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A Novel Method for Fitting Unimodal Continuous Distributions

 on a Bounded Domain Utilizing Expert Judgment Estimates
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The George Washington University, USA

ABSTRACT

Recent advances in computation technology for simulation/uncertainty analyses have shed new light

on the triangular distribution and its use to describe the uncertainty of bounded input phenomena.

Herein, we develop a novel fitting procedure for a continuous unimodal (four-parameter) family of

distributions on a bounded domain, utilizing three properly selected quantile estimates and an

estimate of the most likely value. The family in question is the two-sided power (TSP) family of

which the triangular distribution is a member. We analyze some of the procedure's fitting

characteristics and use them to estimate the waiting time distribution in a stationary M/G/1 queuing

system and the completion time distribution of a small project network example taken from the

shipbuilding domain.

1. INTRODUCTION

The triangular distribution is one of the first continuous distributions proposed back in 1755 by

English mathematician Thomas Simpson. It received widespread attention only as late as the 1960's
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in the context of the Project Evaluation and Review Technique (PERT) as an alternative to the four-

parameter beta distribution
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which has some difficulties regarding the interpretation of its parameters  and  (see, e.g., Clarkα "

1962, Grubbs 1962, Moder and Rogers 1968, Elmaghraby 1978, Keefer and Verdini 1993,

Kamburowski 1997, Johnson 1997, Lau  1998, and   2003, among others). In thiset al. et al.Herrerías

paper we investigate a recent generalization of the triangular distribution (see, e.g., van Dorp and

Kotz 2002a) known as the two-sided power (TSP) distribution with the probability density function

(pdf)
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where  is a real constant, as an alternative to the beta distribution when distributional8  !

parameters of a random bounded phenomenon are to be assessed via the expert judgment. For

8  " Ð!  8  "Ñ Ð#Ñ Ð +  7  ,the pdf  is unimodal U-shaped provided ). The cumulative

distribution function (cdf) follows from  using straightforward manipulations:Ð#Ñ
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For  ( ) the pdf reduces to a triangular (uniform) pdf. An additional advantage of the8 œ # 8 œ " Ð#Ñ  

TSP family of distributions over that of the beta family  is that TSPfor Monte Carlo analysis

distributions have a greater moment ratio coverage ( ,  at least for unimodal distributions) )" #Ñ 

(see, e.g., van Dorp and Kotz 2002b). Here, we have the squared skewness , the kurtosis) . ."
# $
$ #œ Î

) . . . . .# % " 5 "
# 5
#œ Î IÒ\Ó œ œ IÐ\  Ñ 5  , and  (for 2). Lau  (1998), among others, noteet al.

a restricted coverage for the beta family as far as kurtosis  is concerned.)#
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The unprecedented advances in quantitative methodology and their penetration into applied

sciences and engineering during the last several decades (recall the, by now standard, tools such as

@RISK by the Palisade Corporation, Crystal Ball by Decision Engineering, and ARENA by

Rockwell Software) have reinvigorated the use of distributions with bounded support and resulted in

a re-assessment of the scope and nature of an expert's activities. Experts are, as a rule, classified into

two, usually unrelated, groups: 1) experts (also known as substantive technical domain experts or 

experts) who are knowledgeable about the subject matter at hand and 2)  experts possessingnormative

knowledge of the appropriate  analysis techniques (see, e.g., Pulkkinen and Simola 2000quantitative

for details). In the absence of data and in the context of simulation and uncertainty analyses,

substantive experts are used (often by necessity) to specify these bounded input distributions.

In the last decade, integration of graphically interactive and statistical procedures for bounded

input distribution modeling has become a topic of intensive research (see, e.g., DeBrota  1989,et al.

AbouRizk  and Wagner and Wilson 1995, 1996) to facilitate their elicitation by experts.et al. 1992

AbouRizk   have developed software with a graphical user interface (GUI) to ease fittinget al. (1992)

of beta distributions using a variety of methods and DeBrota  (1989) have developed one foret al.

fitting bounded Johnson S  distributions (A Johnson S  random variable  with scale parameterF FÞ ]

# ‘ $−  and shape parameter 0 is by definition a transformed standard normal random variable

^ ] œ Ö"  Ò  Ð^  ÑÎ Ó× Ñ by means of the transformation . Both methods require aexp # $ "

specification of the lower and upper bounds of the distribution's support. Wagner and Wilson (1995,

1996) introduced univariate Bézier distributions (or curves), which are a variant of spline functions,

and the software tool PRIME with a GUI to specify them. Bézier curves utilize a number of control

points as its parameters where each control point is defined by two coordinates. Two of these control

points define its lower and upper . The system of Bézier distributions allows for greatbounds

flexibility in input distribution modeling for stochastic simulations.

However, as Wagner and Wilson (1996) indicate, random variate generation from a Bézier

distribution is, at present, computationally inefficient since its inverse cdf is not available in a closed
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form as it is the case for the beta or Johnson S  distributions. On the other hand from the TSP cdfF

(3) we immediately obtain its inverse:
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represents the mode probability. This allows for straightforward and efficient sampling using the

inverse cdf technique and a pseudo- random number generator (see, e.g., Banks  2005). Observeet al.

that the mode probability  in does not depend on the parameter .; Ð&Ñ 8

The expressions for the mean and variance of a TSP variable can directly be obtained from (2):

IÒ\Ó œ Ò\Ó œ Ð,  +Ñ † Ð'Ñ
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8  " Ð8  #ÑÐ8  "Ñ

8  #Ð8  "Ñ
, .Var #

7+ ,7
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The denominator in the expression for the mean in may be interpreted as a virtual sample8  " Ð'Ñ

size when  is not an integer (and as a sample size otherwise) of a sample with  virtual8 8  "

observations of value  and two additional ones with values  and . The notion of a non-integer7 + ,

virtual sample size corresponds to the notion of a non-integer prior sample size introduced by

Ferguson (1973). Hence, one may indirectly elicit the shape parameter  by asking an expert for the8

relative importance of the elicited most likely value  (for assessing the average) compared to elicited7s

bounds   or  Note that a value of  (corresponding to a triangular distribution) indicates+ ,Þ 8  " œ "s s

the same importance while values greater (less) than  indicate a larger (lesser) importance. The"

above elicitation approach utilizes a comparison approach similar to the popular paired comparison

elicitation techniques in psychological scaling models (see, e.g., Cooke 1991). However, this concept

of relative importance to elicit the shape parameter  could be a challenge for a substantive expert to8

assess it cognitively.
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In the remainder of this paper we shall develop an alternative fitting (or elicitation) procedure

for the four parameters and  of a TSP distribution in the absence of data. In Section 2, we+ß7ß , 8

shall motivate the elicitation of a lower and upper quantiles  and  respectively, the most likely+ ,: <

value  and an additional quantile  as the inputs for this procedure. In Section 3, we develop a7 B=

numerical algorithm that solves for the TSP parameters ( and ) from , ,  and and+ß7ß , 8 + , 7 B: < =

derive boundary conditions for the additional quantile  in terms of an asymmetric Laplace andB=

uniform distributions which, if met, would guarantee feasibility. Two uncertainty analysis examples

are presented in Section 4. The first one involves estimation of the marginal waiting time

distribution in a stationary M/G/1 queuing system and the second involves the estimation of the

completion time distribution of a small project network. A concluding remark is provided in Section

