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Abstract

Monte Carlo simulation of project networks is increasingly used by engineering firms to analyze schedule/cost risk for
bidding purposes. However, one serious methodological flaw of most Monte Carlo simulations is the assumption of
statistical independence of activity durations in the network. In this paper, a method is proposed to model and quantify
positive dependence between uncertainty distributions of activities. This method inherits the theoretically sound
foundations of the rank correlation method, but provides a less cumbersome method to elicit dependency information
from project engineers. Details of the methodology are described along with an example of project risk analysis in
a manufacturing domain (shipbuilding). ( 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction

Risk analysis on project networks is defined here
as the quantification of uncertainty in project
schedule. When activity durations are deterministi-
cally known, the Critical Path Method (CPM) is
a straightforward and well known method for
quantifying project schedule. However, quantifying
uncertainty in project schedule resulting from ac-
tivity duration uncertainty in closed form is still
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difficult. As a result one resorts to Monte Carlo
simulation of the project networks: realizations of
the activity durations are drawn from their uncer-
tainty distributions after which quantification of
project schedule follows using the CPM method.
By executing this step repeatedly, an arbitrarily
large number of realizations of project completion
time may be generated allowing inference of its
uncertainty. In addition, cost uncertainty with
time-dependent effects can also be quantified by
secondary calculations in the project network.

In general, a risk analysis is desired for large
projects that have not been executed before and
therefore involve a lot of uncertainty in project
schedule and project cost. While some hard histori-
cal data may be available, mainly past experience of
project engineers with similar projects is used to
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populate the parameters of the risk analysis model.
A project network P is generally represented as
a tuple (A, N), where A is a set of activities and
N is a set of events modeling the transitions be-
tween the activities. When assuming uncertainty of
the activities in the set A, probability distributions
are used to model the individual uncertainty in the
duration of each activity. In the discussion that
follows, these distributions will be referred to as
marginal distributions. The beta distribution has
been proposed as a marginal distribution in the
past for the Project Evaluation Review Technique
[1]. Although the beta distribution is flexible, speci-
fication of its parameters may not be straightfor-
ward for project analysts. The triangular
distribution has also proven popular among pro-
ject analysts due to its simplicity [2]. Parameters of
a triangular distribution are readily obtained
through elicitation of a lower bound, upper bound
and a most likely estimate from project engineers.

To assist decision-making during the design
stage, Monte Carlo simulation for this type of net-
work has begun to be used by some front-running
companies in manufacturing, construction, power
and other industries. Applications being explored
include internal approval and/or external bidding
for multi-million dollar projects [3]; comparison of
design alternatives; assessment of schedule risk in
supplier chains; and contract design for schedule-
related penalty clauses and payment milestones.
Typically in industry, these Monte Carlo simula-
tions are conducted using risk analysis extensions
to commercial CPM-based software which have
only just become available in the past few years
[4,5] along with faster/cheaper hardware which
makes implementation viable. Other project net-
work simulation packages have been available
much longer [6,7], but without widespread com-
mercial industry interest. While the increasing use
of quantitative risk analysis for engineering
projects is encouraging, it also necessitates a re-
examination of some of the underlying method-
ological assumptions. This paper specifically
addresses one serious methodological flaw in tradi-
tional Monte Carlo simulation of project networks:
the assumption of statistical independence for indi-
vidual activities which share risk factors in com-
mon with other activities in the set A. A more

general discussion of risk analysis methodology
issues (including cost modeling) and a proof-
of-concept software tool developed by the authors
are described in Duffey et al. [8].

2. The statistical independence assumption

Given (A, N), the uncertainty in project sched-
ule is completely defined when the uncertainty in
the activity durations has been quantified. To do
this, the multivariate distribution between uncer-
tainties in the activity durations must be specified.
It is not uniquely defined by just modeling the
marginal distribution of the uncertainty in each
activity duration, yet most available software pack-
ages fail to indicate this fact and elicit only the
marginal distributions from the user to generate
uncertainty distributions for project schedule.
This is the assumption of statistical independence,
i.e. that the marginal distributions of uncertainty
for individual activities in the set A completely
define the multivariate distribution for project
schedule.

