
UNCORRECTED P
ROOF

JSPI 2241
pp: 1-20 (col.fig.: Nil)

PROD. TYPE: TYP ED: HR

PAGN: Indu -- SCAN: Ravi

ARTICLE IN PRESS

Journal of Statistical Planning and
Inference ( ) –

www.elsevier.com/locate/jspi

1

A general Bayes exponential inference model for
accelerated life testing3

J. Ren$e Van Dorp∗, Thomas A. Mazzuchi
Department of Engineering Management and Systems Engineering, School of Engineering and Applied5
Science, The George Washington University, 1776 G Street, N.W., Suite 110, Washington, DC 20052,

USA7

Received 6 January 2002; received in revised form 12 August 2002

Abstract9

This article develops a general Bayes inference model for accelerated life testing assum-
ing failure times at each stress level are exponentially distributed. Using the approach, Bayes11
point estimates as well as probability statements for use-stress life parameters may be inferred
from the following testing scenarios: regular life testing, 7xed-stress testing, step-stress testing,13
pro7le-stress testing, and also mixtures thereof. The inference procedure uses the well known
Markov chain Monte Carlo (MCMC) methods to derive posterior quantities and accommodates15
both the interval data sampling strategy and type I censored sampling strategy for the collection
of ALT test data. The approach is illustrated with an example.17
c© 2002 Published by Elsevier Science B.V.

Keywords: Ordered Dirichlet; Markov chain Monte Carlo19

1. Introduction

In the case of highly reliable items, mean times to failure (MTTF) exceeding a year21
is not uncommon, see e.g. Fornell (1991). The use of these items, however, may still
require reliability demonstration or veri7cation testing, especially when used for military23
or high-risk public applications. With such MTTFs, it is often both time consuming and
costly to practically test these items in their use (or nominal) environment due to the25
length of time required to generate a meaningful number of failures for analysis. It has
therefore become a standard procedure in MIL-STD-781C (1977) to test these items27
under more severe environments than experienced in actual use. Such tests, referred to
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as accelerated life tests (ALTs), are becoming more frequent than ordinary life tests1
and thus the design and analysis of such tests are important problems.
The design of an ALT deals with issues of increasing the rate of failure of high3

reliability items in an optimal and meaningful manner. As such, ALT design involves
the selection of independent variables (called “stress variable”) such as temperature,5
vibration, humidity, voltage, etc., which de7ne the operating environment, and the
determination of optimal testing levels for these variables to produce an environment7
which accelerates failure in a meaningful way (see, e.g. Chaloner and Larntz, 1992;
Khamis and Higgins, 1996; Khamis, 1997; Erkanli and Soyer, 2000). There are several9
common test scenarios considered in the design of life-tests, including testing in a
constant environment (e.g. regular lifetime testing or 7xed-stress ALT), a continuously11
changing environment (continuous-stress ALT), or an environment that changes in a
step-like pattern (step-stress ALT or pro7le ALT). The focus of this paper, however, is13
on the statistical inference problem, i.e. on how to make inference about the reliability
in the use environment from failure data obtained from a prescribed ALT.15
There is a host of literature on the subject of ALT inference. Most of the ALT

inference methods to date are based on the use of maximum likelihood estimation17
which may require large sample sizes for meaningful statistical ALT inference, see
e.g. Nelson (1980), Lin and Fei (1991), Tyoskin and Krivolapov (1996), Bai et al.19
(1997), Khamis and Higgins (1996), Khamis (1997), Meeker and Esocbar (1998) and
Gouno (2001). The ALT inference problem, however, typically deals with smaller21
sample sizes (see e.g. MClinn, 1998) which is suitable for a Bayes approach, see e.g.
DeGroot and Goel (1988), Mazzuchi and Singpurwalla (1988), Mazzuchi and Soyer23
(1992), Van Dorp et al. (1996) and Mazzuchi et al. (1997). Typically, inference for
ALT methods have been developed assuming that: (i) only a single test scenario is25
considered for all test items, (ii) the scale parameter of the life distribution is related
to the stress environment via a pre-speci7ed parametric function known as a time27
transformation function, (iii) the lifetime distribution in a constant stress environment
belongs to a common parametric family of distributions.29
The ALT inference procedure to be developed in this paper is a comprehensive