5. The Appendix discusses some mathematical details regarding the algorithm designed in Section 3.

2. MOTIVATION FOR THE ELICITATION OF THREE QUANTILES AND THE MODE

Johnson (1997) and Williams (1992) emphasize the intuitive appeal of the triangular distribution

Ð8 œ # Ð#Ñ Ð$ÑÑ +ß 7 ,in  and amongst practitioners and engineers since its parameters  and 

correspond to optimistic (  ), most likely (  ) and pessimistic (  ) estimates, respectively of an+ 7 , ßs s s

uncertain bounded phenomenon. A college text-book on discrete event simulation (Altiok and

Melamed 2001) utilizing the popular simulation package ARENA specifically recommends the

triangular distribution in the case when the underlying distribution is unknown, while a certain

minimal , some maximal  and a most likely values  are available. O+ , 7s ss ther transparent properties of

the triangular distribution are: (1) its parameters  and are of the same dimension as the+ß7 ,

quantity of interest, and (2) the probability mass to the left of the most likely value  equals the; 7

relative distance from the mode  to the lower bound  relative to the whole support  (see,7 + Ò+ß ,Ó

Eq. . The properties above seem to allow for direct elicitation of triangular parameters and notÐ&ÑÑ

to require visual interactive elicitation software similar to those developed for the beta, Johnson WF

and Bézier distributions.
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From a statistical perspective, however, the elicitation of a minimal and maximal values  and + ,s s

respectively from a substantive expert in modeling the uncertainty distribution of a bounded

phenomenon has been of concern and objections to a number of analysts (see, e.g., Selvidge 1980,

Davidson and Cooper 1980, Alpert and Raiffa 1982, Keefer and Verdini 1993), since these extreme

values quite likely fall outside the realm of his/her experience in spite of his/her familiarity with the

phenomenon. Consequently, early PERT practitioners have taken the liberty (and apparently with a

good reason) to replace the lower bound estimate  upper bound estimate by the -th -+ Ð ,Ñ : ÐÐ"  :Ñs s

th) percentile, setting    ( . It has been verified during the last decades that+ œ + , œ ,Ñs s
: ":

assessment of percentiles in the vicinity of extreme values, such as the  and 0.  percentiles!Þ!" **

(Alpert and Raiffa 1982) is also (similarly to the actual lower and upper bounds) quite often beyond

our accumulated experience, since they too, as a rule, correspond to rather rare events (Keefer and

Verdini 1993). The latter authors observe that the  and  quantiles have been found to be!Þ"! !Þ*!

more reliable than the "extreme"  and  percentiles (Selvidge 1980) or even the!Þ!" !Þ**

"intermediate"  and  percentiles (Davidson and Cooper 1980).!Þ!& !Þ*&

It should however be noted that the specification of a lower quantile , a most likely value + 7:

and an upper quantile  does not uniquely define a distribution for a bounded uncertain,":

(random) input phenomenon in simulation/uncertainty analyses. Figure 1 depicts four different

distributions that satisfy the constraints set by the lower percentile  of , the most likely value+ 'Þ&!Þ"!

7 ( , "!Þ& of and the upper percentile  of . Note that these four distributions have substantial!Þ*!

differences in their support. Table 1 provides the values for the mean, variance, skewness and

kurtosis for these distributions  The largest value of the variance in Table 1 corresponds to theÞ

unimodal TSP distribution with parameter ,  while the smallest one is obtained for the uniform8 œ (

distribution (which may be counterintuitive). On the other hand, the mean values in Table 1 behave

in an opposite manner.

The differences amongst the distributions in Figure 1 and Table 1 are quite noticeable and

would, no doubt, affect output results in various simulation/uncertainty analyses. This may present a

dilemma to a normative expert regarding the type of distribution to be used. From this numerical
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example one concludes that eliciting a lower percentile , a most likely estimate  and an upper+ 7:

estimate  is not sufficient to fully describe an input distribution. In the last 20 years a number of,":

investigators arrived at a similar conclusion and suggested the elicitation of five (Alpert and Raiffa

1982), seven (Selvidge 1980) or even as many as nine quantiles (Lau  1998) to achieve a properet al.

assessment of solely the mean and the variance of the uncertain phenomenon rather than its

complete distribution, which is required for simulation/uncertainty analyses. It would therefore

seem reasonable to build on the intuitive appeal of the triangular distribution, when describing a

distribution of a bounded input phenomenon, and specify what additional information needs to be

provided by the  expert (in addition to the values of  and ) to describe fully asubstantive + ß 7 ,: ":

XWT Ð+ß7ß ,ß 8Ñ Ð#ÑÞ distribution
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Figure 1: Beta, triangular, uniform and TSP distributions satisfying the constraints

 set by ,  and . Beta with parameters: + œ 'Þ& 7 œ (ß , œ "!Þ& + œ 'ß , œ "&ß!Þ"! !Þ*!

α "œ "Þ$)%ß œ %Þ!("à + œ &Þ%'%ß 7 œ (ß , œ "#Þ%&#à Triangular: 

Uniform: TSP:  + œ 'ß , œ ""à + œ #Þ')(ß 7 œ (ß , œ #!Þ)*"ß 8 œ (Þ
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Table 1: The lower and upper bounds, mean, variance,

skewness and kurtosis for the distributions in Figure 1.

Beta Uniform Triangular TSP
Lower Bound
Upper Bound
Mean
Variance

Ð(Ñ

'Þ!! 'Þ!! &Þ%' #Þ'*
"'Þ!! ""Þ!! "#Þ%& #!Þ)*
)Þ#) )Þ&! )Þ$" )Þ#!
#Þ$) #Þ!) #Þ#& #Þ()
!Þ'! !Þ!! !Þ#" "Þ#&
$Þ!) "Þ)! #Þ%! %Þ'!

Skewness
Kurtosis

In this paper, we propose to solve for the parameters  and  of a TSP distribution +ß ,ß7 8 Ð#Ñ

from a lower quantile estimate  most likely estimate an upper-quantile estimate  and an+ ß 7ß ,s s s
: ":

additional quantile  (to be determined also by a substantive expert) such thatBs=

   +  B  , Þ Ð(Ñs s s
: = ":

Specification of an additional quantile , satisfying , allows for derivation of boundaryB Ð(Ñs=

conditions utilizing asymmetric Laplace and uniform cdfs which, when satisfied, would guarantee

the feasibility of a distribution. These boundary conditions may prove to be usefulXWTÐ+ß7ß ,ß 8Ñ

in an automated visually interactive elicitation procedure. In the next section, an algorithm is

developed that solves for the TSP parameters  and  from the estimates   and +ß ,ß7 8 + ß7ß , Bs s ss
: ": =

by first setting   and 7 œ 7s by successively solving a single non-linear equation in the unknown

probability mass  (see, ) to the left of the mode .; Ð&Ñ 7

3. SOLVING FOR THE PARAMETERS OF A TSP DISTRIBUTION

Here we shall consider a slightly more general set-up by introducing an unrestricted quantile level <

in place of the pre-assigned  for the upper quantile . Thus, let  and  be the -th and -"  : , + , : <": : <

th quantiles, respectively, of the random variable , such that\
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+  +  7  ,  , Ð)Ñ: < .