It is intuitively obvious that this assumption is
highly suspect for many large engineering projects
which involve multiple activities of a similar type
and/or have different activity types which are in-
fluenced by common risk factors. As an example in
a manufacturing domain, consider production
activities being planned for an as-yet untested, in-
novative ship design [8]. Many hull modules might
require very similar activities for structural fabrica-
tion, for which engineers can identify one or more
common risks due to a new robotic welding tech-
nique, alignment problems during erection, or
potential engineering change orders (ECOs) due to
design problems. Alternately, there may be dissim-
ilar activities which are collectively influenced by
some external risk factor. An example would be risk
of bad weather for painting, outfitting of piping and
electrical systems and other activities scheduled
under the “open sky” in the same time period. As
will be demonstrated, failure to model such types of
risk dependence during Monte Carlo simulation
can result in the underestimation of total uncer-
tainty in project schedule. Consider a single simula-
tion run of a two-activity network with identical
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uncertainty distributions: values sampled indepen-
dently from the two activities would be equally
likely to occur anywhere in the uncertainty range:
one may be high and the other low, as well as both
low (or high). As a consequence, any cumulative
effect of a common risk factor will be neglected, and
may even cancel out completely. In small networks
this effect might not be disastrous, but as the size of
the network grows the underestimation will in-
crease. As a practical consequence, management
could decide to invest in a particular project due to
a misrepresentation of the level of uncertainty in
project schedule/cost.

The form of dependence described here, in which
large values of one marginal distribution tend to be
associated with large values of another marginal
distribution, is known as positive dependence and
has long been recognized [9]. It will be argued that
this form of dependence may be most appropriate
to model statistical dependence between the activ-
ity durations in project networks. Regardless of
what form of dependence is chosen to model the
statistical dependence, a complete multivariate dis-
tribution for the uncertainties in the activity dura-
tions needs to be specified. To do this, it is desirable
to separate the modeling of the marginal distribu-
tions and the dependence effects. Marginal distri-
butions are readily obtained using existing practice
to elicit parameters for triangular or beta distribu-
tions from project engineers. A method to correlate
dependency effects seperately is desirable.

Recent work in project risk analysis [2] specifies
one method for modeling dependence between
a small group of uncertainty distributions through
rank correlation methods [10], allowing the mar-
ginal distributions to be specified separately. Rank
correlations between uncertainty distributions were
first introduced by Spearman [11]. The rank cor-
relation measures a degree of positive dependence
and is invariant under non-decreasing transforma-
tion of the uncertainty distributions. Kruskal [12]
mentions that due to this invariance the rank
correlation is an appropriate measure of positive
dependence. However, specifying the degree of
dependence through rank correlations using pro-
ject engineers is difficult. Although theoretically
sound, the measure is difficult to interpret even for
project analysts with a strong background in prob-

ability and statistics. The other difficulty is sheer
size: degree of dependence is typically specified by
degree of correlation through a correlation matrix.
A small network of 100 activities would ask for
10 000 correlations to be specified. Vose [2] recog-
nizes these difficulties, and as an alternative he
proposes the graphical envelope method. In the
envelope method historical data regarding two ac-
tivity durations is plotted in a scatter plot and two
bounding lines (the envelopes) are drawn such that
all data points are contained within the lines. When
a realization is sampled for the one activity dura-
tion, the sample of the other activity duration is
sampled between the bounding lines. However,
even though the envelope method might work for
a small number of uncertainty distributions, it lacks
the theoretical foundation of rank correlation
methods and does not seem to offer a structured
approach for dealing with large sets of dependent
uncertainty distributions.

