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activity duration uncertainties. However, their applications are hampered 

by two aspects: (1) the coherent monitoring of remaining project 

uncertainty as a project progresses by taking advantage of the degree of 

statistical dependence relies on complex computationally intensive 

procedures and (2) the specification of the degree of statistical 

dependence suffers from a curse of dimensionality in an application 

domain which already burdens experts with the estimation of activity most 

likely, lower and upper bound estimates. In this paper, we construct a 

continuous Bayesian Network (BN) model addressing both aspects by taking 

advantage of the BN inference procedure in the software AgenaRisk®. 

Specifically, the BN described defines a multivariate joint distribution 

between activity durations by incorporating only two additional 

dependence parameters to specify a degree of statistical dependence among 

the activities. Under certain dependence parameter settings, this BN 

model reduces to a multivariate joint distribution of statistically 

independent activities with the same marginal uncertainty description as 

the PERT method of Malcolm et. al (1959). To further facilitate 

application, an expert judgment elicitation procedure is developed to 

specify the two BN's dependence parameters via the elicitation of a 

sparse conditional median matrix of activity durations along a project 

network's paths. An illustrative example using a case study demonstrates 

the potential increased pace of learning about remaining project schedule 

uncertainty under a mild degree of statistical dependence by taking 

advantage of the Bayesian paradigm. 
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Abstract 

Recent advances in the Program Evaluation and Review Technique (PERT) have addressed a lack 

of statistical dependence modeling among activity duration uncertainties. However, their 

applications are hampered by two aspects: (1) the coherent monitoring of remaining project 

uncertainty as a project progresses by taking advantage of the degree of statistical dependence 

relies on complex computationally intensive procedures and (2) the specification of the degree 

of statistical dependence suffers from a curse of dimensionality in an application domain which 

already burdens experts with the estimation of activity most likely, lower and upper bound 

estimates. In this paper, we construct a continuous Bayesian Network (BN) model addressing 

both aspects by taking advantage of the BN inference procedure in the software AgenaRisk®. 

Specifically, the BN described defines a multivariate joint distribution between activity 

durations by incorporating only two additional dependence parameters to specify a degree of 

statistical dependence among the activities. Under certain dependence parameter settings, this 

BN model reduces to a multivariate joint distribution of statistically independent activities with 

the same marginal uncertainty description as the PERT method of Malcolm et. al (1959). To 

further facilitate application, an expert judgment elicitation procedure is developed to specify 

the two BN’s dependence parameters via the elicitation of a sparse conditional median matrix 

of activity durations along a project network’s paths. An illustrative example using a case study 

demonstrates the potential increased pace of learning about remaining project schedule 

uncertainty under a mild degree of statistical dependence by taking advantage of the Bayesian 

paradigm.  
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1 Introduction 

Uncertainty is a characteristic feature of projects – this is empirically evident both in small and 

large projects. More so, project schedule uncertainty can be linked to impacts of external risk 

factors (for example, requirement change) which provide additional challenges for managing 

the project triple constraints of scope, schedule, and cost. The Standish Group (1995; 2009) 

notes that project risk factors and the resultant uncertainty they cause in project performance 

measures have contributed to project failures – costing loss of billions of dollars to project 

owners and sponsors. Today, with huge capital investments in projects, there is greater need 

for a project monitoring mechanism that will empower project managers with a robust toolkit 

for estimating project performance measures as a project progresses. 

Recent advances in Program Evaluation and Review Technique (PERT) have addressed a lack of 

statistical dependence modeling among activity duration uncertainties in project schedule risk 

analysis (van Dorp J. R., 2005; van Dorp & Duffey, 1999; Khodakarami, Fenton, & Neil, 2007; 

Fang & Marle, 2012). Moreover, consideration of the questionable constant PERT variance 

assumption given an activity’s range of support (Hahn, 2008) has recently led to the modified 

PERT variance procedure being suggested (Herrerias-Velasco et al., 2011) to further refine 

project schedule uncertainty assessment. The modified PERT variance is also influenced by an 

activity’s most likely value, whereas in a classical PERT analysis an activity’s variance is not. 

The Bayesian Network (BN) approach towards modeling statistical dependence is the sole 

inference paradigm that allows for the ability to update/monitor project schedule uncertainty 

in a coherent manner while taking full advantage of the modeled statistical dependence, even 

for activities that are being completed but are not considered to be on a critical path. 

Specifically, in case of a statistical independence assumption among the activity durations, the 

completion of an activity in the project network that has a low criticality index (i.e. low 

probability of being on a critical path) will have very little or no effect on the remaining project 

completion time uncertainty. Conversely, if statistical activity-to-activity dependence is present, 

and modeled in the BN approach, the completion of that activity will affect duration 
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uncertainty of activities that still need to be completed, by utilizing the BN inference procedure, 

and thus will indirectly influence the remaining project completion time uncertainty. 

Such coherent monitoring of remaining project schedule uncertainty using the Bayesian 

paradigm as a project progesses through the completion of its activities has thus far, 

unfortunately, relied on a computationally intensive procedure called Markov Chain Monte 

Carlo (MCMC) sampling to obtain the updated project completion time distribution (Jenzarli, 

1994); (Virto, Martin, & Insua, 2002); (Covaliu & Soyer, 1997); thereby limiting the practical 

implementation of these procedures. More recently, (Cho & Covaliu, 2003) and (Cho S. , 2009) 

designed a linear Bayes inference procedure to alleviate this computational complexity but had 

to sacrifice full distributional results and returned3 to only providing updated mean and 

variance estimates of updated project completion time distributions. Moreover, the 

specification of  the degree of statistical dependence among activities suffers from the curse of 

dimensionality even in moderately sized project networks. While some improvements have 

been suggested that address this aspect (Van Dorp, 2005), the elicitation burden to specify the 

degree of statistical dependence can still be considered substantial, further hampering the 

application of these methods.  

In this paper, a continuous BN approach towards building statistical dependence among 

activities is presented, which allows one to obtain updated project completion time distribution 

results while addressing computional complexity by relying on the BN model’s inference 

procedure implemented in AgenaRisk® (a specialized software tool for risk modeling and 

decision analysis with Bayesian Networks). Statistical dependence in discrete BNs is traditionally 

specified through the use of Conditional Probability Tables (CPTs) between probability nodes. 

The off-the-shelf software, AgenaRisk® , requires parametric inter-nodal relationships for the 

specification of statistical dependence in a continuous BN. While computationally convenient, 

this expediency of dependence specification through these parametric inter-nodal relationships 

has the disadvantage of a lesser transparency on how to specify the degree of dependence 

between nodes in the continuous BN than in a discrete BN using CPTs. 