We propose elicitation of an additional quantile  when  is smaller (larger) thanB  7 ÐB  7Ñ 7= =

the "midpoint" .  Without loss of generality we shall consider the caseÐ+  , ÑÎ#: <

+  7  B  ,: = <. Ð*Ñ

We are inclined to recommend the value or for  taking into account that the more!Þ(& !Þ)! =

extreme values and have been suggested previously for and , respectively, by Keefer!Þ"! !Þ*! : <

and Verdini (1993). A possibly psychological advantage of the -th percentile over the 75-th one is)!

that it is reminiscent of the 80/20 rule popularized in economics (see, e.g., Barabasi 2003).

Alternatively, a substantive expert could himself/herself specify the quantile level provided=ß

:  =  < .

From the cdf  and the definition of  i.e.  and the probability massÐ$Ñ + Ð J Ð+ l+ß7ß ,ß 8Ñ œ :Ñ: :

; 7 Ð&Ñ to the left of the mode  it now follows that

+ œ +  Ð:ß ;ß 8ÑÐ7  +Ñß Ð"!Ñ: -

where we have for the multiplier :-Ð:ß ;ß 8Ñ

!  Ð:ß ;ß 8Ñ œ Ð:Î;Ñ  "Þ Ð""Ñ- "Î8

Solving for  from and taking  into account, we have for given + Ð"!Ñß Ð*Ñ 8  !

+ ´ +Ð;l8Ñ œ +  Ð7 + Ñ  + Þ Ð"#Ñ
Ð:ß ;ß 8Ñ

"  Ð:ß ;ß 8Ñ
: : :

-

-

(The notation  instead of is used here to indicate that the lower bound  is a function of +Ð;l8Ñ + + ;

given .) Analogously to and , we have for  (using the notation  in place of8 Ð""Ñ Ð"#Ñ 7  , ,Ð;l8Ñ<

,):

, ´ ,Ð;l8Ñ œ ,  Ð, 7Ñ  , Þ Ð"$Ñ
Ð<ß ;ß 8Ñ

"  Ð<ß ;ß 8Ñ
< < <

.

.

where:

!  Ð<ß ;ß 8Ñ œ ÖÐ"  <ÑÎÐ"  ;Ñ×  " Ð"%Ñ. "Î8 .
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Substituting and  as given by  and  into , we arrive at the following+Ð;l8Ñ ,Ð;l8Ñ Ð"#Ñ Ð"$Ñ Ð&Ñ

nonlinear equation

FÐ;l8Ñ œ ;ß Ð"&Ñ

where  involves  and (that are pre-specified) and is given byFÐ;l8Ñ + ß7ß , ß : <: <

F

.

- .

Ð;l8Ñ œ Ð"'Ñ
7  +Ð;l8Ñ

,Ð;l8Ñ  +Ð;l8Ñ

œ ß
Ð7  + ÑÖ"  Ð<ß ;ß 8Ñ×

Ö"  Ð:ß ;ß 8Ñ×Ð,  7Ñ  Ö"  Ð<ß ;ß 8Ñ×Ð7  + Ñ
:

< :

where  and  are as above. In the Appendix, we shall show that, for a given value- .Ð:ß ;ß 8Ñ Ð<ß ;ß 8Ñ

of , one can numerically solve for the unique value of using  and the explicit8  ! ; − Ò:ß <Ó Ð"&Ñ

definition of   by means of, e.g., a bisection method (see Press  1989) with theFÐ;l8Ñ Ð"'Ñ et al.

starting interval . Hence, relations  define a continuous implicit function  withÒ:ß <Ó Ð"&Ñ  Ð"'Ñ ;Ð8Ñ

domain .8  !

Next, we are able to calculate the lower bound  [ ] and upper bound+ œ +Ö;Ð8Ñl8× Ð"#Ñ•

, œ ,Ö;Ð8Ñl8× Ð"$Ñ XWT Ò+ ß7ß , ß 8Ó• • • [ ] of a  distribution given by the cdf

J ÐBl+ ß7ß , ß 8Ñ œ Ð"(Ñ
"  + Ÿ B Ÿ 7

"  "  7 Ÿ B Ÿ ,

+ œ +Ö;Ð8Ñl8×ß , œ ,Ö;Ð8Ñl8×Þ

\ 8

7+ 7B
, + 7+

8

, 7 7B
, + , 7

• •
•

•

• •

ÚÝÛÝÜ
Š ‹

Š ‹
•

• • •

•
• • • ,  

satisfying  and . [Compare with .] We are introducing the+  +  7  ,  , 8  ! Ð"(Ñ Ð$Ñ• •
: <

notation  and  in to distinguish them from  and  in which  is not necessarily a+ , Ð"(Ñ Ð"#Ñ Ð"$Ñ ;• •

function of .  Utilizing the continuities of ,  and  as functions of  one8 ;Ð8Ñ +Ö;Ð8Ñl8× ,Ö;Ð8Ñl8× 8

can show that the cdf Ð"(Ñ 8 Æ ! converges as  to the two-value Bernoulli distribution with the

probability mass

;Ð!Ñ œ Ð")Ñ
7  +

,  +
:

< :
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at  and the probability mass  at . Similarly, it follows that + Ò"  ;Ð!ÑÓ ,: < as , the cdf 8 Ä ∞ Ð"(Ñ

converges to a (novel) reparameterization of an asymmetric Laplace cdf with parameters and+ ß7:

,"<

J ÐBl+ ß7ß , Ñ œ Ð"*Ñ
;Ð∞Ñ B Ÿ 7

"  Ö"  ;Ð∞Ñ× B  7ß
\ : <

:
;Ð∞Ñ

"<
";Ð∞Ñ

ÚÝÛÝÜ
š ›

š ›
7B
7+:

B7
, 7<

where  is the unique solution in  of the equation;Ð∞Ñ Ò:ß <Ó

2Ð;Ñ œ ; Ð Ñ, 20

and the function is given by2Ð;Ñ

2Ð;Ñ œ Ð Ñ
Ð7  + Ñ Ð Ñ

Ð,  7Ñ Ð Ñ  Ð7 + Ñ Ð Ñ

:
"<
";

< :
:
; ";

"<

ln
ln ln

. 21

Equation  may be solved for using a bisection method with starting interval  for . (AÐ#!Ñ Ò:ß <Ó ;

standard parameterization of the asymmetric Laplace distribution is given for example in Kotz et al.

2001, p. 137). For , the cdf  is simplified similarly to to a uniform distribution with8 œ " Ð"(Ñ Ð$Ñ

parameters

+ œ , œ Ð##Ñ
<+  :, Ð"  :Ñ,  Ð"  <Ñ+

<  : Ð<  :Ñ
: < < :, .

Hence, we can render the support of the cdf  to be arbitrarily large by letting  or in Ð"(Ñ 8 Ä ∞

reduce it to its minimal value  by letting  in the case that  may also be an ,Ö+ ß , × 8 Æ ! 7: < anti mode

or, if not, its minimal value , where  is given by . While the values of  in the intervalÒ+ß ,Ó Ò+ß ,Ó Ð##Ñ 8

Ð!ß "Ñ 7 are not consistent with an elicited mode , the wide range of the TSP family (from a

Bernoulli distribution to an asymmetric Laplace one) demonstrates its flexibility.

Returning to the example in Figure 1 where the lower quantile upper quantile+ œ 'Þ&ß!Þ"!