To summarize, the importance of relaxing the
independence assumption has been clearly recog-
nized by authorities on project risk analysis meth-
odology [2,13]. However, techniques to model
statistical dependence have not yet been incorpor-
ated into most of the popular commercial software
packages for Monte Carlo simulation of project
networks. The reasons for this may be two-fold.
First, while project analysts increasingly model un-
certainties in activity durations using distributions
like the beta and the triangular, many project
decision-makers remain generally skeptical of
quantitative methods. This skepticism would even
be higher when dealing with an issue more abstract
than uncertainty (statistical dependence). Second,
having convinced a project analyst to model de-
pendence, the degree of dependence needs to be
specified. Due to the difficulties in existing methods
described above, even highly motivated project
analysts would be discouraged by such a task and
resort to assuming statistical independence.

To address the limitations described above,
a methodology is described below which: (1) offers
a structured approach for modeling dependence
between large sets of uncertainty distribution,
(2) allows the marginal distributions to be specified
separately, (3) inherits the theoretical foundations
of the rank correlation methods, (4) asks for a
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dependence measure which can be interpreted by
project engineers (5) asks a number of dependence
measures to be specified that is only as large as or
smaller than the total number of activities in the
project network and finally (6) samples efficiently
from the resulting multivariate distribution.

3. A statistical dependence model for project
networks

To model the statistical dependence between the
uncertainties in the activity durations a multivari-
ate distribution of the uncertainties in the activity
durations need to be modeled. Assuming that the
marginal distributions are to be specified separate-
ly, the two extremes in this case are: (1) assuming
statistical independence between the marginal dis-
tributions and (2) specifying a complete multivari-
ate distribution exhibiting dependence with the
pre-specified marginal distributions as its mar-
ginals. In the previous section, it was argued that
the first extreme may be specious. The second
extreme is generally achieved by specifying a multi-
variate distribution of a known family (e.g. the
multivariate normal family) with a particular rank
correlation matrix. This known distribution may be
easily transformed in a multivariate distribution on
a unit hypercube having uniform distributions on
[0, 1] as its marginals. Using standard distribution
theory, any absolute continuous marginal distribu-
tion may be derived from the uniform marginal by
an appropriate transformation. As the rank cor-
relation is invariant under non-decreasing trans-
formations, the rank correlation matrix of the
transformed multivariate distribution is the same
as the one initially specified. Note that this asser-
tion is not true for the correlation matrix (as op-
posed to rank correlation matrix) of the initially
specified multivariate distributions. Pathological
examples exist where initially the correlation
between two random variables is 1, but after trans-
formation the correlation between the random
variables is 0. The second extreme has the disad-
vantage that even for a small number of activities
(e.g. 100) a rank correlation matrix has to be speci-
fied with 10 000 elements. Even if project engineers
would be able to estimate such a matrix, the esti-

mated matrix has to be a positive-definite matrix.
In general, the estimated matrix turns out to be not
positive definite and a modification method has to
be specified to modify the estimated rank correla-
tion matrix into the closest positive-definite matrix.
All in all, the second extreme, though theoretically
sound, seems not practical enough to be used by
project analysts.

Between the extremes cited above, an intermedi-
ate method can be considered which: (1) assumes
independence between marginal distributions by
default but (2) allows joint distributions for subsets
of uncertainty distributions which share common
risk factors. Such a method was developed for
modeling dependencies between uncertainty distri-
butions in Van Dorp [14]. This method was imple-
mented in the prototype software package
UNICORN [23] and was used to estimate damage
the Dutch Dike System due to the flooding in
Spring 1995. The resulting multivariate distribu-
tion exhibits a known form of positive dependence.
An additional advantage of a multivariate distribu-
tion exhibiting a known form of positive depend-
ence is that for these types of distributions, a rank
correlation of 0 does imply statistical indepen-
dence. The multivariate distribution introduced in
Van Dorp [14] is constructed in two steps. First,
assumptions of independence need to be specified
and second the joint distribution needs to be speci-
fied between the remaining dependent random
variables.