                                                           
3
 In their classical paper, in which PERT originated, (Malcolm, Roseboom, Clark, & Fazar, 1959) also limited 

themselves to providing mean and variance estimates of project completion times. 
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The continuous BN developed herein utilizes novel inter-nodal parametric relationships in a 

manner that not only builds on the original PERT procedure by (Malcolm, Roseboom, Clark, & 

Fazar, 1959), but also details how a degree of statistical dependence among the activities 

changes by varying only two dependence parameters of the BN. In this process, we introduce a 

mode re-parameterization of the classical beta distribution while utilizing a two-sided power 

(TSP) distribution (Van Dorp & Kotz, 2002) as a prior distribution for the beta mode. A common 

beta distribution shape parameter and a common hyper TSP distribution power parameter, to 

be shared by all activities, will be demonstrated to drive both the degree of activity-to-activity 

statistical dependence and the marginal activity uncertainty. Both are important drivers for the 

prior completion time uncertainty in a project network, whereas the degree of inter-nodal 

dependence affects the speed of learning in a BN’s posterior analysis procedure. The BN model 

requires the specification of the traditional PERT activity lower and upper bounds and a most 

likely estimate specification through expert judgement to describe activity completion 

uncertainty. 

To further facilitate the specification of the degree of dependence between activities, an expert 

judgement elicitation procedure is proposed by eliciting activity-to-activity conditional medians 

which directly relates to a classical statistical dependence measure, Blomquist’s   (Kruskal, 

1958). (Garthwaite, Kadane, & O'Hagan, 2005) advocate the elicitation of probabilities over 

other statistical measures. The advantage of the proposed statistical elicitation procedure 

through probabilities is that it avoids eliciting correlation coefficients which are traditionally 

estimated from data, not using expert judgement. Finally, throughout this dependence 

elicitation procedure we introduce what we believe to be a novel distribution theory concept 

for capturing statistical dependence in a multivariate distribution termed the conditional 

median matrix. The elicitation burden for specifying the degree of activity-to-activity statistical 

dependence is reduced by limiting the elicitation of these conditional medians along a project 

network’s paths resulting in a sparse conditional median matrix.  

Subsequent sections of this paper are organized as follows: In Section 2 we discuss the 

parametric details of the continuous BN model introduced in this paper and the approach 
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followed to implement the BN model in AgenaRisk®, using an illustrative example of a 

shipbuilding project (Taggart, 1980) consisting of 18 activities depicted in Figure 1 (at the 

duration level) and Figure 4. In Section 3, we explain how the degree of dependence between 

activities materializes in the BN through the specification of the common beta distribution 

shape parameter and a common hyper TSP distribution power parameter shared by all 

activities. Section 4 discusses degree of statistical dependence elicitation among the activities 

utilizing a conditional median approach and subsequent dependence parameter specification 

using a numerical procedure, which only has to be executed once. In Section 5, an uncertainty 

analysis is conducted with an illustrative case study using the BN framework depicted in Figure 

1 and the example project network in Figure 4. Using what can be considered as a mild degree 

of statistical dependence between activities, and by coherently updating/monitoring the a 

priori project schedule uncertainty of the example network in Figure 4 with 95th percentiles of 

durations as activities complete throughout the project network, we demonstrate the potential 

difference in speed of learning between utilizing the Bayesian paradigm and the more 

traditional approach of assuming statistical independence among the marginal distributions of 

activity durations. While, in general, incorporating statistical dependence a priori leads to larger 

uncertainty bands; a posteriori smaller uncertainty bands are observed after about a third into 

the project, in this case study. The faster learning about remaining completion time uncertainty 

combined with the precision of the BN approach may provide project managers more time to 

take corrective action to avoid schedule slippage. In Section 6, we summarize the insights 

gained from the analysis conducted in the illustrative example. 

2 A Bayesian Network Dependence Model for Project Risk Analysis 

A Bayesian Network activity dependence model in a project network enables coherent 

monitoring of project completion time uncertainty by utilizing the Bayesian paradigm. Figure 1 

is a representation of the BN model developed herein which consists of three levels: The 

Common Quantile Level, the Mode Level, and the Duration Level. Statistical dependence among 

the marginal distributions of activity durations is modeled indirectly through the parent-child 

relationships between the uncertainty nodes represented in the BN in Figure 1.  

Unpublished Manuscript
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i. Common Quantile Level: This level contains a single node   that a priori represents the 

common quantile level for its child nodes in the Mode Level of the BN model in Figure 1. 

Hence, a priori              A posteriori, this node provides for monitoring of overall project 

schedule performance. A posteriori levels for   towards 1 (or 0) indicate typical activity 

completion above (or below) median activity durations.   

ii. Mode Level: Given a project activity duration,  , with parameters:    = optimistic duration 

value;    = pessimistic duration value; and    = most likely value; the Mode Level provides 

an uncertainty model for the relative mode location    of each activity’s mode given 

activity duration support          Specifically, an activity’s mode uncertainty is modeled a 

priori using a Two-Sided Power distribution, i.e.              with probability density 

function (pdf) (van Dorp & Kotz, 2002): 

 

 

Figure 1: Bayesian Network (BN) model for project risk analysis. An example project  
network is depicted in the BN above at the duration level and the mode level.  
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where    is the mode relative distance from the lower bound    given by  

                     (2) 

From (1), one obtains for the quantile function of the relative mode location    

 
   

        
       

 
        

                     
 

        
  

(3) 

depicted in  Figure 1. 

iii. Duration Level: The prior activity uncertainty model for   is reminiscent of the classical 

PERT (Malcolm, 1959), except that herein                                   with pdf: 

                    
       

  

              
      

                    ,  (4) 

where           ,        
      

        
 is the well-known beta normalization constant 

and 

    
         

 
. (5) 

Substitution of (5) into (4) with       leads to a re-parameterization of uni-modal beta 

distributions where the mode relative distance    is one of its parameters given by: 

 
                  

       
      

                   
      

                 
(6) 

where           . Thus the TSP distribution (1) serves as the prior distribution for 

the parameter    in equation (6). Throughout the remainder of this paper we shall use for 

simplicity the notation   to both refer to the activity itself and the random variable 

modeling its duration uncertainty. 
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Observe from (1) and (6) that the respective parameters   and   are selected to be common 

among all activities. In Section 3, it shall be explained how the degree of statistical dependence 

between activities in the project network materializes through the specification of   and   in 

(1) and (6) respectively. 