procedure allowing variation of ALT and/or regular life testing scenarios between test31
items, a common practice amongst reliability engineers (see e.g., Meeker and Hahn,
1978; Nelson, 1980; Luvalle and Hines, 1992; Thomas and Gaines, 1978). In addition,33
the inference procedure allows for the combination of regular life testing data as well as
most of the common testing scenarios used in reliability engineering. The development35
of such a Kexible inference procedure is new and provides greater Kexibility in both
design and analysis of ALTs. Also, the inference procedure allows for comparative37
analysis from one ALT testing scenario to another from an inference point of view (e.g.
7xed-stress testing versus step-stress testing) within a common modeling framework.39
To date the authors are not aware of such a common modeling framework.
The ALT inference procedure presented here is Bayesian in nature, allowing small41

sample sizes and relying on the use of engineering judgment to specify prior distribu-
tions used in the inference. With regards to the third assumption, inference procedures43
will be developed using the exponential failure time model (see, e.g. Cohen et al.,
1999). The exponential failure time model can be found amongst several application45
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in an ALT setting but particularly for electronic components (see e.g. Denson, 1995;1
Gouno, 2001). With regard to the second assumption, the ALT inference procedure
is free from the restriction of the use of a parametric time transformation functions.3
Instead, it is assumed that the testing environments can be rank ordered with respect
to severity (a less restrictive assumption) thus implying an ordering of the failure rates5
in the testing environments. Preserving the ordering in the analysis by de7ning a mul-
tivariate prior distribution for the failure rates over an ordered region, may be loosely7
interpreted as a non-parametric time transformation function. This rank ordering in-
duces positive dependence between the failure rates within each testing environment9
and thus determines how test data obtained in an accelerated environment aLects the
failure rate in the use stress environment.11
Closed form expressions for the multivariate posterior distribution obtained within

the Bayesian paradigm by updating the prior with ALT data cannot be obtained. Until13
recently the lack of closed form expressions for posterior distributions severely re-
stricted the use of the Bayesian paradigm in complex problem settings. However, the15
advancement of the well known Markov chain Monte Carlo (MCMC) approach by
Casella and George (1992) (which does not require closed form expressions for the17
posterior distribution) has resulted in the widespread use of the Bayesian paradigm
(see e.g., Gilks et al., 1996). The resulting approximation of the multivariate posterior19
distribution of the ordered failure rates can be used for inference with respect test
environments.21
The likelihood of ALT data allowing variation of ALT scenario’s amongst test items

is formulated in Section 2. The prior distribution preserving rank ordering of the failure23
rates for the exponential failure time model is motivated and developed in Section 3.
Posterior analysis using the MCMC methods is brieKy discussed in Section 4. Section 525
presents a comprehensive example to illustrate the approach. Finally, Section 6 provides
some concluding remarks.27

2. A general likelihood function for accelerated life tests

Any statistical inference procedure involves developing a likelihood. The Kexibility29
of the likelihood formulation drives the Kexibility of the statistical inference procedure
in terms of its applicability to diLerent testing scenarios. The likelihood model de-31
veloped in this section allows for a comprehensive representation and combination of
regular 7xed-stress, progressive step-stress, regressive step-stress and pro7le step-stress33
life testing (see for example Fig. 1). In addition, the likelihood model accounts for
the possibility of gradual environment changes (ramping) between steps (see, e.g.,35
Bai et al., 1997). Thus, the likelihood model accommodates continuously stress ALT
as well.37
Typically in ALT, an environment can be described by a collection of stress variables

and their levels. In this model, it is assumed that a total of K environments E1; : : : ; EK39
are preselected as candidate test environments within minimum and maximum design
ranges of stresses to ensure that the predominant failure modes at use environments41
and accelerated environments are the same. It will be assumed that these candidate test
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Fig. 1. Allowing each test items to follow a separate ALT scenario.

environments may be rank ordered with respect to severity using engineering knowl-1
edge, i.e. E1(EK) coincides with the least (most) severe environment.
The lifetime distribution in a constant stress environment Ee will be modeled as an3

exponential life time distribution with failure rate �e; e = 1; : : : ; K . The index of the
use environment or nominal environment will be denoted by � and, typically, � = 1.5
However, �¿ 1 will be allowed as well, in case lower stress environments than use
stress are used in the ALT. The ordering of the test environments in terms of severity7
induces the same ordering in the associated failure rates, i.e.