3.1. Assumptions of conditional independence given
a common risk factor

The assumptions of independence in Van Dorp
[14] uses the idea of latent variable models [15].
Latent variable models and factor analysis have
found wide application in the behavioral sciences
[16]. A classical example of a latent variable model
is the following; consider a person performing two
different types of valid IQ tests. Clearly, depending
on the intelligence of the person the results of the
IQ tests would be both high or both low. Prior to
the execution of the tests the outcome of the tests
may be modeled as random variables which are
clearly positive dependent. The source of positive
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dependence is the unknown IQ level of the person
executing the test. In a latent variable model, the IQ
level would be identified as the latent random vari-
able. The crucial assumption in Latent variable
models is that were we to know the IQ level exactly
prior to the execution of the intelligence test, the
outcome of the tests are assumed independent. This
latter assumption is known as the assumption of
conditional independence.

The idea within latent variables models that un-
known variables are the source for the statistical
dependence can be applied to project risk analysis.
A more appropriate name for such latent variables
would be common risk factors. Take for example,
the painting of four equal sized outside walls of
a house by four different painters. Each painting of
a wall may be identified as a separate activity.
Assume the duration of each activity is heavily
affected by the weather situation at the time of
painting. The unknown weather situation can be
identified as the common risk factor between the
four activities. It seems reasonable to assume that,
were we to know the exact weather situation at the
time of painting that the uncertainties in the dura-
tion of each activity are independent. The idea of
common risk factors or common causes is not new
and has already found wide appreciation in risk
analyses methods like fault tree analysis for chem-
ical and nuclear power plants [17,18]. In fact, it is
the predominant reason to apply the technique of
diversification when designing redundancy in such
plants for safety reasons. Brainstorming sessions
are generally used in such applications to identify
the common causes. Accordingly, brainstorming
sessions involving project engineers may be used to
identify the common risk factors for a particular
project. Let the set of common risk factors be
denoted by F and each individual risk factor be
denote by F

i
. Next, the set of activities A needs to

be divided in the brainstorming session into dis-
joint subsets A

i
such that each subset A

i
is pre-

dominantly affected by the risk factor F
i
. The

subset of activities A
i
may be identified as the risk

group with common risk factor F
i
.

The assumptions of independence are formalized
in the method in Van Dorp [14] through depend-
ence diagrams. A dependence diagram is a directed
graph (R, D) where R is a set of random variables

and D is a set of arcs defining the dependence
between the random variables. Let R be Mr

1
,2, r

n
N.

Let (r
i
, r

j
) be an arc in D. Then r

i
is an immediate

predecessor of r
j
and r

j
is an immediate successor of

r
i
. Let P(r

j
) be the set of immediate predecessors of

r
j
, j"1,2, n and S(r

i
) be the set of immediate

successors of r
i
, i"1,2, n. Let R(R, D) be the set

of random variables such that DP(r
j
)D"0. That is,

R(R, D) is the set of root nodes of the directed
graph.

Definition. A dependence diagram is a directed
graph (R, D) such that

— Nodes represent random variables while di-
rected arcs indicate positive or negative depend-
ence between end nodes of the arc.

— The random variables r
i
3R(R, D) are indepen-

dent random variables.
— ∀r

i
3R: DP(r

j
)D3M0, 1N.

— ∀r
i
3R:r

j
3S[r

i
] are independent given the state

of the immediate predecessor.

Typically when using dependence diagrams in pro-
ject risk analysis, the set of root nodes R(R, D)
would be the set of common risk factors F. Fig. 1
contains an example of such a dependence diagram.

In Fig. 1, activity durations in the risk group
consisting of A

1
, A

2
and A

3
are independent given

the state of the common risk factor F
1
. The risk

group consisting of A
4
, A

5
and A

6
is independent

given the state of the common risk factor F
2
. The

state of the common risk factors F
1

and F
2

are
assumed independent.