2.1 The Bayesian Network Model Construction in AgenaRisk® 

Construction of the Bayesian Network model in AgenaRisk® follows three major steps:  First, we 

identify the set of variables or nodes that characterize the problem domain we want to 

investigate – thus we categorize nodes for the Common Quantile Level, the Mode Level, and 

the Duration Level. Second, we build the links across the nodes at the Duration Level to 

represent a project network. This is achieved by mapping sets of BN nodes that represent a 

project activity, and then using the forward pass of the Critical Path Method (CPM) of project 

scheduling to build the entire project network. Figure 2 shows a screenshot of the BN model in 

Figure 1 implemented in AgenaRisk®. Overall the BN model implementation of Figure 1 consists 

of 91 nodes and is thus a representation of a multivariate distribution of dimension 91. 

The Common Quantile Level is represented in Figure 2 by the node           . The Mode Level 

consists of 36 nodes – for each activity   we have nodes    and     (where            ) 

to implement the quantile function of the     distribution in (1) given by (3). The node     

implements a Boolean node to determine, based on the value of the random variable  , if the 

lower or upper branch in (3) is selected. The node     evaluates    

      in (3) accordingly. 

The Duration Level implements the CPM evaluation of a project network's completion time 

given activity duration values, and which in Figure 2 consists of 54 nodes. Each activity   is 

represented by a Start node, a Finish node and a Duration node as follows: 

i. Start node: The Start node effectively represents the start of a project activity – modeled as 

a continuous node in AgenaRisk® using Arithmetic Expression, thus:   

                                                                    (7) 
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ii. Finish node: The Finish node represents completion time or end of a project activity – 

modeled as a continuous node in AgenaRisk® using Arithmetic Expression, thus: 

                                (8) 

 

iii. Duration node: This represents the duration of a project activity – assumed to follow a Beta 

distribution with parameterization defined by Equation (6). 

 

Figure 2: Bayesian Network model in Figure 1 implemented in AgenaRisk® 

 

3 Varying the Degree of Statistical Dependence between Nodes of the BN in Figure 1. 

Specifying the degree of dependence in a joint distribution in the absence of joint data 

necessitates a procedure geared towards its elicitation via expert judgment. In the case of a 

multivariate normal distribution the specification of a correlation matrix is necessary and in a 

discrete BN, CPTs are needed. Both, and other approaches towards constructing multivariate 

Common Quantile Level:
1 Node

Mode Level:
36 Nodes

Duration Level: 54 Nodes
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joint distributions, suffer from what is known to be “the curse of dimensionality” to specify the 

degree of dependence between its marginal random variables. For example, in case of the 

project network in Figure 1, a joint normal distribution approach towards specifying the degree 

of statistical dependence would require the specification of  
  
 
      additional correlation 

coefficients next to the activity duration data.  

Efficient modeling of continuous BN nodes in AgenaRisk® (Neil, Tailor, & Marquez, 2007) allows 

for statistical dependence specification by defining parametric relationship between a parent 

node’s and child node’s distribution parameters, reducing the burden for dependence 

parameter specification considerably. In fact, the BN model in Figure 1 only requires the 

specification of 2 additional parameters   and   in equations (1) and (6) that are common to all 

activities.  Needless to say, this comes at a price in terms of flexibility of the statistical 

dependence structures that can be accommodated using this BN model. However, the BN 

model in Figure 1 was specifically designed with an emphasis towards reducing the elicitation 

burden of statistical dependence parameter specification among the activities in a PERT 

analysis, which currently hampers the application of statistical dependence among activities in 

a PERT context in practical settings. For example, a daunting task of specifying 153 correlation 

coefficients via expert judgement elicitation when using a joint normal distribution model for 

statistical dependence modeling in the 18 node activity network in Figure 1 may result in     

adopting, for the purpose of convenience only, the specious statistical independence 

assumption between activity durations.   

Specification of   and   in equations (1) and (6) determines the overall degree of statistical 

dependence specified amongst the activity durations in the BN in Figure 1, while also 

influencing the degree of uncertainty in the activity duration marginal distributions to a lesser 

extent. To explain this effect of the parameters   and   in the multivariate joint distribution 

defined by the BN in Figure 1, we shall consider a series of illustrative examples of this BN using 

only two duration random variables for activities   and  , two mode random variables     and 

   and the common quantile random variable           For example, using the parameter 

settings in Figure 3a, the Two-Sided Power distributions at the mode level converge to single 
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point masses at modes    and   , blocking the influence of the node   at the common quantile 

level while forcing the mode locations of the beta activity distributions   and  , at the duration 

level in Figure 3a, to be located at relative distances    and    of their support. The blocking at 

the mode level results in statistically independent beta marginal distributions with product 

moment correlation          and mode relative distances for activities   and   at     and 

  , see also Equation (2). Hence, the BN parameter scenario for   and   in Figure 3a reduces 

the BN model in Figure 1 to the original PERT analysis setting suggested by Malcolm et al. 

(1959).  

 

Figure 3: 5-node Bayesian Network (BN) examples of the BN Model in Figure 1;  
(a)          (b)          (c)           , (d)             

 

Another extreme is depicted in Figure 3b. In contrast to Figure 3a, the beta distributions at the 

duration level converge to single point masses at realizations of the mode random variables    

and    (indicated by the vertical lines at the mode level in Figure 3b). By setting     in Figure 

Da Db

Da Db

Da Db

Da
Db

Da Db

Da Db

Da Db

Da Db

(a) (b)

(c) (d)
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3b at the mode level, the prior TSP distributions reduce to uniform distributions on       whose 

realizations will be equal to the realization        depicted in Figure 3b of the random 

variable          at the common quantile level. Thus, in Figure 3b the prior marginal 

distributions of the activity durations   and   reduce to uniform distributions with product 

moment correlation         . Hence, the BN scenario depicted in Figure 3b reduces the BN 

model in Figure 1 to a PERT analysis with uniformly distributed activity durations with pairwise 

correlations equal to   and thus a priori results in a project completion time distribution with 

the largest possible uncertainty given the activity’s most likely and lower and upper bound 

estimates. On the other hand, because of the pairwise correlations equal  , the scenario 

depicted in Figure 3b also coincides with maximum a posteriori learning. 

An intermediate scenario between Figure 3a and Figure 3b is depicted in Figure 3c. Here the 

TSP distributions at the mode level are still uniform, but the random variables at the duration 

level are beta distributed. Note that given the realization at the common quantile level and the 

uniformity at the mode level, the beta distribution for activity   has switched at the duration 

level to being the same as that of activity   (please compare Figure 3c with Figure 3a to notice 

that switching). As a result of the setup in Figure 3c, the mode locations of the activity 

durations   and   will now “move” in sync resulting in a positive correlation          in 

Figure 3c. The larger the value of   in Figure 3c, the more “peaked” the beta distribution will be 

at the duration level of the BN, but will still share the same mode, resulting in a larger 

correlation        as   increases. In the limit, if we let     the BN scenario in Figure 3c 

converges to the situation in Figure 3b with         .  