, œ "!Þ& 7 œ (!Þ*!  and the most likely value (or the mode)  are  Figure 2 twospecified, we plot in

boundary cdfs within the TSP family that satisfy these specifications. As follows from , the oneÐ##Ñ

with minimal support width is a uniform distribution with support . The other boundary withÒ'ß ""Ó
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an  support is the asymmetric Laplace cdf , where  is, as stated above,unbounded Ð"*Ñ ;Ð∞Ñ ¸ !Þ#%%

the unique solution to Eqs. . The hatched region in Figure 2 is the feasibility areaÐ#!Ñ  Ð#"Ñ

specified by these two boundary cdfs for the additional quantile  given the percentiles asÐB ß =Ñ=

above ( , ) and the mode . This feasibility area is partitioned into two+ œ 'Þ& , œ "!Þ& 7 œ (!Þ"! !Þ*!

areas, satisfying  and  Note that the sub-area with  satisfying  is by farB  7 B  7Þ B  7 Ð*Ñ= = =

the largest since in this case .  This observation indeed supports the earlier7  Ð+  , ÑÎ#!Þ"! !Þ*!

recommended elicitation of , since the elicitation of a consistent quantile  (in thisB  7 B  7= =

example) may be well beyond the capabilities of a substantive expert due to the smaller size of its

associated sub-area.
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Figure 2. Feasibility region for the additional quantile  satisfying  given commonÐB ß =Ñ Ð*Ñ=

percentiles  ,  and the mode  specified by the two boundary CDFs.+ œ 'Þ& , œ "!Þ& 7 œ (!Þ"! !Þ*!

The first boundary is an asymmetric Laplace cdf with  and the second is an uniformÐ"*Ñ 7 œ (

cdf with bounds  .Ð##Ñ + œ 'ß , œ ""
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If we now take  for example, the -th percentile of the beta distribution  with parametersß )! Ð"Ñ

α "œ "Þ$)%ß œ %Þ!(" + œ 'ß , œ "& , � �#$

plotted in Figure  (and thus satisfying ,  and ) which is" + œ 'Þ& 7 œ ( , œ "!Þ&!Þ"! !Þ*!

B œ *Þ&))!Þ)! Ð#%Ñ

it then follows immediately from Figure 2 that a distribution exists with theseXWTÐ+ß7ß ,ß 8Ñ

three quantiles  and the mode   Hence, as and  are elicited from+ ß B ß , 7 œ (Þ + ß B ß , 7!Þ"! !Þ)! !Þ*! : = <

a substantive expert, a normative expert can immediately determine whether a member of the TSP

family exists which is consistent with his/her assessment .prior to solving for its parameters

3.1. Construction of the algorithm

We are now in a position to formulate the algorithm to solve for the three remaining parameters +ß ,

and  of a TSP distribution given a set of consistent quantiles , , and the mode 8 Ö+ B , × 7: = <

satisfying .  modifications can be made to the algorithm when The first fourÐ*Ñ B  7ÞObvious =

steps of the algorithm below determine an interval that contains the parameter solutionÒ8 ß 8 Ó69A 2312

8 Ö+ B , × 7‡
: = < of a TSP distribution with quantiles , , and the mode  by starting with the uniform

lower boundary cdf in Figure 2 (with ). If  is a quantile of the 8 œ " B XWTÐ= + ß7ß , ß 8Ñ• •

distribution in Step 2, it would follow that the  obtained in Step 2 equals  and the algorithm= =•

terminates in Step 3. However, if the probability value  calculated in Step 2 is less than the quantile=•

level  of the additional quantile , it follows that the  cdf is too flat (see also= B + ß7ß , ß 8Ñ= XWT Ð • •

Figure 2) and a larger value of  is required leading to the adjustments of ,  and  in Step8 8 8 869A 2312

4.

After having established the interval , the remaining Steps 5-8 follow the bisectionÒ8 ß 8 Ó69A 2312

method by first setting  equal to the midpoint of this interval in Step 5. Steps 6 and 7 are8•

analogous to Steps 2 and 3. If now the probability value = =• calculated in Step 6 is larger (less) than 

it follows that the  cdf is not flat enough (too flat) and the parameter solution XWTÐ 8+ ß7ß , ß 8 Ñ• • • ‡
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for is contained in the interval (the interval , ) suggesting adjustments of  Ò8 ß 8 Ó Ò8 8 Ó 869A 2312 69A
• •

and  in Step 8. Explicitly the eight steps are:82312

 Step 1 : Set .8 œ "

 Step 2 : Solve for from  and using the bisection method with the starting;Ð8Ñ Ð"&Ñ Ð"'Ñ

         interval for Ò:ß <Ó ;Þ

               Calculate  from + œ +Ö;Ð8Ñl8× Ð"#ÑÞ•

               Calculate } from ., œ ,Ö;Ð8Ñl8 Ð"$Ñ•

               Calculate = œ + ,• • •J ÐB l ß7ß ß 8Ñ\ = .

 Step 3 : If then STOP.l=  = l • %

 Step 4 : If  then=  =•

                    set , , , Goto Step 2.8 œ #8 8 œ 8 8 œ #869A 2312

 Step 5 : Set .8 œ Ð8  8 ÑÎ#•
69A 2312

 Step 6 : Solve from  and using the bisection method with the startingfor ;Ð8 Ñ Ð"&Ñ Ð"'Ñ•

          interval for Ò:ß <Ó ;Þ

               Calculate  from .+ œ +Ö;Ð8 Ñl8 × Ð"#Ñ• • •

               Calculate  from ., œ ,Ö;Ð8 Ñl8 × Ð"$Ñ• • •

               Calculate = œ + ,• • •J ÐB l ß7ß ß 8 Ñ\ =
• .

 Step 7 : If then STOP.l=  = l • %

 Step 8 :  If   then=  =•

                     8 œ 82312
•

     else

                     .8 œ 869A
•

     Goto Step 5.

A software program with an implementation of the above algorithm is available from the authors

upon request.
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Applying the algorithm above to the beta distribution where Ð#$Ñ + œ 'Þ&ß B œ !Þ*&))ß!Þ"! !Þ)!

, œ "!Þ& 7 œ ( Ð Ñ!Þ*! and  as depicted in Figure 2  yields

8 œ #Þ()# + œ 8 8 &Þ!$%ß , œ 8 8 "$Þ(##Þ Ð#&Ñ‡ ‡ ‡ ‡ ‡ ‡ ‡, +Ö;Ð Ñl × œ ,Ö;Ð Ñl × œ

Figure 3 plots the pdf and the cdf of the beta distribution  and that of the Ð#$Ñ XWT Ð+ ß7ß , ß 8 Ñ‡ ‡ ‡

distribution with  In Figure 3, the common percentiles (mode) of the beta and TSP cdfs are7 œ (Þ

indicated by dotted lines. Table 2 compares these distributions in terms of their lower and upper

bounds, means, variances, skewnesses and kurtoses.
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Figure 3. PDF and CDF of the beta distribution with parameters and TSP distribution withÐ#$Ñ

parameters  (presented in the second row of Table 2) Ð#&Ñ with the common percentiles

+ œ 'Þ& B œ *Þ&)) , œ "!Þ& 7 œ (!Þ"! !Þ)! !Þ*!, ,  and the most likely value (the mode) .