As one practical example, consider a situation in
the shipbuilding domain. A

1
, A

2
and A

3
could be

uncertainties in activity durations required to paint
three separate modules of a ship in the same time
period and F

1
could be the severity of inclement

weather during those days. Were we to know the
weather situation at the time of painting a reason-
able assumption would be that A

1
, A

2
and A

3
are

independent. A
4
, A

5
and A

6
could be the uncertain-

ties in the activity durations concerning the fabrica-
tion and welding of these three modules that need
to be painted. F

2
could be the magnitude of Engin-

eering Change Orders (ECO) due to difficulty of
accuracy control with respect to these modules.
Again, were we to know the amount of ECOs in
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Fig. 1. An example dependence diagram.

advance, a reasonable assumption would be that
A

4
, A

5
and A

6
are independent.

3.2. Multivariate distributions between subsets of
uncertainty distributions

Consider the example in Fig. 1. Ultimately,
a multivariate distribution needs to be specified
between A

1
, A

2
, A

3
, A

4
, A

5
and A

6
. The marginal

distributions of A
1
, A

2
, A

3
, A

4
, A

5
and A

6
are

available and assumptions of conditional indepen-
dence were specified by introducing new random
variables, the common risk factors F

1
and F

2
.

Through the assumptions of independence, joint
distributions need to be specified between A

1
, A

2
,

A
3

and between A
4
, A

5
and A

6
.

If desired one may integrate over the common
risk factor F

1
to obtain the joint distribution be-

tween A
1
, A

2
, A

3
. There is one crucial advantage to

following this approach. Rather than having to ask
a project engineer about the joint distribution be-
tween uncertainties in the activity durations A

1
, A

2
,

A
3
, the project engineers, through the assumption

of conditional independence, can be asked about
the joint distribution between F

1
and A

i
,

i"1,2, 3. For the problem at hand with only
three variables this may not seem such a big ad-
vantage. In practical applications, however, it is
quite possible that 10 or more uncertainty distribu-
tions are affected by the same common risk factor.
Two disadvantages of following this approach are:
(1) to specify a joint distribution between F

1
and

A
i
, one would have to ask about the marginal

distribution of the common risk factor F
1

and
(2) to obtain the joint distribution between A

1
, A

2
,

A
3

one would have to integrate over the random
variable F

1
. As it turns out both disadvantages

may be eliminated.
Consider first specifying the joint distribution

(and thereby statistical dependence) between
F
1

and A
1

(a bivariate distribution). Note that the
marginal distributions for all A

i
, i"1,2, n, are

already specified by project engineers. A natural
modeling method to model bivariate distributions
with specified marginal distributions is the method
of Copula’s [19]. The joint distribution between
F
1
andA

1
with specified marginals for F

1
and A

1
is

uniquely determined by its associated Copula.
A Copula is a bivariate distribution with its mar-
ginals uniform distributions on [0, 1]. Sampling
from the joint distribution of F

1
and A

1
through

Copulas is straightforward. First, one samples a bi-
variate sample from the Copula and next trans-
forms the two realizations of the uniform variates
into realizations of F

1
and A

1
through the inverses

of their cumulative distribution functions. An addi-
tional advantage of using a Copula is that to create
a sample of A

1
, it is not necessary to know the

marginal distribution of F
1
. Instead, one could

sample a bivariate sample from the Copula and
only transform the uniform variate associated with
A

1
into a realization of A

1
. Note that the first

disadvantage of specifying the joint distribution
between A

1
, A

2
, A

3
through the common risk fac-

tor F
1

is eliminated. The elimination of the second
disadvantage of using the common risk factor F

1
is

addressed in Section 3.3.
There are numerous choices of families of one-

parameter Copulas that may be used to define the
bivariate distribution between F

1
and A

1
. Gener-

ally, after the correlation is defined between its two
uniform marginals, only a single parameter of the
Copula needs to be specified. As it turns out, the
correlation between the uniform marginals of the
Copula is exactly the rank correlation between
F

1
and A

1
. It was already argued that asking for

a rank correlation from project engineers is imprac-
tical as rank correlations are difficult to interpret.
The Copula we propose to use is the Diagonal
Band distribution first introduced by Cooke and
Waij [20]. We argue that the advantage of using
the Diagonal Band distribution is that: (1) it is
efficient to sample a bivariate sample from the
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Fig. 2. A diagonal band distribution seen from above.