Finally, Figure 3d depicts a similar scenario as in Figure 3c, but where     changes the 

uniform distribution at the mode level in Figure 3c to a triangular distribution in Figure 3d. 

Please note that the beta distribution for activity   has a mode that has now shifted to the right 

as compared to the mode location in Figure 3c for activity  . Hence, as a result of the larger 

value of   in Figure 3d, the mode locations of the activities   and   are less affected by mode 

level realizations in the BN, resulting in a lower correlation        in Figure 3d as compared to 
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Figure 3c. In the limit, if we let     the BN scenario in Figure 3d converges to the situation in 

Figure 3a with         . 

Summarizing, by increasing the beta parameter   in (6) while keeping the TSP power parameter 

  in (1) constant, the degree of statistical dependence among the activities in the BN in Figure 1 

increases. Conversely, by decreasing the TSP power parameter   in (1) while keeping the beta 

parameter   in (1) constant, the degree of statistical dependence among the activities in the BN 

in Figure 1 decreases.  

In general, in a BN approach where parent-child dependence is specified parametrically for 

continuous nodes, or through the use of Conditional Probability Tables (CPTs) for discrete 

nodes, the marginal distributions of nodes in the BN follow as an output instead of the marginal 

distributions being specified as an input (as is the case in a classical PERT analysis). Hence part 

of the challenge in specifying values for the parameters   and   is to select values such that the 

variance of the activity durations are close to the modified PERT variance values in Table 1 (or 

the PERT variance values, should one prefer the classical PERT approach) while satisfying a 

degree of statistical dependence requirement. In Section 4, we develop such a procedure for 

the BN in Figure 1. 

4 Degree of Statistical Dependence Elicitation 

Pearson’s product-moment correlation, Spearman’s rank correlation or Kendall’s tau while 

suited for measuring the degree of dependence between two random variables, do not lend 

themselves well for expert judgment elicitation.  Despite (Kruskal, 1958) having provided a 

decision analytic explanation of these statistical dependence measures, their explanations 

demonstrate the level of cognitive processing required to elicit them either directly or 

indirectly. However, (Kruskal, 1958) also discusses the dependence measure Blomquist’s   

proposed by (Blomquist, 1950), which is less well known, but is directly related to a conditional 

median of one of the random variables given the other’s median value. Elicitation of 

probabilities has been proposed and studied extensively (see Garthwaite et al. (2005) for an 

excellent overview). Therefore, we suggest the elicitation of conditional medians between 
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activity durations in the project network as an indirect elicitation procedure towards 

specification of their common parameters   and   in equations (1) and (6), respectively. 

An example question in the elicitation procedure is: Suppose, for example, Activity   has 

finished above its median value     , what is the probability that Activity   finishes above its 

median value     ? If an expert’s answer is: 

  “= 0.50,” Activity   and Activity   are modeled as statistically independent 

 in (0.50, 1.0), Activity   and Activity   are modeled as positively dependent4 

 “ = 1.00,” Activity   determines Activity   

In further developing this procedure, we refer to Figure 4, which is the same as our example 

project in Figure 1 at the duration level with letters representing the project activities (see also 

Table 1). 

 

Figure 4: Example project (represented as an Activity-on-Node project network) 

 

To further specify the degree of dependence in the BN model in Figure 1, the elicitation of  

Activity-to-Activity conditional medians is suggested for the project in Figure 4 that are only 

path-dependent as defined by the project network. Thus, for example, we propose elicitation 

of: 

                                                           
4
 Two random variables are positively dependent when high (small) values of one tend to be associated with high 

(small) values of the other. 

A B K L P Q R

E

C

I

F G

D

H

J

M N O
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(9) 

which completes the elicitation of Activity-to-Activity conditional medians along one of the 

eight paths in Figure 4. A reader can easily verify that the completion of this path-dependent 

Activity-to-Activity conditional median elicitation procedure leads to an elicitation requirement 

of only 18 Activity-to-Activity conditional medians. The 18 Activity-to-Activity conditional 

medians to be used in our illustrative example are provided in Figure 5 in a conditional median 

matrix.  

 

Figure 5: Conditional median matrix showing path-dependent 
Activity-to-Activity conditional medians for the project in Figure 4. 

Observe from: 

 
                  

                             

           
             

       

(10) 

that the conditional median matrix in Figure 5 is symmetric across the diagonal by definition. 

The upper (lower) half above the diagonal lists the 18 Activity-to-Activity conditional median 

definitions (values). 

A B C D E F G H I J K L M N O P Q R

A 1.00 (B |A )

B 0.65 1.00 (K |B )

C 1.00 (D |C )

D 0.65 1.00 (H |D )

E 1.00 (F |E )

F 0.70 1.00 (G |F )

G 0.65 1.00 (H |G )

H 0.70 0.60 1.00 (K |H )

I 1.00 (J |I )

J 0.70 1.00 (L |J )

K 0.75 0.65 1.00 (L |K )

L 0.65 0.60 1.00 (M |L ) (P |K )

M 0.70 1.00 (N |M )

N 0.55 1.00 (O |N )

O 0.70 1.00 (R |O )

P 0.65 1.00 (Q |P )

Q 0.65 1.00 (R |Q )

R 0.70 0.60 1.00
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4.1 Activity Uncertainty Specification 

Activity specific information for the example project network in Figure 1 and Figure 4 is 

provided in Table 1. Table 1 evaluates by activity   the classical PERT Variance 

        
     (11) 

and the modified PERT variance 

             
    ,  (12) 

where 

                         (13) 

 

Table 1: Activity duration data for the project network depicted in Figure 1 and Figure 4 

 

In (12) and (13),    is given by (2) and       is interpreted as the PERT variance adjustment 

factor accounting for the relative location    of    in the range         of Activity  , where 