Table 2. Summary statistics of with parameters  and a TSPa beta distribution Ð#$Ñ

distribution with parameters . Ð#&Ñ Both distributions have common percentiles ,+ œ 'Þ&!Þ"!

, œ "!Þ& 7 œ (!Þ*! , mode .B œ *Þ&))!Þ)!  and 

Lower Bound Upper Bound Mean Variance Skewness Kurtosis
Beta
TSP

'Þ!! "&Þ!! )Þ#) #Þ$) !Þ'! $Þ!)
&Þ!$ "$Þ(# )Þ#' #Þ$) !Þ%$ #Þ))
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Note that the cdfs in Figure 3 are almost indistinguishable in the range from  and thatÒ+ ß , Ó!Þ"! !Þ*!

the individual statistics in Table 2 align better than those for the four distributions in Table 1

presented in Section 2, since the distributions in Table 2 possess an additional quantile  inB=

common.

3.2. Sensitivity of additional quantile specification

For every specification of an additional quantile  in the hatched region of Figure 2 a unique valueB=

of the parameter  may be obtained by the algorithm above. Each value for the parameter  results8 8

in turn, via   and  , in a TSP distribution defined by Eq. . Hence,+Ö;Ð8Ñl8× Ð"#Ñ ,Ö;Ð8Ñl8× Ð"$Ñ Ð"(Ñ

the hatched region in Figure 2, may also be interpreted as a sensitivity region for the additional

quantile specification as it defines the coverage area of all TSP cdfs with common lower quantile

+ œ 'Þ& , œ "!Þ& 7 œ (!Þ"! !Þ*!, upper quantile  and mode .

We may further investigate the sensitivity of the mean and variance with regard to the additional

quantile specification (keeping ,  and mode fixed) in the algorithm+ œ 'Þ& , œ "!Þ& 7 œ (!Þ"! !Þ*!

above, by studying the behavior of the coefficient of variation of the distribution . Figure 4Ð"(Ñ

plots the coefficient of variation i.e. . % as a function of  (whichGZ Ò\Ó Ð ÖW>ÞH/@ ÎIÒ\Ó× ‚ "!! Ñ 8

may easily be evaluated by substituting the value for   [ ] and upper bound+Ö;Ð8Ñl8× Ð"#Ñ

,Ö;Ð8Ñl8× Ð"$Ñ ß ß Ð'Ñ[ ]  obtained from the algorithm  in equation ). We observe here a larger

sensitivity at the lower ranges of the parameter  (i.e. closer to the lower boundary of the hatched8

region in Figure 2). The coefficient of variations for the TSP distributions in Figure 1 and Figure 3

are indicated separately.

It is appropriate to point out here that specification of a lower quantile a most like value ,+ ß 7:

an upper quantile , and one additional quantile  of a bounded uncertain phenomenon does not, B< =

determine the family of distributions to be fitted. However, we are not aware of an algorithm as

described above,  for the beta distribution (nor for any otherincluding  boundary conditions,B=

continuous univariate bounded distribution). While the algorithm does fit "exactly" (i.e. up to a

desirable accuracy level) a TSP distribution to the provided quantiles and most likely value (if
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mutually consistent), it evidently does not account for potential inaccuracy of the experts

assessments. Sensitivity with respect to additional quantile specification is indicated in Figure 4 for

our example with . We would expect similar+ œ 'Þ& , œ "!Þ& 7 œ (!Þ"! !Þ*!,  and most likely value  

or larger CV sensitivity with respect to the specification of the lower and upper quantiles and most

likely value (keeping the other three fixed) and plan to address this in a future paper.
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Figure 4. Sensitivity of additional quantile  specification in terms of the coefficientB=

of variation, keeping ,  and most likely value  fixed.+ œ 'Þ& , œ "!Þ& 7 œ (!Þ"! !Þ*!

4. EXAMPLES

We shall now present two examples to illustrate the effect of specifying an additional quantile ,B=

after already elicited lower and upper quantiles  and and the most likely value , in the course+ , 7: <

of specifying the input distributions with bounded support in simulations in the absence of data.

4.1. A M/G/1 queuing system

Consider an M/G/1 queuing system with inter-arrival times exponentially distributed with the mean

of /  minutes (8.5 is the average of the uniform distribution in Figure 1 and Table 1))Þ& !Þ*& ¸ )Þ*&

and service times distributed according to one of the distributions depicted in Figures 1 and 3. From

the means of these service times distributions provided in Table 1, it thus follows that the associated
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service utilizations range from (the uniform case) to approximately  (the!Þ*& )Þ*&Î)Þ#! ¸ !Þ*#

TSP(7) case). We may simulate customer waiting times by sampling from the service time

distributions and inter-arrival distributions and by applying Lindley's (1952) recursion

H œ Ö!ßH  W  E ×ß 3   "ß Ð#'Ñ3" 3 3 3"max

where is the sequence of inter-arrival times,  is the sequence of service times, and is theE W H3 3 3

sequence of customer waiting times. Since we start with an empty system, we use the method of

Welch (1983) to remove the initialization bias. This procedure allows us to visually estimate a

threshold  beyond which we may assume that our M/G/1 simulation has reached its stationary6

state. (See, e.g., Alexopoulos and Seila (1998) for a more detailed description of the procedure.)

Since the uniform distribution in Table 1 has the highest mean service time, we shall determine  for6

this M/G/1 setup and apply the same initialization threshold  to the other service time distributions6

as well.

Figure 5 consists of three parts. Figure 5A depicts the waiting time occurrences  of customer]"4

4 " 4 œ "ßá ß #!!!!Þ ] 4
 in Replication  for  Figure 5B plots the average waiting time  of customer 4

over 50 of such replications of the same lengths, i.e.

] œ ] ß 4 œ "ßá ß #!!!!Þ Ð#(Ñ


4 34

3œ"

&!�  

Finally, Figure 5C graphs the moving average

] ÐAÑ œ Ð#)Ñ


] A  " Ÿ 4 Ÿ #!!!!  A


] " Ÿ 4 Ÿ A


4

"
#A"

7œA

A

4

"
#4"

7œ4"

4"

4

ÚÝÝÝÛÝÝÝÜ

�
�

with a time window  (indicated in Figure 5B) sufficiently large to include multipleA œ $!!!

regeneration cycles and less than  as suggested by Law and Kelton (2000). Noting that anÚ#!!!Î%Û

M/G/1 system regenerates itself each time an arriving customer does not have to wait, one may

observe typical regeneration epochs in Figure 5A.
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Figure 5. Welch (1983) analysis for an M/G/1 simulation with mean inter-arrival time

of ¸ )Þ*& Ò'ß ""Ó minutes and an uniform  service time distribution.

From Figure 5C we observe an upward trend of the moving average  up to approximately] ÐAÑ


4

customer . Hence, to estimate stationary waiting time distributions for the five difference6 œ (!!!
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service time distributions in Figures 1 and 3, we shall collect waiting times after  . Figure 66 œ (!!!

presents the stationary waiting time cdfs constructed from the waiting times  ] ß 3 œ "ßá&ß34

4 œ (!!"ßá ß #!!!! '&!!!, of five additional replications resulting in a sample size of  for each of

these service time distributions. In generating Figure 6 we have applied the common random

numbers technique (CRN) (see, e.g. Banks  ). That is, each replication has a specifiedet al. 2005

sequence of independent uniform pseudo-random numbers for its arrival time generation and aÒ!ß "Ó

separate one for its service time generation. In addition, the sequences of pseudo-random numbers

across these five replications are sampled independently from each other. However, the same

random numbers in these five replications are used when changing the service time distribution

from the uniform one to any of the other four service time distributions in Figures 1 and 3.  Note

that the estimated waiting time cdf corresponding to the triangular service distribution is displayed in

Figures 6A and B.