Diagonal Band distribution and (2) the parameter
of the Diagonal Band distribution may be elicited
from project engineers through a quantity which
can be more easily interpreted. In addition, in Van
Dorp [14] it was shown that the driving factors in
two different uncertainty analyses projects using
other Copula’s as well as the Diagonal Band distri-
bution, were the marginal distributions for F

1
and

A
1
and the rank correlation between F

1
and A

1
, i.e.

not the choice of Copula modeling the bivariate
distribution.

Fig. 2 gives an example of a bivariate Diagonal
Band distribution D(º, ») of two uniform on [0, 1]
distributed random variables º and ». Let the
marginal cumulative distribution function of F

1
be

denoted by H and the marginal cumulative distri-
bution function of A

1
be denoted by G. It is well

known that H(F
1
), G(A

1
) are uniform random

variates on [0, 1]. Hence, in Fig. 2 º may be asso-
ciated with H(F

1
) and » may be associated with

G(A
1
). Let the parameter of the diagonal band

distribution be denoted by h. Fig. 2 also relates the
diagonal band distribution to its parameter h.

The probability density d(u, v) in Figs. 2 and 3 is
distributed as follows:

d(u, v)"

G
1

(1!h)
Area 1, Area 5 (end regions of diagonal band),

0 Area 2, Area 4 (i.e., outside diagonal band),
1

2(1!h)
Area 3 (rectangular region of diagonal band).

(1)

Note that (1) h"0 implies º and » are indepen-
dent, (2) h"1 implies º and » are identical and
(3) 0(h(1 specifies an intermediate degree of
positive dependence.

It may be derived that given the value u in Fig. 2,
the conditional distribution D(vDu) is a uniform
variate on the interval [a, b]. For values of u closer
to 0 and to 1 the conditional distribution is slightly
more complicated, but can be easily obtained.
Sampling a bivariate sample from a diagonal band
distribution with parameter h is straightforward.
The method is described below in pseudo Pascal.
First a sample u from a uniform random variate on
[0, 1] needs to be sampled. The associated value of
v is then sampled as follows:

Step 1: Sample v from a Uniform Random Variate
on [0, 1].

Step 2: a:"u!1#h; b:"u#1!h. (2)
Step 3: v:"(b!a) ) v#a.
Step 4: If v(0 then v:"!v;

If v'1 then v:"1!v.

The next section discusses a method to elicit the
dependence parameter h of the diagonal band dis-
tribution.

3.3. Eliciting the degree of dependence from project
engineers

The idea behind the dependence measure that
may be asked from project engineers lies in the
comparison of the conditional distribution D(vDu)
and the marginal distribution D(v), which is a uni-
form random variate on [0, 1]. The uncertainty in
D(v), and indirectly the uncertainty in A

1
, ranges

from 0 to 1 and covers 100% of the range of », and
thus 100% of the range of A

1
. For the case depicted

in Fig. 2, the uncertainty in D(vDu) that remains,
ranges from a to b which covers (b!a)% of the
range of ». It is argued that the above may be
interpreted such that 100!(b!a)% of the uncer-
tainty in », and therefore in A

1
is explained by

knowing the value of u, i.e. knowing the value of
the common risk factor F

1
. Again for values of

u closer to 0 and 1 the analysis is slightly different
but may be derived analogously. Averaging the %
explanation of º in », and therefore the %
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Fig. 3. Relations between the average % explanation, the diag-
onal band parameter and the rank correlation.

explanation of F
1

in A
1
, over all possible values of

u, yields

e"h2100% (3)

where e is the average % explanation of the com-
mon risk factor F

1
in the uncertainty of the activity

duration A
1
. Note, that when h"1, the average

% explanation is 100% which coincides with the
case of the diagonal band distribution where º and
» are identical. When h"0, the average % ex-
planation is 0%, which coincides with the diagonal
band distribution where º and » are independent.
A possible question to ask from project engineers to
solve for the parameter h in the case of the common
risk factor F

1
and uncertainty in activity duration

A
1

would be

Suppose you were to know the exact weather
situation at the time of painting the of the ship
modules, what percentage of your original uncer-
tainty in the duration is explained?