0 ≡ �0 ¡�1 ¡ · · ·¡�K ¡�K+1 ≡ ∞: (1)

Let a total of N test items be available for testing and let each test item j be subjected9
to an ALT with mj test intervals [ti−1; j ; ti; j); i = 1; : : : ; mj, with t0; j ≡ 0; tmj+1;j ≡ ∞
for all j. If item j has not failed by time tmj;j, it is removed (censored) from testing.11
As testing may proceed in a variety of step patterns, the actual test environment in
[ti−1; j ; ti; j) will be denoted by Eai; j ; ai; j ∈{1; : : : ; K}. The change from one environment13
to the next may not be instantaneous but gradual (as is the case with temperature). The
amount of time to change gradually from one environment to the next in [ti−1; j ; ti; j),15
referred to as ramp-time, will be denoted by �i; j.
With the above setup, and the assumption that the failure rate over the ramp period17

may be approximated by a linear function, the failure rate of test item j; j= 1; : : : ; N ,19



UNCORRECTED P
ROOF

JSPI 2241

ARTICLE IN PRESS
J. Ren-e Van Dorp, T.A. Mazzuchi / Journal of Statistical Planning and Inference ( ) – 5

over the course of its ALT follows as:1

hj(t | �)

=




�ai; j ; 06 t ¡ t1; j ;

�ai; j−�ai−1; j

�i; j
(t − ti−1; j)

+ �ai−1; j ; ti−1; j6 t ¡ ti−1; j + �i; j; i = 2; : : : ; mj;

�ai; j ; ti−1; j + �i; j6 t ¡ ti; j ; i = 2; : : : ; mj;

(2)

where �= (�1; : : : ; �K). Example pro7les of the failure function given (2) are provided
in Fig. 1. The reliability and failure time distribution of test item j over the course of3
its ALT can be derived from the failure rate given by (2) using well known reliability
expressions. Speci7cally, letting the life length of test item j over the course of its5
ALT be denoted by Tj, it follows that:

�(i; j; t | �) = Pr(Tj¿ t |Tj¿ ti−1; j}

=




exp{−�ai−1; j (t − ti−1; j)

− (t−ti−1; j)2

2�i; j
(�ai; j − �ai−1; j)}; ti−1; j ¡ t6 ti−1; j + �i; j;

exp{− 1
2�ai−1; j �i; j − �ai; j

(t − ti−1; j − 1
2�i; j)}; ti−1; j + �i; j ¡ t6 ti; j ;

(3)

where �= (�1; : : : ; �K) and i = 1; : : : ; mj.7
Introducing the transformation

�e =−Ln(ue)
c

; (4)

where c¿ 0 is a preset transformation constant, (2) and (3) may be expressed in terms9
of ue for mathematical convenience (see Section 3). Substituting (4) into (2) and (3),
yields11

hj(t | u)

=




−Ln(uai; j )
c ; ti−1; j6 t ¡ ti; j ; i = 1;

Ln(uai−1; j )−Ln(uai; j )

c�i; j

×(t − ti−1; j)− Ln(uai−1; j )

c ; ti−1; j6 t ¡ ti−1; j + �i; j; i = 2; : : : ; mj;

−Ln(uai; j )
c ; ti−1; j + �i; j6 t ¡ ti; j ; i = 2; : : : ; mj;

(5)
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and1

�(i; j; t | u)

=




(uai−1; j)
−(t−ti−1; j)2+2�i; j(t−ti−1; j)=2c�i; j

×(uai; j)
(t−ti−1; j)2=2c�i; j ; ti−1; j ¡ t6 ti−1; j + �i; j;

(uai−1; j)
1
2 �i; j =c(uai; j)

(t−ti−1; j− 1
2 �i; j)=c; ti−1; j + �i; j ¡ t6 ti; j ;

(6)

where u=(u1; : : : ; uK) and ue is given by (4). Expressions (5) and (6) will be used in
the derivation of the likelihood for interval ALT data and type I censored ALT data.3
For Kexibility of ALT likelihood formulation, the likelihood will be formulated as a

product over the environment index e rather than a product over the interval index i.5
To accomplish such a formulation, let

ne;j = the number of times that test item j visits environment Ee; (7)

and7

vke; j = interval index for which item j visits Ee for the kth time: (8)

2.1. Interval data

Assuming that the failure of test items can only be monitored at the end of a9
step-interval, the probability of test item j failing in ALT step-interval qj equals

K∏
e=1

ne; j∏
k=1

f(e; j; k | u; q); (9)

where11

f(e; j; k | u; q) =



�(vke; j ; j; tvke; j ;j | u); vke; j ¡qj;

1− �(vke; j ; j; tvke; j ;j | u); vke; j = qj;
(10)

where q=(q1; : : : ; qN ); �(· | u) is given by (6) and the following conventions;
∏0

k=1{·} ≡
1; and qj =mj +1, if the test item is censored at tmj . With (6), (9), (10) and assuming13
conditional independence between the failure times of the test items conditioned on
knowing u, it follows that the likelihood given interval data (N; q) equals15

L{u; (N; q)}=
N∏

j=1

K∏
e=1

ne; j∏
k=1

f(e; j; k | u; q); (11)

where ne;j is de7ned by (7).