From Figure 6A one observes that the vertical distances between the cdfs in this figure are quite

large. While the maximal difference of the probability that a customer amongstdoes not have to wait 

these waiting time cdfs equals approximately  (which is consistent with the difference between!Þ!$

service utilizations mentioned in the first paragraph of this Section), the maximal vertical distance

between the cdfs equals approximately  at the waiting time of  minutes. Recall that all five!Þ#"% ()Þ#

distributions in Figures 1 and 3 have the same lower and upper quantiles (+ œ 'Þ& , œ "!Þ&!Þ"! !Þ*!, )

and the most likely value ( ). Hence, the differences amongst the cdfs in Figure 6A arise solely7 œ (

from different values for the shape parameter  for the fitted TSP service distributions.8

Consequently, a normative expert may be quite uncomfortable with these results, since a particular

choice for the value of the parameter  could be considered arbitrary (including the value 8 8 œ #

corresponding to the triangular distribution). Thus our suggestion in Section 2 to elicit an additional

quantile  to determine the value of the shape parameter  makes sense.B 8=
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Figure 6. Estimated stationary waiting time distributions employing 65000 samples for the M/G/1

queuing simulation with mean inter-arrival time of  and service time distributions¸ )Þ*& minutes

depicted in Figures 1 and 3.

Figure 6B displays the waiting time cdfs employing as service distributions the cdfs in Figure 3

and the triangular one in Figure 1. The TSP(2.782) and beta service distributions involve besides the

values and  a common additional quantile . The maximal distance between the+ ß7 , B!Þ"! !Þ*! !Þ)!

corresponding waiting time cdfs in Figure 6B is approximately just  at the waiting time of !Þ!") '(Þ%

minutes (being about -th of the difference observed in Figure 6A). Moreover, the maximal"Î"#
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difference between the waiting time cdfs associated with the beta and triangular service distributions

(sharing only and ) in Figure 6B is comparatively small as well and constitutes+ ß7 ,!Þ"! !Þ*!

approximately  at a somewhat higher waiting time of  minutes. Hence, it seems that a!Þ!"% ')Þ(

normative expert who is comfortable limiting himself/herself to beta and triangular family of

distributions for modeling bounded input phenomena in simulations in the absence of data will

arrive at similar output analysis results also in the case when the beta and triangular distributions

share lower  and upper quantiles and the most likely value .  Given these quantiles and+ , 7!Þ"! !Þ*!

the most likely value, the lower bound  and upper bound  of the triangular distribution may be+ ,

easily determined from Eqs.  using a bisection method to solve equation . To theÐ""Ñ  Ð"'Ñ Ð"&Ñ

best of our knowledge, no algorithm is available that solves for the lower and upper bounds of a

beta distribution given these quantiles and a most likely value. We shall further amplify the above

observations via a PERT example in the next sub-section.

4.2. A project network example

We shall cast the results of this paper in a chronological context of what we call a 40 year PERT

"controversy" (see, e.g., Clark 1962, Grubbs 1962, Moder and Rogers 1968, Elmaghraby 1978,

Keefer and Verdini 1993, Kamburowski 1997, Johnson 1997, Lau  1998, and  et al. et al.Herrerías

2003, among others) regarding the estimation of the parameters  and  of the beta distribution α " Ð"Ñ

using the formulas
IÒX Ó œ

ÒX Ó œ Ð,  + Ñ
Ð#*Ñ

+%7,
'

"
$'

#

 

Var ,

(as suggested originally by Malcolm  1959) . Here,  is a random variable modeling an activitieset al. 3 X

completion time, and  are lower and upper bound estimates and  is a most like estimate for .+ , 7 X

3Kamburowski (1997) in a recent publication notes that: "Despite the criticisms and the abundance of new estimates, the PERT

mean and variance can be found in almost every textbook on OR/MS and P/OM, and are employed in[given by ( ) in this paper] #*

much project management software."
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The remaining beta parameters  and  in are obtained from utilizing the method ofα " Ð"Ñ Ð#*Ñ

moments  We shall compare six different scenarios, described in Table 3, for calculating theÞ

completion time distribution of the project network in Figure 7 employing the lower and upper

bounds  and  and most likely value  provided in Table 4. While both Scenarios 2 and 4 involve+ , 7

triangular distributions, Scenario 4 in Table 3 is designated Triangular to coordinate with the

example in Section 4.1; Scenario 2 is designated equivalently as TSP(2). The network in Figure 7 is a

small 18-activity project network and adapted from ship-building applications (Taggart 1980).

Table 3. Scenarios  for the completion time distribution calculations of the project in Figure 7

Activity durations uncertainties will be modeled via beta distributions using the pessimistic
Scenario 1: , most likely  and the+ 7  optimistic estimates  specified in Table 4 using formulas . 
Beta Table 4 provides the values for the parameters  and  of t

8 Ð#*Ñ
α " he beta distributions which

follow from  using the methods of moments.
Scenario 2: Activity durations uncertainties will be mod

Ð#*Ñ
eled via triangular distributions using the  

TSP pessimistic , most likely  and the optimistic  estimates specified in TablÐ#Ñ + 7 , e 4.
We solve for the lower  and upper quantiles  of the Scenario 1 beta distributions. 

Scenario 3: Their values are pro
+ ,!Þ"! !Þ*!

vided in Table 4.  Next, activity durations uncertainties will be modeled
Uniform via uniform distributions fitted to these quantiles by calculating their boundary parameters

using equation .
We solve for the lower  and upper  quantiles, and most

Ð##Ñ

+ ,!Þ"! !Þ*!  likely value  of the 
Scenario 1 beta distributions. Their values are provided in Table 4.  Next, activity durations 

Scenario 

7‡

4: uncertainties will be modeled via triangular distributions fitted to these quantiles and most 
Triangular likely value. Namely, their lower and upper bounds will be calculated by first setting , 

next by solving for  using equations  and  and
8 œ #

;Ð#Ñ Ð"&Ñ Ð"'Ñ  finally by substituting the value 
of  in equations  and .

Scenario 5: Same as Scenario 4, but activity durations unce
;Ð#Ñ Ð"#Ñ Ð"$Ñ

rtainties will be modeled via TSP distributions
TSP with instead of .

We solve for the lower  and upper quantiles 
Ð(Ñ 8 œ ( 8 œ #

+ ,!Þ"! !Þ*!
‡

!Þ)!

, most likely value  and additional
Scenario 6:  quantile  of the Scenario 1 beta distributions. Their values are provide

7
B d in Table 4.  

TSP Next, activity durations uncertainties will be modeled via TSP distributions fitted to these 
quantiles and 

Ð8Ñ
most likely value using the algorithm in Section 3.1.