If the project engineer answers 0%, this means that
the weather has no influence on the uncertainty in
the duration. If the project engineer answers 100%,
this means that all his uncertainty in the duration is
explained by not knowing the weather at the time
of painting. If the project engineer answers X%, the
parameter of the diagonal band distribution fol-
lows as

h"S
X

100
. (4)

The interpretation of average % explanation by
project engineers can be further improved by devel-
oping an elicitation process.

Although this average % explanation e may still
be less than intuitive for project engineers, an elici-
tation procedure can be developed which calculates
e indirectly by querying the expert about observ-
able events (e.g., If the weather was X, what would
the uncertainty distribution be?). Even as is, it is
argued that e is easier to interpret than asking for
the rank correlation between the common risk fac-
tor F

1
and the uncertainty in the activity duration

A
1
. For illustration purposes Fig. 3 gives the rela-

tion between the average % explanation e, the

dependence parameter h, and the rank correlation
o(F

1
, A

1
). It can be derived that for a diagonal

band distribution with parameter h as the Copula
associated with F

1
and A

1
, the rank correlation

o(F
1
, A

1
) equals

o(F
1
, A

1
)"!h3#h2#h. (5)

Returning to the example dependence diagram in
Fig. 1, the question above would have to be asked
for every uncertainty in activity duration A

i
,

i"1,2, 3, with respect to the common risk factor
F

1
. The parameter for each diagonal band distribu-

tion may be easily solved using Eq. (4). Finally,
a sample from the joint distribution of A

i
,

i"1,2, 3, may be easily obtained using the rela-
tion to the common risk factor F

1
. The procedure

to create such a sample is described below.
A sample from the joint distribution of A

4
, A

5
and

A
6

may be obtained analogously. Note that,
a sample from the joint distribution of A

i
,

i"1,2, 3, is generated using the procedure above
without integrating the joint distribution of A

i
,

i"1,2, 3, and F
1

over the random risk factor F
1
.

Hence, the second disadvantage of using the com-
mon risk factor approach is eliminated.
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Fig. 4. Example project network P for production process.

Step 1: Sample u from a Uniform Random Variate.
Step 2: Sample v

i
from every diagonal band distri-

bution associated with F
1

and A
i

using
Eq. (2).

Step 3: Transform v
i
into a realization of A

i
using

the inverse of the cummulative distribution
function of A

i
. (6)

Following the approach presented here, (1) a
structured approach which uses risk factors to
model statistical dependence is offered, (2) the mar-
ginal distributions of the uncertainties in activity
durations can be specified separately, (3) the theor-
etical foundation of the rank correlation methods
as the parameter e can be easily converted in a rank
correlation, (4) a dependence parameter is asked
for from project engineers which may be better
interpreted than rank correlations, (5) the number
of parameters to specify the statistical dependence
is the same or less than the number of activity
durations and (6) sampling from the resulting
multivariate distribution is done in a computation-
ally efficient manner.

4. Example project risk analysis

To demonstrate application of the above method
to project network simulation, consider the small,
18-activity project network for a production pro-
cess in Fig. 4 (from a well known text on ship
design and construction [21]). Modern-day ship
production is a manufacturing domain in which
innovative design and build strategies require par-
ticular attention to risk factors that may impact
cost and delivery time. One major risk area is the
impact of engineering change orders (ECOs) and
rework. Engineering changes can come from a var-
iety of sources — owner-requested changes, inad-
equate design specifications, interface problems for
vendor-furnished equipment, etc.

To show the effect of dependence between the
activity durations, the dependence diagram given in
Fig. 5 has been used to evaluate the minimum
completion time of project P. To model the uncer-
tainty in each activity duration individually, the
triangular distribution has been used given the
parameters in Table 1. The sole risk source was
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Fig. 5. Dependence diagram used in project P to model dependence.