2.2. Type I censored data17

The interval data sampling strategy has the disadvantage that failure time information
is obscured by only using the interval number of the failure rather than the exact failure19
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time. In the type I censored sampling strategy, test items are continuously monitored1
over the course of the ALT and thus this strategy does not suLer from that disadvantage.
In the case of type I censored data, the failure time rj of test item j is known exactly3
if the test item fails in [0; tmj). Knowing the failure times rj, the step intervals qj in
which the items failed may be determined. Using a similar approach as in (11), the5
likelihood given the data (N; r; q), where r = (r1; : : : ; rN ); q= (q1; : : : ; qN ) follows as:

L{u; (N; r; q)}=
K∏

e=1

N∏
j=1

ne; j∏
k=1

g(e; j; k | u; r; q); (12)

where7

g(e; j; k | u; r; q) =



�(vke; j ; j; tvke; j ;j | u); vke; j ¡qj;

hj(rj | u)�(vke; j ; j; rj | u); vke; j = qj;
(13)

hj(· | u); �(· | u) are given by (5) and (6), respectively, and ne;j; vke; j are de7ned by (7)
and (8), respectively.9

3. Prior distribution

Using the inverse transformation of (4), i.e.11

ue = exp(−c�e); (14)

where c¿ 0 is a present transformation constant and (1) it follows that:

0 ≡ uK+1 ¡uK ¡ · · ·¡u1 ¡u0 ≡ 1: (15)

The motivation and a method for selecting the preset transformation constant c is13
discussed in Section 3.2. Rather than de7ning a prior distribution for � exhibiting
property (1), one may equivalently de7ne a prior for u=(u1; : : : ; uK) exhibiting property15
(15). Concentrating on u=(u1; : : : ; uK), a prior distribution which is: (i) mathematically
tractable, (ii) is de7ned over the region speci7ed in (15), and (iii) imposes no other17
restrictions on u, is the multivariate ordered Dirichlet distribution

�{u | �;  }=
∏K+1

e=1 (ue−1 − ue)� e−1

D(�;  )
; (16)

where, �¿ 0;  e ¿ 0; e = 1; : : : ; K + 1, and19

D(�;  ) =
∏K+1

e=1 !(� e)
!(�)

; (17)

where
∑K+1

e=1  e = 1. Using the transformation given by (4) allows one to take full
advantage of the mathematical properties of the ordered Dirichlet distribution. For21
example, from (16) the correlation between ue and uf; 16 e6f6K may be23
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derived as1

%ef = Cor(ue; uf) =

√
 e·(1−  f·)
(1−  e·) f·

; (18)

where  e·=
∑e

j=1  j. Expression (18) may be interpreted as a measure of positive de-
pendence between the failure behavior over the various stress environments. In addition3
from (16), the prior marginal distribution for any ue is obtained as a beta distribution
given by5

�{ue}= (ue)
�(1− 

e·)−1(1− ue)
� 

e·−1

B(�(1−  e·); � e·)
; (19)

where B(·; ·) is the well known beta constant. From (19) it may be derived that

E[ue] = (1−  e·) (20)

and7

Var(ue) =
(1−  e·) e·

�+ 1
: (21)

Hence, with (18), (20) and (21) it follows that the parameters  e; e = 1; : : : ; K + 1
determine location of ue and the degree of positive dependence between the elements of9
u (and thus via (14) also between the failure rates in �), whereas the parameter � given
the parameters  e completely determines the variance in the marginal prior distributions11
given by (19). Both the prior variance speci7ed in (21) and the prior correlations
speci7ed in (18) are indicative for the eLect of data in accelerated environments on13
the failure behavior in the use stress environment. As such, the multivariate prior
distribution given by (16) together with its prior parameters speci7es an implicit time15
transformation function, rather than an explicit time transformation function common
to most ALT inference procedures to date.17

3.1. Expert judgment for prior parameter speci9cation

Typically, to de7ne the prior parameters, expert judgment concerning quantities of19
interest are elicited and equated to their theoretical expression for central tendency such
as mean, median, or mode, see e.g. Cooke (1991). In addition, some quanti7cation21
of the quality of the expert judgment is often given by specifying a variance or a
probability interval for the prior quantity. Solving these equations generally leads to23
the desired parameter estimates.
It is desirable, for the design of a meaningful elicitation procedure to engineers, that25

elicited information can be easily related to observables, see e.g. Chaloner and Duncan
(1983). Mission time reliabilities can be related to observables by asking about the27
number of test items that survive the mission out of a 7xed sample. The prior for ue

given by (19) can be used to make prior probability statements concerning mission29
time reliabilities at the diLerent stress levels due to the one-to-one relationships of
these quantities to ue via the transformation de7ned by (4). Speci7cally,31