           . Observe from Table 1 that for all activities the PERT variance adjustment 

Activity Description ID a m b d C(d)
PERT 

Variance

Modified 

PERT 

Variance
Layout Bottom Shell A 22 25 30 0.375 1.250 1.778 2.222

Assemble Bottom Shell B 35 37 43 0.250 1.143 1.778 2.032

IB Piping Layout C 19 22 29 0.300 1.194 2.778 3.317

IB Piping Fabricate D 4 5 10 0.167 1.032 1.000 1.032

IB Struc. Layout E 23 26 31 0.375 1.250 1.778 2.222

IB Struct. Fabricate F 16 18 24 0.250 1.143 1.778 2.032

IB Struct. Assemble G 11 14 20 0.333 1.222 2.250 2.750

IB Piping Install H 6 7 12 0.167 1.032 1.000 1.032

Main Engine Found. Layout I 25 28 33 0.375 1.250 1.778 2.222

Main Engine Found. Fabricate J 33 35 40 0.286 1.181 1.361 1.607

Erect IB K 27 30 37 0.300 1.194 2.778 3.317

Erect Foundation L 6 7 11 0.200 1.080 0.694 0.750

Complete 3rd Deck M 4 5 9 0.200 1.080 0.694 0.750

Install Boiler N 6 7 10 0.250 1.143 0.444 0.508

Test Boiler O 9 10 15 0.167 1.032 1.000 1.032

Install Main Engine P 6 7 12 0.167 1.032 1.000 1.032

Finish Engine Q 17 20 26 0.333 1.222 2.250 2.750

Final Test R 13 15 20 0.286 1.181 1.361 1.607

Average Variance 1.528 1.790
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factor       is larger than one, implying a larger duration uncertainty for these parameter 

settings as compared to using the classical PERT variance (11).  

4.2 Solving for the Degree of Dependence Parameters   and   in Equations (1) and (6) 

From the modified PERT variance column in Table 1, one evaluates an average variance of 1.79 

and from the conditional medians in Figure 5 an average conditional median of 0.66. Below we 

shall describe a numerical procedure to solve for the parameter   in (1) and the parameter   in 

(6) such that prior average variance across activities approximately equates to the value 1.79 

and the average of activity-to-activity conditional medians approximately equates to the value 

0.66. Figure 6a displays the behavior of average activity variance as a function of   and  , 

whereas Figure 6b displays the behavior of average activity-to-activity conditional median. 

Observe from Figure 6a that average activity variance decreases with increasing values of   and 

 . On the other hand, one observes from Figure 6b an increasing (decreasing) behavior in the 

average activity-to-activity conditional median as the parameter   (parameter    increases.  

Figure 6 was generated by sampling from the prior distribution of the BN model in Figure 1 for 

different values of   and  , separate from the BN model’s implementation in AgenaRisk®. Figure 

7 displays the data for Figure 6 containing 441 cell values for Figure 6a and Figure 6b. Each cell 

value in Figure 7 was evaluated by generating 1000 joint prior samples from the BN Model in 

Figure 1. Thus the generation of Figure 7 involved 441,000 joint samples of dimension 18 

totaling about 8 million samples from the activity duration marginal distributions. The top part 

of Figure 7 displays in the shaded region values of the average activity variance within the range 

           . The bottom part of Figure 7 displays in the shaded region values of the average 

activity-to-activity conditional medians within the range                By intersecting the 

shaded regions, reminiscent of intersecting iso-contours, we select the values       and 

     by identifying cells with an average activity variance of 1.69 and an average activity-to-

activity conditional median of 0.66. 

Next, evaluating the values of average activity variance and average activity-to-activity 

conditional median by sampling once more one thousand times from the prior distribution of 

the BN model in Figure 1, we evaluate remaining epistemic 90% probability interval (1.69, 1.83) 
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of average activity variance and remaining epistemic 90% probability interval (0.652, 0.671) for 

average activity-to-activity conditional median. The first and second interval [(1.69, 1.83) and 

 

Figure 6: (a) Average Prior Marginal Activity Variance as a function   and   and 

(b) Average Prior Activity-to-Activity Conditional Median as a function   and   
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Figure 7: Data for the 3D graphs in Figure 6 

 

 

Figure 8: Visual comparison of (a) BN activity mean and PERT Mean and (b) BN activity variance and PERT modified 

activity variance for the eighteen activities listed in Table 1 using parameter values       and      

 

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 0.50 0.55 0.60 0.66 0.70 0.73 0.75 0.78 0.79 0.79 0.81 0.82 0.82 0.84 0.85 0.84 0.86 0.86 0.86 0.87 0.88

2 0.50 0.53 0.58 0.63 0.66 0.69 0.71 0.74 0.75 0.75 0.77 0.77 0.79 0.79 0.80 0.81 0.81 0.83 0.83 0.82 0.83

2 0.50 0.53 0.56 0.60 0.63 0.65 0.66 0.69 0.70 0.72 0.72 0.73 0.75 0.78 0.76 0.77 0.78 0.78 0.80 0.80 0.80

3 0.50 0.52 0.55 0.58 0.60 0.63 0.63 0.66 0.68 0.69 0.70 0.70 0.72 0.73 0.74 0.74 0.74 0.75 0.76 0.77 0.78

3 0.50 0.51 0.54 0.56 0.59 0.60 0.62 0.64 0.65 0.66 0.68 0.68 0.69 0.70 0.70 0.71 0.73 0.72 0.73 0.74 0.75

4 0.50 0.51 0.53 0.55 0.58 0.59 0.61 0.62 0.63 0.64 0.66 0.66 0.68 0.68 0.68 0.69 0.71 0.70 0.72 0.71 0.73

4 0.50 0.51 0.52 0.54 0.55 0.58 0.59 0.60 0.61 0.63 0.64 0.64 0.66 0.66 0.67 0.67 0.68 0.69 0.70 0.69 0.70

5 0.50 0.51 0.52 0.54 0.55 0.57 0.57 0.59 0.61 0.60 0.62 0.63 0.64 0.64 0.65 0.66 0.66 0.67 0.67 0.68 0.69

5 0.50 0.51 0.52 0.54 0.54 0.56 0.58 0.58 0.59 0.60 0.60 0.61 0.62 0.62 0.63 0.65 0.65 0.65 0.65 0.67 0.67

6 0.50 0.50 0.52 0.53 0.54 0.55 0.56 0.58 0.58 0.60 0.60 0.60 0.61 0.62 0.63 0.64 0.63 0.64 0.65 0.65 0.66

6 0.50 0.50 0.52 0.53 0.54 0.55 0.55 0.56 0.57 0.58 0.59 0.59 0.60 0.61 0.62 0.62 0.63 0.63 0.64 0.63 0.64

7 0.50 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.57 0.58 0.59 0.59 0.61 0.61 0.61 0.61 0.63 0.63 0.62 0.64

7 0.50 0.50 0.52 0.52 0.53 0.53 0.55 0.55 0.56 0.57 0.57 0.58 0.59 0.59 0.60 0.59 0.60 0.61 0.62 0.62 0.61

