrate this approach to the choice of probability distribution, we will 

compare the exponential, Weibull, gamma and log-normal distributions for the arrival 

process discussed above, with appropriate vague priors chosen for the parameters of each 

distribution. Table I shows the DIC results. The calculations in Table 1 were performed 

in WinBugs version 1.4 [50]. Notice that the effective number of parameters is quite 

close to the true number of parameters in the model, one for the exponential distribution 

and two for the rest. Overall, the gamma distribution has the best ranking, although the 

difference with the Weibull is negligible and could be explained by sampling error.  

The reader should note that we have not fully considered model uncertainty in our 

approach. The “winner” in the DIC competition is the only model used in the simulation 

even though the DIC statistic is based on finite data and so the “true” model is not 

known. Other approaches would be to use a mixture of potential inter-arrival time 

distributions [5] or to use a non-parametric choice, such as a Dirichlet process on the 

cumulative distribution function [51]. While more complete in their treatment of model 



10 

uncertainty, such approaches are simply not computationally feasible with such a large-

scale simulation model. Hence our less computational approach. 

The next question is how to propagate this input uncertainty through the 

simulation to the outputs of interest. The sampling algorithm can be stated as follows 

[40,44]: 

For r =1, …, n replications: 

1. Sample values of k
*Θ , the parameters of the chosen probability model 

conditioned on the available arrival data, for each arrival process 

( 5277,,1…=k ) to be used in the r-th replication,. 

2. For the r-th replication: 

a. Sample random variates for the inter-arrival times given the parameter 

values drawn for each k
*Θ ; 

b. Generate the simulation output that is determined by these random 

variates. 

End loop 

Thus for our exponential distribution example, we sample values for each kλ  from the 

corresponding gamma distributed posterior distribution given the inter-arrival time data. 

These values are then used throughout a replication to sample from the exponential inter-

arrival time probability model.  New values for each kλ  are used for each replication. We 

should note that this implies that each value of the outputs of interest represents only 

aleatory uncertainty; to examine epistemic uncertainty, one must run a sufficient number 

of replications to cover the range of the posterior distributions on the parameters of the 

input probability models.  
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4. Modeling Output Uncertainty 

In our risk assessment methodology, the quantity of interest is the yearly number of 

vessel interactions; the data obtained from the simulation in each replication will be the 

number of vessel interactions occurring in each replication of the simulation, denoted 

rN , for the r -th replication. In the analysis of output data, the focus of Bayesian 

simulation research has been on estimating means of important output statistics, rather 

than attempting to define its probability distribution. Bayesian Model Averaging is the 

commonly used term when the average of the s  output statistics obtained from the 

simulation is used to estimate the statistic’s expected value.  

However, as we wish to propagate uncertainty throughout the model, a probability 

model will be hypothesized for the output statistic. The output values for the replications 

of the simulation are treated as data to update the prior distributions on the output statistic 

model’s parameters. Chick [41] notes that this can be thought of as a Bayesian version of 

metamodeling [46]. Such treatment of output data flows naturally in to a decision-

analytic handling of choosing the best system [40, 42, 44]. 

As our output data is in the form of a count, the number of vessel interactions can be 

naturally modeled using a Poisson distribution with rate µ , with a conjugate gamma 

distributed prior on µ  with shape α  and scale β .  The likelihood function for 

s replications of the simulation, µµµ −

=
∏=== e

n
nNnNL

s

i i

n

ss

i

1
11 !

),,|( … , is used to update 

the prior (usually a vague prior) with the simulated data. The posterior distribution of the 

vessel interaction frequencies will be a gamma distribution with shape ∑
=

+
s

i
in

1

α  and 
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scale s+β .   This distribution includes the epistemic uncertainty about the expected 

number of interactions, while the Poisson distributed probability model represents the 

aleatory uncertainty about the actual number of interactions in a given year. 

5. Format of the Results 

There are several useful ways of portraying the information contained in this analysis. 

We will depict the frequency of vessel interactions each alternative in aggregate as well 

spatially across the study area for. However, we will also depict the differences between 

the alternative ferry systems in the alternatives. To accomplish this aim, one can compare 

the distribution of the expected number of interactions in a given period across different 

geographic locations in the study area or across different alternative simulations. These 

distributions will incorporate the aleatory uncertainty as they are obtained from the 

simulation and the epistemic uncertainty as Bayesian simulation was used. 