R($ | ue) = Pr{X ¿$ | ue}= (ue)$=c; (22)
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where X is the lifetime of a test item exposed to environment Ee and R($ | ue) denotes1
the respective reliability for a pre-speci7ed mission time $.
An advantage of eliciting the median of mission time reliabilities instead of the mean3

or the mode is that it allows for the use of betting strategies in an indirect elicitation
procedure, see e.g. Cooke (1991). The same holds for eliciting a lower or upper quantile5
of a mission time reliability instead of the variance to obtain a measure of variability.
For these reasons it is assumed that estimates on median mission time reliabilities at7
the diLerent stress levels R·1; : : : ; R·K and a lower quantile on mission time reliability
at use stress Rq

� can be elicited through engineering judgment procedures for a preset9
mission time $. The engineering judgment in terms of mission time reliabilities needs to
be elicited from design, reliability and testing engineers, and requires the development11
of a structured elicitation procedure. Such procedures (see, e.g., Cooke et al., 1991)
involves the careful design of a questionnaire and feedback to reduce elicitation bias.13
The design of the elicitation procedure is not a topic in this paper.
With (22), the prior marginal distribution of ue given by (19), setting elicited values15

R·1; : : : ; R·K equal to the medians of the mission time reliabilities and setting the elicited
value Rq

� equal to the qth quantile (e.g. the 0.05th quantile) of the mission time re-17
liability at use stress, it follows that problem P below needs to be solved to specify
the prior parameters &= (�;  ). The method to solve problem P will be described in19
Section 3.3.

Problem P. Solve &= (�;  ) from
21

1. Pr{R($ | u�)6R·� |&}= 0:50;
2. Pr{R($ | u�)6Rq

� |&}= q;23
3. Pr{R($ | ue)6R·e |&}= 0:50; e = 1; : : : ; K; e 
= �; 0¡q¡ 0:50.

3.2. Motivation and selection of the transformation factor25

With a preset transformation factor c and the medians of the mission time relia-
bilities R·1; : : : ; R·K , one may solve for medians u·1; : : : ; u·K of the associated marginal27
prior distributions given by (19) utilizing (22). The motivation for the transformation
parameter c, discussed below, follows from: (i) the value of the predictive medians29
u·e, (ii) the marginal distributions of ue given by (19), and (iii) the fact that no closed
form expression is available for the incomplete beta function B : [0; 1] → [0; 1] given31
by

B(u | a; b) = 1
B(a; b)

∫ u

0
xa−1(1− x)b−1 dx (23)

to be used for evaluations of the cdf associated with (19). Numerical algorithms exist33
to approximate the incomplete beta function given by (22), see e.g., Press et al. (1989).
These approximations are well behaved for parameter values a¿ 1; b¿ 1. However,35
in case a¡ 1 (b¡ 1), the beta density explodes at x=0 (x=1), resulting in numerical
instability for the approximation of B(u | a; b) for values close to u = 0 (u = 1). To37
achieve maximum numerical stability in the analysis it suggested to solve for the39
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transformation factor c in (22) by setting1

(R·K)c=$ = 1− (R·1)c=$; (24)

where $ is the mission time under consideration. The suggestion in (24) is to select c
such that u·K =1− u·1 and that the B(u | a; b) (see (23)) associated with u·K (u·1) is well3
behaved at u = 0 (u = 1). General root 7nding algorithms need be used to solve for
c in (24). The analysis present herein is robust with respect to perturbations from the5
solution c given by (24), provided numerically stable analysis results. For example,
deviations in the order of 10% from the solution c given by (24) did not aLect the7
analysis results.

3.3. Solving for prior parameters9

Using the preset mission time $ and having solved for the transformation constant c
utilizing (24), the procedure to solve for prior parameters �¿ 0;  e ¿ 0; e=1; : : : ; K+1,11
using problem de7nition P, can be organized in the following steps:
Step 1: transform medians R·e into medians u·e = (R·e)c=$.13
Step 2: transform lower quantile Rq

� at use stress into lower quantile uq
� = (Rq

� )c=$.
Step 3: solve for the prior parameters � and  �· of (19), where  �·=

∑�
j=1  j.15

Step 4: solve for the prior parameters  e·; e= 1; : : : ; K; e 
= �, where  e·=
∑e

j=1  j.