Table 1
Standard PERT analysis of project P

Activity Lower
bound

Most
likely

Upper
bound

Shell: loft 21 25 29
Shell: assemble 33 37 41
I.B. piping: layout 18 22 26
I.B. piping: fab 3 5 7
I.B. structure: loft 22 26 30
I.B. structure: fab. 14 18 22
I.B. structure: Assemb. 10 14 18
I.B. structure: install 5 7 9
Mach. Fdn.: loft 24 28 32
Mach. Fdn.: fabricate 31 35 39
Erect I.B. 26 30 34
Erect foundation 5 7 9
Complete 3rd DK 3 5 7
Boiler: install 5 7 9
Boiler: test 8 10 12
Engine: install 5 7 9
Engine: finish 16 20 24
Final test 11 15 19
Minimal completion time 117 144 174

assumed to be Engineering Change Orders. The
number on the arcs is the dependence parameter
e between the magnitude of Engineering Change
Orders (ECOs) and the uncertainty in the activity
durations. Activities with an uncertainty range with
less than 10 days were assigned an average % of ex-

planation of 50%. Activities with an uncertainty
range with more than 10 days were assigned an
average % of explanation of 75%. The associated
parameters of the diagonal band distributions may
be easily solved for using Eq. (3). Next, rank cor-
relations may be calculated using Eq. (4).

Fig. 6 gives the result in the uncertainty in the
minimal completion time using dependence be-
tween the uncertainties in the activity durations. In
addition, the optimistic, most likely and pessimistic
estimates of a Standard PERT approach are shown
as vertical lines in the plot.

For comparison, Fig. 7 gives the results using the
independence assumption between the uncertain-
ties in the activity durations. As can be seen from
Figs. 6 and 7, the mean time for completion time is
not very different in the two simulations of project
network P. However, the shape and bounds of the
histograms have changed significantly. Assuming
dependence between activity durations as given in
Fig. 5, Fig. 6 indicates project completion with
95% certainty within less than 159.3 days as op-
posed to the 151.2 days in the case of assuming in-
dependence (a 5.4% increase in the time estimate).

5. Discussions and conclusions

In the example cited above, one might argue that
the effect of dependence is exaggerated by the high
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Fig. 6. Plot for uncertainty in minimal completion time of P with dependence.

Fig. 7. Plot with independence assumption for uncertainty in minimal completion Time of P.

values of the dependence parameter h assumed in
Fig. 5. However, our experience so far indicates
that the effect of neglecting dependence will be
more significant as the size of the project network

grows, even with lower degrees of dependence as-
sumed between the activity durations. For a second
case study of a 250-activity shipbuilding network
(typical in size of networks created by shipyards in
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the pre-contract bidding phase) and multiple de-
pendency diagrams related to different activity
classifications, the 95% certainty level for min-
imum completion time was 420.8 days with de-
pendence vs. 383.7 days without dependence (a
9.7% increase). It is nonetheless difficult to general-
ize about scaling effects for networks of different
complexities and different sets of dependency
diagrams.

Clearly, however, the definition of valid risk
groups for a specific engineering project would re-
quire careful consideration by project analysts
for factors such as engineering change orders,
subcontractor efficiencies, new production tech-
nologies, etc. In addition, there are other issues
which need to be addressed to advance the meth-
odology of simulation-based project risk anal-
ysis beyond existing commercial software. Such
issues include better elicitation methods for un-
certainty distributions from project experts; in-
corporation of activity-based costing models;
learning curves effects; and advanced applications
for design-stage decision-making. These other
issues were addressed during implementation of
proof-of-concept software for this project, and are
discussed in a companion paper by Duffey and van
Dorp [22]. Given the prevalence of risk-related
production schedule delays experienced in many
large, innovative engineering projects, use of de-
pendence modeling might help provide more realis-
tic estimation under uncertainty. The methodology
also may be useful for other computer-based
applications which use Monte Carlo simulation
of activity networks, such as in business process
reengineering.
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