We create maps of the quantiles of the expected rate of interactions in each of a grid 

of cells across the San Francisco Bay. These maps were the main output format used in 

the original study as they allow decision makers to assess the risk across the system 

(Figure 2); the addition of uncertainty through quantile maps allows decision-makers to 

assess the impact of uncertainties on the conclusions they draw from these maps. If we 

denote ],[ yxaµ  as the expected number of interactions in the grid cell indexed by x  and 

y  for alternative a , then we will create maps of the 5th, 50th and 95th percentiles of the 

posterior distribution of the ],[ yxaµ ’s for each alternative. 

Other comparisons are possible comparing the current ferry system, or Base Case, to 

the three proposed expansion alternatives. This comparison can be made in aggregate 
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using the posterior distribution of the yearly total expected number of interactions in the 

whole system for each alternative. However, more detail can be obtained by comparing 

the yearly expected number of interactions in each of the grid cells across the San 

Francisco Bay. We will calculate the probability that the rate in a given grid cell in one 

alternative is greater than or equal to that for the same cell in another alternative. 

Following the above notation, we wish to calculate ]),[],[( yxyxP ba µµ >  for all grid 

cells indexed by x  and y  and all combinations of alternatives a  and b . These maps can 

be called probability dominance maps and can give decision-makers a great deal of 

information as they not only indicate when one alternative is likely to have more 

interactions, but also the level of certainty in this assertion. As ]),[],[( yxyxP ba µµ >  

cannot be obtained in closed form for the gamma distribution, we use sampling 

approximations by sampling iteratively from ],[ yxaµ  and ],[ yxbµ  and calculating the 

proportion where ],[],[ yxyx ba µµ > . 

6. A Bayesian Simulation of San Francisco Bay 

We created a simulation of the San Francisco Bay maritime transportation system using 

the Bayesian approach to input analysis by modifying the program used in the original 

study [45]. All non-ferry traffic, except scheduled regattas, was modeled in the manner 

discussed in the previous section. As there are 5,277 arrival processes and as this is a 

demonstration, we chose the exponential distribution to model the inter-arrival times for 

each process. As the sufficient statistics necessary to perform such an update are ∑
km

k
it

1

 

and km , we could perform a database query on the San Francisco Bay Vessel Traffic 
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Service’s log of transits to obtain these quantities. As the sum of the inter-arrival times is 

the same as the time between the first and last arrival in the database, the query returned 

the first arrival, the last arrival and the total number of log entries for each combination 

of vessel type, origin and destination. Thus the posterior distribution of the rate of arrivals 

could be easily obtained.  

To implement our approach within the simulation, code was added to the 

simulation that sampled from the posterior distribution of each kλ  prior to each 

replication of a year. Within each replication, samples were taken for the inter-arrival 

times from exponential distributions with parameters set to the sampled values for kλ . In 

the existing simulation, the ferry transits for the current ferry system and each of the 

alternatives were based on a fixed schedule. Visibility and wind conditions were 

incorporated by tracing large databases of environmental data obtained from National 

Oceanographic and Atmospheric Administration (NOAA) observation stations in the 

study area. The vessel interaction counting methodology was also programmed in to the 

simulation. For further details of these existing pieces of the model, we refer the reader to 

our previous work [45]. 

Within the simulation, a snapshot of the system is calculated for each simulated 

minute based on the previous snapshot, randomly drawn new vessel arrivals and the 

environmental conditions models. All ferries in the system are considered one at a time to 

search for possible interactions with collision potential. For each ferry, the track of the 

ferry is compared to the track of each other vessel in the simulation and the time to cross 

is calculated. If the crossing occurs close enough to the ferry and will occur in the next 15 
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minutes, an interaction between the two vessels is counted. These counts are then used to 

update the output meta-model. 

One drawback of this simulation-based approach is its heavy computational load. 

Running 50 years of Alternative 3 took 24 hours on a high-end, multi-processor 

workstation. Even 10 years of Alternative 1 took 30 hours, so a full 50 years would have 

taken almost 6 days. While snapshot calculation time increases linearly with the number 

of vessels in the simulation, the search for interactions increases exponentially with the 

number of ferries as each ferry’s track must be compared to each other vessel’s track, 

including other ferries. In the later stages of a risk assessment, multiple such runs must be 

run for a complete analysis. With such long run times, this is not currently feasible. We 

intend to study the possibilities for spreading the computational load across a network of 

less expensive computers. This will allow the implementation of these techniques without 

prohibitive hardware costs. However, the current simulation code is simply made as 

efficient as possible with careful programming. For instance, the program uses databases 

for the ferry schedules performing a query for each simulated for that day’s schedule of 

transits. This makes the schedule determination more efficient. Results are accumulated 

in internal arrays and are only written to output files at the end of the run. However, there 

are no special tricks and no tasks that can be exploited with efficient algorithms.  