Step 5: solve for  e utilizing
∑K+1

j=1  j = 1, yielding17 


 e =  e·; e = 1;

 e =  e· −  (e−1)·; e = 2; : : : ; K;

 e = 1−  e·; e = K + 1:

(25)

Step 4 and Step 5 required solving for the parameters of the beta distribution (19) under
two quantile constraints. Van Dorp and Mazzuchi (2000) showed that parameters of a19
beta distribution can be solved for under any lower and upper quantile constraint and
developed a numerical procedure to solve for these parameters. The method in Van21
Dorp and Mazzuchi (2000) solves for a unique set of parameters of a beta distribution
that satis7es the two-quantile constraints while maximizing uncertainty in the underlying23
beta distribution. Given the uniqueness of the latter solution and a preset transformation
factor c, a unique solution to problem P exists.25

4. Posterior approximation

The posterior distribution of u follows for interval data (type I censored data) by27
applying Bayes theorem to the multivariate prior (16) and the likelihood expressions
(11) and (12). The posterior distribution of u� may be obtained by integrating the mul-29
tivariate posterior density function over the variables ue; e 
= �. Closed form analysis
of the posterior distribution of u� is intractable but for the case of identical ALT testing31
scenario’s for all test items and interval data (see Van Dorp et al., 1996). Hence, the
need for the use of the well known MGMC approach for posterior analysis when ALT33
scenarios may vary per test item and when Type I censored data is available.
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The MCMC approach samples from the multivariate posterior distribution of u by1
sampling successively from the marginal posterior full conditionals �{ue | u−e;D; �;  },
where D represents data and3

u−e = (u1; : : : ; ue−1; ue+1; : : : ; uK): (26)

From the sample, approximations of the posterior distribution of u, its marginal poste-
rior distribution ue (and thus R($ | ue)) and relevant moments may be obtained. For an5
extensive discussion of the MCMC approach we refer to Casella and George (1992).
In case the marginal posterior full conditional �{ue | u−e;D; �;  } is known in closed7

form, standard sampling methods may be used. When �{ue | u−e;D; �;  } is only known
up to a proportionality constant, the well known rejection sampling technique developed9
by Smith and Gelfand (1992) or the Metropolis Hastings Algorithm (see e.g. Robert
and Casella, 1999) may be used to sample from the marginal posterior full conditional11
�{ue | u−e;D; �;  }. Although the Metropolis Hastings algorithm has shown to be more
computationally eRcient in general than the rejection sampling technique, the rejection13
sampling technique is simple and straightforward and through numerical analysis com-
putational eRciency has not been shown to be an issue in this problem setting. The15
application of the rejection sampling technique requires sampling from the marginal
prior full conditional �{ue | u−e; �;  } which can be obtained from the multivariate17
prior distribution speci7ed by (16) as

�{ue | u−e; �;  }= (ue − ue+1)� e+1−1(ue−1 − ue)� e−1

B(� e+1; � e)(ue−1 − ue+1)� e+1+� e−1 : (27)

Expression (27) may be recognized as a transformed beta distribution on the interval19
(ue+1; ue−1). The following section presents a comprehensive example of the ALT
inference procedure. Additional details regarding of the MCMC method as applied to21
the ALT inference procedure in this paper are provided in Van Dorp (1997).

The posterior inference for use stress analysis is a function of the uncertainty char-23
acteristics of the use stress prior information, the prior accelerated environment infor-
mation and the resulting ALT data. An issue of concern to some is the sensitivity of25
the posterior distribution of use stress parameters to the prior distribution. Sensitivity
of posterior distribution to uncertainty characteristics of the prior distribution have been27
studied extensively in a general settings (see, e.g. DeGroot, 1989) and speci7cally for
the ALT scenario in Van Dorp et al. (1996) by Dietrich et al. (1997). Similar sen-29
sitivity to the prior distribution may be observed in this model. If there is little data,
reliance on the prior distribution is the only means of performing the analysis, which31
emphases the need for prior elicitation with strict adherence to a scienti7c method (see,
e.g. Cooke, 1991). On the other hand, if there is an abundance of data, the posterior33
distribution is dominated by the observed data.