 We now generate the cdf of the completion time distribution of the project presented in Figure

7 for each one of the six scenarios in Table 3 employing the Monte Carlo technique (Vose 1996)

involving 25000 samples from the activity durations and subsequently applying the critical path

method (CPM) (Winston 1993). Consequently, for each scenario we shall obtain an output sample
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Figure 7. Example project network  for a production process.c

 Table 4. Technical data for modeling the uncertainty in activity durations

for the project network in Figure 7 and for Scenarios 1-6 in Table 3.

Activity Name
Shell:Loft
Shell: Assemble

+ 7 , IÒX Ó ÒX Ó + 7 B ,

## #& $" #&Þ& #Þ$ #Þ* %Þ' #$Þ' #&Þ" #'Þ) #(Þ'
$& $) %$ $)Þ$ "Þ) $Þ# %Þ& $'Þ'

Var α " !Þ"! !Þ)! !Þ*!
‡

$)Þ" $*Þ& %!Þ"
"* ## %( #&Þ( #"Þ) "Þ$ %Þ# #!Þ% #"Þ& #*Þ' $#Þ%
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of size 25000 for the completion time of the project network in Figure 7 (from which one then

empirically estimates its completion time distribution). The resulting cdfs for the six scenarios

described above are depicted in Figures 8A - C.

The comparison between "Scenario 1: Beta" and "Scenario 2: TSP " in Figure 8A may explainÐ#Ñ

(albeit partially) the reason that the use of  is quite controversial. Indeed, the parameters of theÐ#*Ñ

beta and triangular distributions in these scenarios are "estimated" from the same values of  and+ß7

, (in Table 4). However, the maximal vertical distance between the two cdfs approaches to over

!Þ&! at 153 days. This difference could be used as a benchmark for the maximal vertical differences

observed in Figures 8B and 8C.

The maximal vertical distance between the three cdfs depicted in Figure 8B equals approximately

!Þ"$ at 149 days (constituting about one-fourth of the difference in Figure 8A). Recall that the

identical activity times utilized to generate Figure 8B all have the same lower and upper quantiles

+ , 7!Þ"! !Þ*! and  and the most likely value  (presented in Table 4). The differences between the cdfs*

in Figure 8B are thus being the result of using the different values 1, 2 and 7 for the shape parameter

8 of the TSP distributions for "Scenarios 3: Uniform", "Scenario 4: Triangular" and "Scenario 5:

TSP ", respectively. In light of the prolonged controversy regarding the use of  (resulting in aÐ(Ñ Ð#*Ñ

substantial difference between cdfs observed in Figure 8A), we are of a strong opinion that a

normative expert should inevitably also be uncomfortable with choosing a particular value for 8

(resulting in a difference between cdfs observed in Figure 8B). In fact, any choice for the value of

the shape parameter , in the absence of data, when a lower and upper quantiles and 8 + ,: <

respectively and the most likely value  are given, is arbitrary (not unlike the specification of 7 IÒX Ó

and  in . Hence, our suggestion in Section 2 to elicit an additional quantile  from theVarÒX Ó Ð#*ÑÑ B=

substantive expert is appropriate. Furthermore, the algorithm in Section 3.1 allows a normative

expert to solve for the shape parameter . The additional quantiles  in this example are8 B!Þ)!

obtained from the beta distributions associated with Scenario 1 in Table 3 and are listed in Table 4.

Scenario 6 in Table 6 utilizes these quantiles to solve for the parameters  for each and every activity8

duration. The maximal vertical difference between the "Scenario 1: Beta" and "Scenario 6: TSP "Ð8Ñ
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Figure 8. Comparison of cdfs of the completion times for the project

 sketched in Figure 7 for the six scenarios described in Table 3.
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cdfs in Figure 8C now equals approximately  obtained at 153 days (which is barely -th of!Þ!# "Î#&

the difference observed in Figure 8A and just about one-sixth of the difference in Figure 8B).

For completeness in Figure 8C a comparison between the "Scenario 1:Beta" and "Scenario 4:

Triangular" cdfs should be noted. Here the maximal vertical difference also turns out to be at!Þ!#

148 days. Hence, for those normative experts that are comfortable to confine themselves to the beta

or triangular families in the course of modeling input distributions with bounded support in the

absence of data, the graphs in Figure 8C (and Figure 5B) seem to indicate that when the coinciding

beta and triangular distributions have common lower and upper quantiles  and  and most+ ,!Þ"! !Þ*!

likely value , quite similar output results are to be expected. We stress that our opinion is that a7

normative expert should not be satisfied with such a restriction in view of the potential differences

that are indicated in Figure 8B.

Note that in Figure 8 the project completion time of  days following from the CPM method"%#

(using the most likely values of  in Table 4) is represented by the bold vertical line. Since theonly 7

values of the mode  are less than the midpoint  for  the 18 activities in Table 4 (which7 Ð+  ,ÑÎ# all

allows the execution of the algorithm in the form presented in Section 3.1), we deduce from Figure

8 that the probability of achieving the completion time of days is    for all the six"%# !Þ!&less than

scenarios. Granted that the skewness of the activity distributions in Table 3 may perhaps be

somewhat inflated, the case could definitely be made that the skewness towards the lower bound

appears in the assessed activity time distributions due to a motivational bias of the  expert.substantive

Moreover, the probability being less than  of attaining a  day deadline for the project!Þ!& "%#

sketched in Figure 7 reinforces the well known rule that, in applications, uncertainty results ought to

be conveyed to the decision makers.

5. A CONCLUDING REMARK

The examples in the previous section fall short of a rigorous proof that assures us that the only

family which can be fitted to the estimated lower and upper quantiles and , the most likely value+ ,: <

7 B +  B  , and an additional quantile , with , is the TSP family. However, the conclusions= : = <
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stemming from both examples do provide us with a further justification for eliciting an additional

quantile, supplementing lower and upper quantiles and a most likely value, in the course of

specifying input distributions with bounded support for simulations via expert judgment. We are

confident that we have simplified the dilemma of a normative expert regarding the use of a

particular family of distributions for a bounded uncertain phenomenon in the absence of data, by

providing a flexible alternative to the beta distribution  employing instead the TSP distributionÐ"Ñ

Ð#Ñ that is motivated by an intuitive appeal of the triangular distribution (a member of the TSP

family). The TSP distribution allows for computationally efficient sampling and permits us to devise

a straightforward algorithm to solve for the distributional parameters based on the well grounded

stipulation that the actual lower and upper bounds per se, in a majority of cases, are quite

cumbersome to assess by substantive experts.
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APPENDIX. THE IMPLICIT FUNCTION ;Ð8Ñ

In this Appendix we shall elaborate on the implicit function , which seems to be a new concept;Ð8Ñ

introduced in this paper. This function plays a pivotal role in the algorithm described in Section 3.