7. Uncertainty Results for the Current Ferry System 

The simulation was run for one replication of one day of the current ferry system, or Base 

Case, specifically July 3rd, a moderately busy Monday in the summer. We assumed a 

vague prior for the expected number of interactions in each grid cell, ],[ yxaµ , by setting 

each 001.0=α  and 001.0=β , which corresponds to a prior mean of 1  and a prior 
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variance of 1000 . In total there were 9,430 interactions in the simulated day. The 

posterior distribution of each ],[ yxµ  was calculated and summed over all x  and y  to 

find the posterior distribution of the total expected number of interactions. This 

distribution has a median of 9,430 interactions, a 5th percentile of 6802 interactions and a 

95th percentile of 12,711 interactions. 

To reflect the results across the grid of cells, 5th, 50th and 95th percentile maps 

were created (Figure 3). The box at the center of the map surrounds the ferry building in 

San Francisco. The accompanying count shows the percentage of the interactions that 

occur in this vicinity. One can see that with each replication simulating one day, there is 

considerable variability about this quantity. However, examining the color of the cells, 

with darker cells having more interactions, the colors do not change much from the 5th to 

the 95th percentile. There is a small change in the interactions on the northerly route, but 

the colors in the central bay area do not change. Thus any conclusions drawn from these 

maps are robust to the uncertainties in the simulation even with only one day simulations. 

Obviously, in such a risk assessment we do not perform such small numbers of 

replications. Furthermore risk can change throughout the year due to environmental or 

traffic pattern changes. Thus a full year of simulation is considered one replication and 

the quantity of interest is the expected yearly number of interactions. We performed 100 

replications of a year finding an average of 640,889 interactions per year. The posterior 

distribution of the total yearly expected number of interactions has a median of 640,889 

interactions, a 5th percentile of 640,417 interactions and a 95th percentile of 641,359 

interactions, indicating a small range of uncertainty. Figure 4 shows the 5th, 50th and 95th 

percentile maps for the 100 replications of a year.  There is very little variability either in 
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the count of interactions in the ferry building area or in the colors of the grid cells. Thus 

all conclusions drawn from the Base Case analysis are robust to the inherent uncertainty. 

8. Uncertainty Results for the Aggregate Alternatives 

Comparison 

100 replications of one day were simulated for the base case and each of the three 

alternatives to obtain the posterior distribution of the number of interactions in the 

simulated day (again July 3rd). Figure 5 shows the comparison, plotting the median of this 

distribution against the total number of ferry transits in each simulation. Error bars are 

also added to indicate the range from the 5th to the 95th percentiles of the posterior 

distribution for each alternative. A major conclusion drawn from the original study in San 

Francisco Bay was that the number of ferry to vessels interactions grows exponentially 

with the number of ferry transits, not linearly, and thus the safety levels currently enjoyed 

by the San Francisco Bay ferry service cannot be maintained under the planned 

expansion scenarios without equally aggressive investment in risk intervention [44]. 

Figure 5 shows that this conclusion is not affected by the epistemic uncertainties in the 

results. Despite the replication of just one day for each alternative, the level of 

uncertainty in these posterior distributions is small relative to the large differences 

between the alternatives.  

Figure 6 reinforces this conclusion with 100 replications of a year for the Base Case 

and Alternative 3 and 25 replications of a year for the Alternatives 2 and 1 (due to the run 

time). The same error bars are included but are not visible on this scale. In the original 

study, we concluded that a linear increase in the number of ferry transits in the bay will 
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lead to an exponential growth in the number of interactions. This result shows that the 

conclusion is robust to the inclusion of epistemic uncertainty in the modeling process. 

9. Uncertainty Results for the Geographic Alternatives 

Comparison 

The aggregate analysis shows conclusive differences between the current ferry system 

and the three alternatives. Each addition of ferry transits results in additional interactions, 

with the growth being exponential not linear. However, is there more to these 

comparisons. Are these additions in certain areas or hot spots? Do some areas actually 

see fewer interactions? Examination of the probability dominance maps can give a more 

detailed picture of the differences between the alternatives. 