8 0.50 0.50 0.51 0.52 0.53 0.54 0.55 0.55 0.55 0.56 0.57 0.58 0.58 0.58 0.59 0.60 0.60 0.60 0.62 0.61 0.61

8 0.50 0.50 0.51 0.52 0.52 0.53 0.54 0.54 0.55 0.56 0.56 0.57 0.57 0.57 0.58 0.58 0.59 0.59 0.59 0.60 0.61

9 0.50 0.50 0.51 0.52 0.52 0.53 0.53 0.54 0.55 0.55 0.56 0.57 0.56 0.57 0.58 0.58 0.58 0.59 0.59 0.60 0.59

9 0.50 0.50 0.51 0.51 0.52 0.52 0.53 0.53 0.54 0.54 0.55 0.56 0.56 0.57 0.57 0.58 0.58 0.59 0.58 0.59 0.59

10 0.50 0.50 0.51 0.51 0.52 0.52 0.53 0.54 0.54 0.55 0.55 0.56 0.56 0.56 0.57 0.57 0.57 0.57 0.58 0.58 0.60

10 0.50 0.50 0.51 0.51 0.52 0.53 0.53 0.53 0.53 0.54 0.55 0.55 0.56 0.56 0.56 0.56 0.56 0.57 0.58 0.58 0.58

11 0.50 0.50 0.51 0.51 0.52 0.52 0.53 0.53 0.53 0.54 0.54 0.54 0.55 0.55 0.56 0.56 0.57 0.57 0.57 0.57 0.58

11 0.50 0.50 0.51 0.51 0.51 0.52 0.52 0.52 0.53 0.53 0.54 0.55 0.55 0.55 0.56 0.56 0.56 0.56 0.57 0.58 0.57

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 4.53 3.80 3.65 3.59 3.66 3.69 3.77 3.96 3.83 3.78 4.00 3.98 3.97 4.13 4.19 3.93 4.30 4.26 4.16 4.28 4.31

2 4.54 3.69 3.40 3.34 3.23 3.23 3.10 3.17 3.19 3.12 3.10 3.04 3.22 3.09 3.14 3.12 3.18 3.17 3.20 3.17 3.11

2 4.56 3.61 3.19 3.01 2.90 2.83 2.59 2.61 2.75 2.67 2.56 2.57 2.52 2.72 2.53 2.53 2.49 2.50 2.61 2.61 2.62

3 4.61 3.62 3.15 2.87 2.68 2.52 2.40 2.42 2.35 2.33 2.30 2.17 2.16 2.13 2.22 2.13 2.13 2.03 2.11 2.15 2.12

3 4.65 3.57 2.99 2.64 2.49 2.37 2.25 2.15 2.09 2.04 2.06 2.00 1.87 1.89 1.83 1.75 1.78 1.74 1.84 1.79 1.78

4 4.58 3.56 2.94 2.64 2.42 2.25 2.12 1.96 1.95 1.85 1.93 1.69 1.74 1.73 1.65 1.60 1.69 1.58 1.59 1.52 1.56

4 4.62 3.51 2.91 2.54 2.28 2.13 2.01 1.84 1.73 1.75 1.71 1.55 1.61 1.57 1.51 1.46 1.38 1.40 1.40 1.35 1.35

5 4.57 3.48 2.88 2.46 2.19 2.07 1.89 1.75 1.73 1.53 1.56 1.49 1.48 1.45 1.39 1.35 1.35 1.31 1.27 1.23 1.25

5 4.54 3.46 2.86 2.49 2.15 2.00 1.84 1.68 1.64 1.56 1.44 1.36 1.35 1.30 1.27 1.28 1.22 1.21 1.10 1.14 1.14

6 4.62 3.44 2.82 2.43 2.13 1.91 1.78 1.69 1.53 1.47 1.37 1.33 1.31 1.24 1.21 1.18 1.11 1.12 1.11 1.07 1.06

6 4.60 3.46 2.83 2.39 2.08 1.90 1.67 1.61 1.48 1.41 1.34 1.27 1.23 1.21 1.14 1.10 1.09 1.05 1.02 0.99 1.00

7 4.55 3.37 2.80 2.27 2.07 1.88 1.70 1.56 1.46 1.35 1.31 1.23 1.16 1.18 1.11 1.08 1.04 1.07 0.96 0.91 0.98

7 4.61 3.41 2.75 2.35 2.05 1.87 1.67 1.52 1.40 1.35 1.23 1.20 1.17 1.09 1.09 1.01 0.99 0.99 0.97 0.89 0.88

8 4.54 3.41 2.78 2.31 2.01 1.77 1.67 1.48 1.40 1.30 1.22 1.19 1.12 1.04 1.03 1.00 0.96 0.91 0.92 0.89 0.85

8 4.55 3.46 2.74 2.30 2.01 1.77 1.62 1.45 1.39 1.26 1.20 1.12 1.08 1.01 1.00 0.93 0.94 0.87 0.85 0.84 0.83

9 4.58 3.41 2.69 2.30 1.95 1.73 1.59 1.45 1.35 1.24 1.14 1.13 1.05 1.01 0.94 0.91 0.89 0.86 0.82 0.80 0.77

9 4.57 3.38 2.79 2.30 1.95 1.74 1.57 1.42 1.28 1.21 1.16 1.10 1.00 0.97 0.94 0.93 0.87 0.85 0.80 0.77 0.76

10 4.63 3.39 2.73 2.29 1.91 1.70 1.55 1.40 1.31 1.24 1.14 1.06 1.02 0.96 0.93 0.85 0.83 0.78 0.78 0.80 0.78

10 4.55 3.43 2.71 2.27 1.95 1.71 1.53 1.42 1.29 1.19 1.13 1.03 1.01 0.95 0.89 0.85 0.82 0.77 0.77 0.76 0.73

11 4.59 3.37 2.73 2.24 1.95 1.70 1.51 1.36 1.26 1.17 1.09 1.01 0.94 0.91 0.89 0.85 0.81 0.79 0.76 0.72 0.69

11 4.63 3.45 2.67 2.24 1.96 1.68 1.53 1.36 1.28 1.16 1.10 1.02 0.96 0.93 0.88 0.85 0.79 0.75 0.76 0.73 0.69

Prior Average Activity Variance between 1.50 and 2.00
g

n

Prior Average Conditional Median between 0.625 and 0.675

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0.0 1.0 2.0 3.0

B
N

 V
A

R
IA

N
C

E
 M

A
R

G
IN

A
LS

 (
E

X
C

E
L

)

MODIFIED PERT VARIANCE MARGINALS

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

0.0 10.0 20.0 30.0 40.0

B
N

 M
E

A
N

 M
A

R
G

IN
A

L
S 

(E
X

C
E

L
)

PERT MEAN MARGINALS

(a) (b)

Unpublished Manuscript



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

20 
 

(0.652, 0.671)] contain the value 1.79 and 0.66, respectively. The value 1.79 was evaluated from 

the modified PERT variance column in Table 1, and 0.66 was evaluated from the conditional 

median matrix in Figure 5. In terms of Pearson’s product-moment correlation, we evaluate the 

remaining epistemic 90% probability interval (0.487, 0.530) of the average activity-to-activity 

correlation, which indicates a mild degree of activity-to-activity positive dependence. 