Let with pdf and cdf 3 From inequality  and the probability\ µ XWTÐ+ß7ß ,ß 8Ñ Ð#Ñ Ð ÑÞ Ð*Ñ

mass   to the left of the mode (the most likely value)  we obtain the relations; Ð&Ñ 7

!  :  ;  <  " Ê   "   " Ð$!Ñ
: "  <

; "  ;
0    and   0 .
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where  and  are the quantile levels of the quantiles  and , respectively. Taking partial: < + ,: <

derivatives with respect to  and  of the function  defined in  we arrive at8 ; +Ð;l8Ñ Ð"#Ñ

` : Ð:ß ;ß 8Ñ 7  +

`8 ; Ö"  Ð:ß ;ß 8Ñ× 8
+Ð;l8Ñ œ  ! Ð$"ÑlnŠ ‹ -

- # #

:

and

`+Ð;l8Ñ Ð:ß ;ß 8Ñ 7  +

`; Ö"  Ð:ß ;ß 8Ñ× 8;
œ  ! Ð$#Ñ

-

- #

: ,

where  is defined by . Hence, the lower bound  is a strictly decreasing-Ð:ß ;ß 8Ñ Ð""Ñ +Ð;l8Ñ

(increasing) function of  (of ). In addition, from ,  and it follows that8 ; Ð*Ñ Ð""Ñ Ð$!Ñ

+Ð;l8Ñ Ä ∞ 8 Ä ∞ Ð; Æ :Ñ Ð$$Ñ as    

for the values of  of Analogously, taking partial derivatives with respect to  and; − Ð:ß <Ñ Ð 8  !ÑÞ 8

; ,Ð;l8Ñ Ð"$Ñ of the function   we arrive at

`,Ð;l8Ñ "  < Ð<ß ;ß 8Ñ ,  7

`8 "  ; Ö"  Ð<ß ;ß 8Ñ× 8
œ   ! Ð$%ÑlnŠ ‹ .

. # #

< ,

and

`,Ð;l8Ñ Ð<ß ;ß 8Ñ ,  7

`; Ö"  Ð<ß ;ß 8Ñ× 8Ð"  ;Ñ
œ  ! Ð$&Ñ

.

. #

< ,

where  is defined by . Hence, the upper bound  is a strictly increasing function.Ð<ß ;ß 8Ñ Ð"%Ñ ,Ð;l8Ñ

of   and  rom ,  and it follows thatboth F8 ;Þ Ð*Ñ Ð"%Ñ Ð$!Ñ

,Ð;l8Ñ Ä ∞ 8 Ä ∞ Ð ; Å <Ñ Ð$'Ñ as   

for  of ; − Ð:ß <Ñ Ð 8  !ÑÞ

The Basic Lemma Equation ,  has a unique solution  for every fixed valueÀ Ð"&Ñ ;Ð8Ñ − Ð:ß <ÑFÐ;l8Ñ œ ;,

8  ! Ð"'Ñ ;Ð8Ñ, where the function  is defined in , and the resulting implicit function  is continuous.FÐ;l8Ñ

Proof: Let  be fixed. 8  ! Substituting  into  we have; œ : Ð"'Ñ

FÐ:l8Ñ œ " Ð$(Ñ,
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and analogously substituting  into  we have; œ < Ð"'Ñ

FÐ<l8Ñ œ ! Ð$)Ñ.

From the continuity of  (as a function of  for a fixed on   weÐ"'Ñ ; 8  !Ñ ; − Ð:ß <Ñ § Ò!ß "Ó

conclude that a solution of  exists for any . Uniqueness of  would follow if; − Ð:ß <Ñ Ð"&Ñ 8  ! ;• •

the function  is shown to be a non-increasing as a function of  as will be doneFÐ;l8Ñ ; − Ð:ß <Ñ

below. Note that the condition that is a non-increasing function rather than beingÐ Ð;l8Ñ F

strictly decreasing  is sufficient in this case, since we are solving for a root of the equation

F FÐ;l8Ñ œ ;Þ Ñ Ð;l8Ñ Equivalently, it is sufficient to show that the reciprocal of :

Ö Ð;l8Ñ× œ œ "  Ð$*Ñ
,Ð;l8Ñ  +Ð;l8Ñ ,Ð;l8Ñ 7

7 +Ð;l8Ñ 7  +Ð;l8Ñ
F "

is a non-decreasing function of . The latter however follows immediately from the fact; − Ð:ß <Ñ

that |  and |  are strictly increasing functions of  (see  and ,+Ð; 8Ñ ,Ð; 8Ñ ; − Ð:ß <Ñ Ð$#Ñ Ð$&Ñ

respectively). Hence, one can write  where  is the unique solution of  for a fixed; œ ;Ð8Ñß ;Ð8Ñ Ð"&Ñ•

value of Continuity of the implicit function  now follows from the classical implicit8  !Þ ;Ð8Ñ

function theorem (see, e.g., Flemming 1987) and the continuity of  in both parameters  andFÐ;l8Ñ 8

; 8  ! ; − Ð:ß <Ñ for  and .

Note that from  (from ) we have that the function  is right-continuous (left-Ð$(Ñ Ð$)Ñ Ð;l8ÑF

continuous) as a function of  for a fixed   at  (at ), since ; 8  ! ; œ : ; œ < Ð;l8Ñ Ä "F

Ð Ð;l8Ñ Ä !Ñ ; Æ : Ð ; Å <Ñ 8  !F as as  for any . Hence, the unique solution ;Ð8Ñ of the equation

Ð"&Ñ Ò:ß <Ó may be obtained by using standard bisection methods with a (closed) starting interval for

;Ð8Ñ. Some basic properties of the function  are: (a) Its limiting value for  is provided by;Ð8Ñ 8 Æ !

Ð")Ñ 8 Ä ∞ ;Ð8Ñ Ð#!Ñ  Ð#"Ñ 8 œ ", (b) for  the value  follows from Eqs. , and (c) its value for 

derived from  and the location of the mode  is:Ð##Ñ 7

;Ð"Ñ œ Ð%!Ñ
<Ð7  + Ñ  :Ð, 7Ñ

,  +
: <

< :
.

For other values of , the value of  needs to be solved numerically using  and .8 ;Ð8Ñ Ð"&Ñ Ð"'Ñ
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Figure 9 provides an example of the function  for ,;Ð8Ñ : œ !Þ"!ß < œ "  : œ !Þ*!ß + œ 'Þ&:

7 œ ( , œ "!Þ& :ß + ß 7ß < , and . These values of and  are taken the same as those used in< : <

Figure 1 in Section 2. In Figure 9 the values of (Eq. ),  (Eq. ) and );Ð!Ñ Ð")Ñ ;Ð"Ñ Ð$*Ñ ;Ð∞ ¸ !Þ#%%

(calculated from Eqs.  and  using the bisection method) are presented. In addition, Figure 9Ð#!Ñ Ð#"Ñ

depicts the value of  (of  associated with the triangular distribution (the TSP distribution;Ð#Ñ ;Ð(ÑÑ

with parameter ) in Figure  calculated from Eqs. and  applying a bisection method.8 œ ( " Ð"&Ñ Ð"'Ñ

Note, in particular, the rapid increase of in Figure 9 for  and rather a mild one for;Ð8Ñ 8 − Ò!ß #Ó

8 − Ò#ß∞ÑÞ +Ö;Ð8Ñl8× Ð"#Ñ Figure 10 plots the lower bound function  (Eq. ) and the upper bound

function (Eq. ) associated with the values of  in Figure 9.  The values  and ,Ö;Ð8Ñl8× Ð"$Ñ ;Ð8Ñ + ,: <

of the functions  and  as , and a nearly linear behavior of these functions+Ö;Ð8Ñl8× ,Ö;Ð8Ñl8× 8 Æ !

as a function of  for larger values are quite noteworthy in Figure 10. Notice that |18 +Ö;Ð"Ñ × œ '

and |1  are obtained directly from Eq. .,Ö;Ð"Ñ × œ "" Ð##Ñ
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