Figure 7 shows the probability dominance map for the Base Case compared to 

Alternative 3. These maps are easier to read in color, but are converted to grayscale here 

for reproduction. As indicated in the legend, black cells indicate almost certainty that 

Alternative 3 will see more interactions in that location than the Base Case, with less 

certainty shown in dark gray. Almost white cells show the reverse with almost certainty, 

while light gray indicates less certainty. The numbers of interactions in medium gray 

cells are not different between these two scenarios. That is, the posterior distributions of 

the expected number of interactions in a medium gray cell are almost identical between 

the two alternatives mapped. Thus, the probability that one is higher than the other is 0.5 

(50%) and corresponds to medium gray on the color scale. 

The majority of the grid cells in Figure 7 are black, reinforcing the conclusions 

from the aggregate results that Alternative 3 has significantly more interactions overall 

than the Base Case. However, there are some almost white cells showing the reverse 
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conclusion. The main area of white is around the Golden Gate Bridge and Richardson 

Bay. The ferries in this area are running from San Francisco to Sausalito and Tiburon or 

are tours around the Bay visiting the Golden Gate Bridge. The tours were unchanged 

from the Base Case to the alternatives. However, one problem with the schedules 

supplied for the alternatives was that they consisted of a start time, end time and time 

between ferries. For the Sausalito and Tiburon ferries, they start at 7 am and run every 30 

minutes until 10 pm during the week. At the weekend they run every 60 minutes. This is 

significantly more than in the Base Case, but this means that there are definite patterns to 

the transits that are not reflective of a more mature schedule. These ferries do not interact 

as much because of the timing of the transits. However, the number of interactions in this 

area is very low relative to other areas of the Bay. This is also shown on the northerly 

routes to Larkspur and Vallejo. The almost white in the middle of the black area is 

actually on the ferry routes. There are only certain places where ferries going in different 

directions meet due to the schedule (the black cells along the route). In other parts of the 

route fewer interactions occur (almost white cells). 

Figure 8 shows another comparison of interest, Alternative 2 versus Alternative 1. 

This map is easier to understand. Alternative 1 has a number of additional routes that run 

the length of the study area from the northeast to the south. Along the center of the 

navigable area there are more interactions in Alternative 1, indicated by the large areas of 

black. Around the black cells there are some thin bands of dark gray, indicating some 

uncertainty. However, away from the center and along routes that remain the same 

between the two alternatives, the numbers of interactions are the same, indicated by 
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medium gray cells. Around the edges other colors appear, but this is a result of a very 

small number of interactions even over the 10 replications of a year. 

10. Conclusions 

A Bayesian approach to simulation modeling has allowed the treatment of epistemic 

uncertainty concerning the movements of non-ferry traffic as well as the aleatory 

uncertainty captured by the simulation model itself. We reviewed a Bayesian approach to 

analyzing input data and developed a Bayesian meta-model that allowed for interesting 

and useful output formats depicting the output uncertainty. In particular, we used this 

approach to examine the impact of uncertainty on the conclusions drawn in a study of 

proposed ferry service expansions in San Francisco Bay. We used maps of the percentiles 

of the posterior distribution of the expected number of interactions across the study area 

to show that conclusions drawn from these geographic profiles of vessel interactions are 

robust to the inherent uncertainties. Further maps were developed that showed the 

probability that one alternative would have more interactions than another over the study 

area. These maps allowed for detailed comparisons of the alternatives. 

 As mentioned in the introduction, the work discussed herein represents the first 

task necessary for a full-scale maritime risk assessment considering both aleatory and 

epistemic uncertainty. The next task is to develop a Bayesian accident probability model 

incorporating historical accident and incident data and expert judgments. The accident 

probability model must then be integrated with the output meta-model from the 

simulation for full scale risk results, another highly computational task. This work is 

forthcoming. 
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Table I. The Decision Information Criteria values for the chosen arrival process. 

 D  Dp  DIC  
exponential 
 

877.778 1.010 878.787 

Weibull 
 

838.202 1.750 839.952 

gamma 
 

837.349 2.025 839.374 

log normal 
 

847.737 1.999 849.736 
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Figure 1. The simulation of San Francisco Bay. 
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Figure 2. The simulation results for the current ferry system. 
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 Figure 3. 5th, 50th and 95th Percentiles of the Daily  

Expected Number of Interactions in the Base Case. 
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Figure 4. 5th, 50th and 95th Percentile Maps of the Yearly  

Expected Number of Interactions in the Base Case 
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Figure 5. Daily Expected Number of Interactions for the Four Scenarios with 90% 

prediction intervals.  
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Figure 6. Yearly Expected Number of Interactions for the Four Scenarios with 90% 

prediction intervals (not visible).  
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Figure 7. Base Case compared to Alternative 3 
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Figure 8. Alternative 2 compared to Alternative 1 

 