Finally for verification, using the same prior sampling procedure, we evaluate activity means 

and variances of the BN model in Figure 1 using the values       and      and the data in 

Table 1. Figure 8a above compares visually the activity duration BN means and PERT means 

from Table 1 while Figure 8b compares visually activity duration BN variances with the modified 

activity PERT variances provided in Table 1. Both Figure 8a and Figure 8b demonstrate a close 

match for both the mean values and variances across all eighteen activity durations. 

5 Monitoring Project Uncertainty as the Project Progresses 

The purpose of this illustrative example is to demonstrate the potential benefit of modeling 

statistical dependence among activity durations on the pace of learning about remaining 

completion time uncertainty when a project progresses, utilizing the Bayesian paradigm. To 

that end, we shall compare remaining project completion uncertainty at various milestones (or 

activity completions) using the BN model in Figure 1 (in which statistical dependence is 

incorporated) with an approach where statistical independence among the marginal 

distributions of activity durations is assumed. It is important to note that the approach with an 

assumption of statistical independence among the marginal distributions of activity durations, 

is also implemented based on the example project of Figure 1. The analysis and implementation 

of this statistical independence case in AgenaRisk®, however, includes only the duration level 

elements of the BN model in Figure 1. 

To allow for the aforementioned comparison and to ensure we are evaluating the effect of 

statistical dependence in the BN Model in Figure 1 on project schedule uncertainty, and not the 

effect of a difference in marginal distribution uncertainties, the prior marginal activity duration 

distributions were generated from the BN model (with statistical dependence) in Figure 1 using 

the same sampling procedure described in Section 3. Next, beta distributions were fitted to the 
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sampled prior activity distributions using the least squares method to serve as the marginal 

activity duration distributions for the statistical independence case. Figure 9 contains two 

probability-probability (P-P) plots comparing visually the prior sampled cdf values of Activities A 

and B with those evaluated using their fitted beta distributions. In case of a perfect fit, the P-P 

plots would fall on the unit diagonal. Observe from Figure 9 that the beta fitted distributions 

match well with prior sampled distributions of Activity A and Activity B.  P-P plots for the other 

16 activity durations that appear as nodes in Figure 1 show similar behavior. Table 2 lists the 

parameters of the beta fitted marginal distributions of the activity durations in the BN model in 

Figure 1. In addition, the last row in Table 2 provides the 95th percentiles of these BN marginal 

distributions.  

 

Figure 9: P-P plots comparing BN marginal distributions with Least Squares Beta 
fitted distributions for (a) Duration Activity A (b) Duration Activity B 

 

Table 2: Parameters of Beta fitted marginal distributions of activity durations and their 95th percentiles 
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A B C D E F G H I J K L M N O P Q R

LB 22 35 19 4 23 16 11 6 25 33 27 6 4 6 9 6 17 13

UB 30 43 29 10 31 24 20 12 33 40 37 11 9 10 15 12 26 20

alpha 2.95 2.41 2.63 2.01 2.95 2.41 2.77 2.03 2.96 2.58 2.65 2.18 2.19 2.41 2.02 2.03 2.77 2.58

beta 3.73 3.89 3.85 3.86 3.73 3.89 3.81 3.88 3.74 3.88 3.87 3.90 3.91 3.89 3.88 3.88 3.81 3.88

95
th

27.97 40.60 26.18 8.02 28.97 21.60 17.58 10.02 30.97 37.99 34.18 9.41 7.41 8.80 13.02 10.02 23.58 17.99
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In this example, we shall instantiate the BN models with these 95th percentiles representing 

activity completions for both the statistical dependence and statistical independence cases. 

Subsequently, the state-of-the-art Bayesian inference algorithm implemented in AgenaRisk® 

enables propagation of influence across the nodes of the BN models, and also evaluates the 

remaining completion time distributions as the project progresses. Figure 10a and Figure 10b 

depict the CPM evaluation of the example project in Figure 1 using the activity duration most 

likely values provided in Table 1 and the activity duration 95th percentiles provided in Table 2. A 

CPM evaluation using only activity most likely values results in a project completion time of 144 

days (depicted in Figure 10a). When one uses only activity 95th percentile values, a project 

completion time of 173.4 days (depicted in Figure 10b) is evaluated using the CPM. In addition, 

four intermediate milestones are identified in Figure 10a and Figure 10b. 

 
 

Figure 10: CPM evaluation of the example project in Figure 1 using - (a) activity duration most likely values 

shown in Table 1 (b) using 95
th

 percentiles of activity durations shown in Table 2. 
 

The first milestone captures the completion of the first activity (Activity C), the second 

milestone coincides with the completion of Activity I and captures the completion of all 

activities that do not have a predecessor activity (see Figure 4). The third and fourth 

intermediate milestones coincide with the completion of activities at about one-third (Activity 

F) and two-thirds (Activity K) into the project.  We shall evaluate the project completion time 

uncertainty distribution at the start of the project as well as the remaining project completion 

time uncertainty distribution at the intermediate milestones identified in Figure 10 for both the 

statistical dependence and the statistical independence cases. 

0 20 40 60 80 100 120 140 160 180 200

0 20 40 60 80 100 120 140 160 180 200

Finish at 173.4

Finish at 144

Start

Start

C

C I

I F

F

K

K

(a)

(b)

Unpublished Manuscript



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

23 
 

5.1 Prior Analysis of Project Completion Time Uncertainty 

At the start of the project, we conduct an analysis a priori using the example project network of 

Figure 4 and evaluate the project completion time distribution for the scenario where statistical 

dependence is applied (Figure 1) and the scenario where statistical independence is implied 

(see the introductory description of Section 5). We shall denote “DEP P” as the analysis scenario 

involving the BN model in Figure 1 (where statistical dependence is modeled), and also, denote 

“IND P” as the analysis scenario where statistical independence is implied among the marginal 

activity duration distributions. In Bayesian analysis terminology these distributions are referred 

to as prior distributions. 