5. Example35

The test system in this 7ctitious example is a new design of an electronic system
of a radar manufacturer. The environments in the 5-step ALT are combinations of37
voltage and temperature stress and are speci7ed in Table 1. The mission time is preset
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Table 1
Environments, prior failure rate and mission time reliability estimates

Ee Temp (◦F) Volt (VDC) Prior R·e E[Re] Mode (Re)

1 100 10.0 0.95 0.831 1.000
2 125 13.0 0.90 0.777 1.000
3 160 15.0 0.56 0.545 1.000
4 200 17.0 0.24 0.315 0.999
5 250 19.0 0.02 0.123 0.982

R5%
� at use stress 0.26

to 1000 h. Mission time reliability estimates and a 5% quantile on the mission time1
reliability at the use stress level are available for speci7cation of the prior parameters
and are also given in Table 1.3
The transformation factor c can be solved utilizing (24) and the mission time $=1000

and follows as c= 841:6124. The prior parameters (�;  ) may be solved from the data5
provided in Table 1 using the method described in Section 3.3. The resulting parameter
values are: � = 1:6656;  1 = 0:1522;  2 = 0:0481;  3 = 0:2198;  4 = 0:2168;  5 =7
0:2109;  6 = 0:1522. Measures of positive dependence between the failure behavior in
the use stress environment (e= 1) and the higher stress environments (e¿ 1) may be9
calculated utilizing (18) and follow with (29) as %12 = 0:8466; %13 = 0:4978; %14 =
0:3199; %15=0:1795. From these correlations it may be concluded that level of positive11
dependence decreases when the diLerence in stress between two environments increases.
Hence, although ALT data allows to infer about the failure behavior in use stress, there13
is a point where ALT data from a higher stress level has little to no information with
respect to the failure behavior at the use stress level (as the correlation decreases). This15
behavior is consistent with the initial assumption that the predominant failure modes
need to remain relatively the same when stress level is increased. From a reliability17
engineering perspective this is unlikely when stress is increased beyond e.g. the design
envelope.19
To show the Kexibility of the ALT inference procedure developed in this paper,

consider the ALT scenarios for twelve test items in Fig. 1. The 12 test items are21
grouped in 4 testing groups of three test items per group. The diLerent testing groups
are exposed to, (i) a progressive step-stress ALT, (ii) a regular life test at a higher stress23
level than use stress, (iii) a regressive step-stress ALT and (iv) a pro7le step-stress
ALT, respectively. The test plan for test item j = 1; : : : ; 12 is summarized by the25
environment levels aj = (a1j; : : : ; a5j), step-interval endpoints tj = (t1j; : : : ; t5j) and step
interval ramp-times �j = (p1j; : : : ; �5j), where27

aj =




(1 2 3 4 5) j = 1; 2; 3;

(3 3 3 3 3) j = 4; 5; 6;

(5 4 3 2 1) j = 7; 8; 9;

(2 3 1 5 4) j = 10; 11; 12;
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Table 2
ALT test data in terms of r; q

Test item 1 2 3 4 5 6 7 8 9 10 11 12

rj 3598 2153 716 2879 3600 3600 3596 3600 3592 2157 3591 1438
qj 5 3 1 4 6 6 5 6 5 3 5 2

tj = (720 1440 2160 2880 3600); j = 1; : : : ; 12;

�j = (0 6 6 6 6); j = 1; : : : ; 12: (28)

The entries in tj and �j are speci7ed in hours. The test data obtained from the ALT1
design in Fig. 3 is summarized in Table 2.
Note that, qj = 6 indicates that the test item survived its ALT. Hence, 3 out of 123

of the test items in Table 2 survived their ALT.
Using the MCMC method described herein, a Gibbs sequence of length 100,000 was5

generated for the case of interval data in Table 2. Let RSeq
i = {R1

i ; : : : ; R
100;000
i } be such

a sequence for candidate test environment i. An approximate i.i.d. posterior sample for7
candidate test environment i may be created by selecting a Gibbs burnin period M and
a Gibbs lag L and thinning the Gibbs sequence RSeq

i for given M and L such that9

RSample
i = {Rj

i ∈RSeq | j =M + iL; i = 1; 2; 3; : : :}:
Cowles and Carlin (1996) give an overview of various diagnostic methods to detect
convergence and burnin of the Gibbs sequence. We propose to select M and L based11
on a cusum path plot method introduced by Brooks (1998). By plotting a convergence
statistic (referred to by Brooks (1998) as the hairiness statistic of the Gibbs sequence)13
against an upper control limit and a lower control limit in the usual cusum fashion
(see e.g. Hawkins and David, 1998), the parameters M and L may be selected.15
We 7rst select the burnin period M by generating a cusum path plot of the conver-

gence statistic for the raw Gibbs sequence RSeq
1 . A necessary condition for convergence17

of RSeq
1 is that the convergence statistic settles down around a common value. Hence,

with Fig. 2A the burnin period M for RSeq
1 may be set to 500 iterations. Fig. 4B dis-19

plays a cusum path plot of the convergence statistic for RSample
1 by setting M =500 and

R=1. For an i.i.d. posterior sample the cusum path plot would have to fall within 95%21
normal con7dence bounds. From Fig. 2B, it can be concluded that this is clearly not
the case for a Gibbs lag L= 1, supporting the notion that RSample

1 is a dependent sam-23

ple from the posterior distribution. We next successively thin RSeq
1 for given M = 500

by increasing the value of L until we achieve a cusum path plot of the convergence25
statistic contained within 95% normal con7dence bounds. Such a cusum path plot is
achieved for L= 50 as displayed in Fig. 2C.27
The resulting posterior sample size equals 1990 and the associated posterior sam-

ple RSample
1 of sample generated from the Gibbs sequence RSeq

1 using a Gibbs burnin29
M =500 and Gibbs lag L=50 may be used for inference on the posterior mission time
reliability at uses stress. Fig. 3A contains prior distributional results for the mission time31



UNCORRECTED P
ROOF

14J. Ren-e Van Dorp, T.A. Mazzuchi / Journal of Statistical Planning and Inference ( ) –

JSPI 2241

ARTICLE IN PRESS

Fig. 2. (A) Cusum path plot of a convergence statistic for the raw Gibbs sequence RSeq
1 ; (B) Cusum path

plot of a convergence statistic for RSample
i : M = 500; L= 1; (C) Cusum path plot of a convergence statistic

for RSample
i : M = 500; L = 50.

reliability at use stress, Fig. 3B contains posterior distributional results for the mission1
time reliability at use stress using interval data and Fig. 3C contains posterior distribu-
tional results for the mission time reliability at use stress using type I censored data.3
Fig. 4 compares the cumulative distributions of mission time reliability at use stress
using interval data and type I censored data.5
From the interval data and type I censored data in Table 2 one observes that all

failures have failed close to the end of a step interval. Comparing the posterior results7
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Fig. 3. Prior and posterior distribution for mission time reliability at use stress using interval data and type
I censored data.
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Fig. 4. Comparison of posterior cumulative distribution for mission time reliability at use stress using interval
data or type I censored data.

Table 3
Comparison of posterior analysis using interval data and type I censored data

Ee Gibbs Gibbs Gibbs Gibbs Gibbs Gibbs
Int. data, Type I data, Int. data, Type I data, Int. data, Type I data,
R·e R·e E[Re] E[Re] Mode (Re) Mode (Re)

1 0.790 0.809 0.786 0.804 0.959 0.969
2 0.786 0.803 0.782 0.799 0.958 0.969
3 0.751 0.773 0.748 0.767 0.935 0.955
4 0.691 0.715 0.677 0.699 0.919 0.919
5 0.603 0.621 0.580 0.598 0.869 0.898

in Fig. 4 for interval data and type I censored data, it follows that the results are1
consistent with the above observation.
Indeed, the posterior mission time reliability is consistently lower with interval data3

compared to the results derived with type I censored data. The result in Fig. 4 indicates
a more eRcient use of available failure information in the case of type I censored5
data compared to interval data. The same conclusion is supported by Table 3 which
contains: (1) posterior mission time reliability estimates (median, mean and mode)7
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Fig. 5. Prior and posterior distribution for mission time reliability at environment 4 using interval data and
type I censored data.
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using interval data and (2) posterior mission time reliability estimates (median, mean1
and mode) using type I censored data for the 7ve diLerent stress environments.
Comparing the posterior results at use stress in Table 3 to the prior information in3

Table 1, it follows that the results indicate an over estimation of prior median mission
reliability at use stress and candidate test environment 2. However, the results indicate5
an under estimation of prior median mission time reliability in candidate test environ-
ments 3–5. The same conclusion relative to use stress and candidate test environment7
4 may be drawn from Fig. 3 and Figs. 5A–C which contain prior and posterior distri-
butional results for the mission time reliability at candidate test environment 4 using9
interval data and type I censored data, respectively.

6. Conclusions11

In this paper we developed a Kexible Bayesian inference procedure for the analysis
of accelerated life testing using the exponential failure model. The inference proce-13
dure covers a host of testing scenarios which are motivated by actual testing demands
and constraints. More speci7cally, the technique is general to allow for diLerent step15
patterns for diLerent test items and mixtures of ALT scenarios between test items.
Methods were derived to solve for the prior parameters using engineering judgment17
in terms of predictive mission time reliabilities. Providing these methods allows for a
straightforward application of the ALT inference procedure in a practical and mean-19
ingful manner.
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