Figure 11 shows the project completion time probability density functions for both the “DEP P” 

and “IND P” scenarios. The step-like nature of each probability density function (pdf) displayed 

in Figure 11 is a result of the dynamic discretization methodology (Neil et al., (2007)) utilized in 

AgenaRisk®. The project completion time at 173.4 (from Figure 10b) is indicated in Figure 11 

using a vertical dashed line. The “DEP P”pdf exhibits an expected value of 152.6 days compared 

to a value of 152.2 days for the “IND P” pdf. Thus the expected values for the project 

completion times evaluated under both scenarios exceed the CPM evaluated value of 144 days 

in Figure 10a. The “DEP P” pdf in Figure 11 exhibits a standard deviation of 10.8 days compared 

to 4.5 days  for the “IND P” pdf, emphasizing the need for incorporating statistical dependence 

among activity durations in a prior uncertainty evaluation of project completion time. 

 

Figure 11: Prior project completion time distributions for the analysis scenarios “DEP P” and “IND P”. 
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5.2 Posterior Analysis of Project Completion Time Uncertainty 

To conduct analysis a posteriori, we shall use the traditional Bayesian notation       . For 

example, the scenario description “DEP P|C” shall be used to designate the remaining project 

completion time uncertainty analysis involving the BN model in Figure 1 following the 

completion of Activity C. In Bayesian analysis terminology such a distribution is referred to as a 

posterior distribution. 

Figure 12 displays the posterior distributions for the remaining completion time of the project 

at the four different milestones identified in Figure 10 (i.e. at completion of Activity C, Activity I, 

Activity F, and Activity K). The mean values and standard deviations for these project 

completion time distributions are listed in Table 3. Observe from Table 3 an increase of 10.7 

days (=163.3 – 152.6) in expected value after only the completion of Activity C in the case of the 

dependence scenario. No change is observed in the case of the independence scenario. 

Table 3: Mean values and standard deviations of remaining project completion time distributions evaluated at the 
project start and the four milestones identified in Figure 12 for the “DEP P” and “IND P” analysis scenarios 

 

Comparing Figure 11 with Figure 12a, a shift to the right is observed of the “DEP P” pdf and no 

shift of the “IND P” pdf. Following the completion of the first four activities C, A, E and I that 

have no predecessor, the difference in expected values for the dependence and independence 

scenario has increased from 0.4 day ( =152.6 – 152.2) to 15.7 days (=170.3 – 154.6). One clearly 

observes from Figure 11, and Figure 12a to Figure 12b the reduction in uncertainty in the case 

of the dependence scenario. On the other hand, almost no reduction is observed for the 

independence scenario. This is confirmed by the first, second and third row in Table 3. 

ANALYSIS SCENARIO

Mean St. Dev. Mean St. Dev.

P 152.6 10.8 152.2 4.5

P|C 163.3 8.4 152.2 4.5

P|CAEI 170.3 5.0 154.6 4.3

P|CAEIDF 171.2 4.0 157.0 3.9

P|CAEIDFGBJHK 172.6 2.1 164.8 2.6

DEPENDENCE INDEPENDENCE
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Figure 12: Posterior project completion time distributions for the analysis scenarios  
(a) “DEP P|C” and “IND P|C” (b) “DEP P|CAEI” and “IND P|CAEI” 

(c) “DEP P|CAEIDF” and “IND P|CAEIDF” (d) “DEP P|CAEIDFGBJHK” and “IND P|CAEIDFGBJHK” 
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At the third milestone (the completion of Activity F), about one third into the project (see 

Figure 10), the degree of uncertainty in both the dependence and independence scenarios 

(reflected by their respective posterior distributions) have about evened out (Figure 12c). From 

the fourth row in Table 3, a standard deviation of 4.0 days is evaluated for the dependence 

scenario (which means a reduction by 6.8 days compared to the prior standard deviation) and a 

standard deviation of 3.9 days for the independence scenario (which means only a reduction by 

0.6 day). The former highlights the faster pace of learning about remaining completion time 

uncertainty, as the project progresses, when statistical dependence is incorporated amongst 

the activity durations in the project network using the BN Model in Figure 1. 

Also, importantly at the third milestone, an expected completion time of 171.2 days is 

evaluated for the dependence scenario, whereas the expected value estimate in case of the 

independence scenario lags behind at 157.0 days. Recall from Figure 10b a completion time of 

173.4 days was evaluated for the entire project using 95th percentiles of activity durations for 

BN instantiation. Given that the third milestone happens about one third into the project this 

could leave sufficient time for project managers to take corrective action. 

Finally, at the fourth milestone, about two thirds into the project, the independence scenario 

evaluation of the expected project completion time has caught up somewhat at 164.8 days 

compared to 172.6 days evaluated for the dependence scenario. It is important to note that at 

this point only one third of the project remains, perhaps too late for corrective action should 

one have adopted an analysis methodology that does not incorporate statistical dependence 

among the activity uncertainty distributions, and does not follow a BN approach towards 

monitoring remaining project completion time uncertainty. Observe from the last row in Table 

3 that the standard deviation now is less for the dependence scenario (2.1 days) than the one 

evaluated for the independence scenario (2.6 days). 

6 Summary and Conclusions 

Using a Bayesian Network approach, we have demonstrated via an illustrative example the 

potential benefit of modeling statistical dependence among the activity durations in a project 

network on monitoring of remaining completion time uncertainty. Needless to say, one could 
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argue that this potential benefit is overstated as all 18 activities in this illustrative example 

complete at the upper tail of their uncertainty ranges, which may be deemed an unlikely 

occurrence. On the other hand, the effect of positive statistical dependence among the activity 

durations does imply a higher likelihood of one activity being delayed given that others were 

delayed. We do believe this to be a more common occurrence in project networks than the 

case of negative dependence, where one activity being delayed would imply a lesser likelihood 

of another activity being delayed. As such, the BN model developed herein does not allow for 

incorporating negative dependence among activity durations.  

Regardless, the example demonstrates the advantages of BN approach towards modeling 

statistical dependence among activity durations in terms of increased precision of the 

uncertainty analysis involved as well as in enhancements in the pace of learning about expected 

project completion time as the project progresses (as compared to an uncertainty analysis 

assuming statistical independence). Specifically, at the start of the project a larger variance is 

observed when dependence is incorporated; however, at about one-third into the project, in 

the example, the variance estimate is about the same in both the independence and 

dependence analysis scenarios. In the illustrative example used in the analysis, dependence 

levels among activity durations were set at an average correlation of about 0.5. In case of larger 

correlations, an even faster pace of learning may be observed. The implication of faster learning 

from a pragmatic point of view is that it may enable project managers to take corrective action 

sooner thereby potentially avoiding costly schedule slippage. 
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