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Statistical Dependence through Common Risk Factors: With Applications
in Uncertainty Analysis

J. René van Dorp1

The George Washington University

Summary & Conclusions  A model for building  statistical dependence between marginal

distribution with bounded support is discussed. The model is geared towards elicitation of

dependence parameters through expert judgment. The resulting joint distribution may be

useful in uncertainty analyses where dependence between random variables with a

bounded support is present due to common risk factors, such as e.g. in the classical Project

Evaluation and Review Technique (PERT).

Keywords  Uncertainty Modeling, Mixture of Uniform Distributions, Expert Judgment.

1. INTRODUCTION

"The concepts of dependence permeates the Earth and its inhabitants in a most profound

manner. Examples of interdependent meteorological phenomena in nature and interdependence

in the medical social, and political aspects of our existence, not to mention the economic

structures are too numerous to be cited individually" Drouet and Kotz (2001).  The quote

above expresses the need for modeling of dependence between uncertain phenomena. Dependent

uncertainty analysis is usually performed with a generic software platform (@Risk, Crystall Ball)

or with specialized programs such as UNICORN (see Cooke (1995), Bedford and Cooke (2002)

and Kurowicka and Cooke (2002)) or the Probability Bounds Analysis Software by Ferson

(1997).
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The long-standing issue of dependence between random variables has recently been discussed

in application areas such as project risk analysis (see, e.g. Duffey and Van Dorp (1998)), accident

probability analysis (see, e.g., Yi and Bier (1998)), Finance (see, e.g., Härdle et al. (2002)) and

decision analysis (see, e.g., Clemen and Reilly (1999)). Frees and Valdez (1998) introduced 

dependence in actuarial modeling. These authors unanimously suggested the copula approach

(see, e.g. Sklar (1959), Genest and McKay (1986) and Nelsen (1999)) for dependence modeling. 

An advantage of the copula approach is that it utilizes the decomposition principle by separately

describing the uncertainty aspect via the marginal distributions and dependence features between

components via copula's.

Although, by now high dimensional sampling routines between a large number of random

variables, say a or more, is computationally not too difficult, the representation or modeling"!!

of dependence in models of that size in a meaningful manner is still quite cumbersome. With 8

specified random variables with known marginal distributions, building dependence usually

requires specification of correlations (see, e.g., ). Applications with� �8
# Law and Kelton (1991)

"!! random variables or more are feasible (see, e.g., Palisade Corporation (1997)), but

specification of some  correlations or more becomes a formidable task. Making thisˆ ‰"!!
# œ %*&!

task even more daunting is that data bases typically collect information at the individual random

variable level, thereby not allowing for the assessment of correlations by means of classical

statistical techniques. Hence, one is often compelled in models of this size to utilize the relaxed

assumption of independence between the random variables or resort to a probability bounds

analysis as suggested by Ferson (2001).

Instead, one may develop an approach to model statistical dependence between the random

variables by identifying common risk factors as the source of dependence. The idea of common

risk factors common causesor  is not new and has already found wide appreciation in fault tree

analysis for chemical and nuclear power plants (see, e.g., Haasl et al. (1981) or Zhang (1989)).

Alternatively, common risk factors may be viewed as latent variables. Latent variable models

have found wide application in the behavioral sciences (see, e.g., Bartholomew (1987)). Duffey
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and van Dorp (1998) proposed eliciting dependence via expert judgment by using such common

risk factors, however, only a single risk factor was allowed to influence the uncertainty

distribution of a random variable which seems too restrictive for practical purposes. The

dependence model herein extends the work in Duffey and van Dorp (1998) by allowing multiple

common risk factors to affect a single random variable. The extension utilizes a mixture of

uniform random variables and its cumulative distribution function to allow for the above

mentioned copula approach. A significant reduction is achieved in the required number of

dependence parameters compared to the correlation matrix approach (  in a dependence model'!!

with 5 common risk factors and  random variables) while allowing separate specification of"!!

marginal distributions.

In Section 2, a model for building multivariate dependence between random variables

utilizing common risk factors will be discussed. The multivariate dependence of Section 2

utilizes a bivariate dependence model which is discussed in Section 3. In addition, Section 3

introduces a new dependence measure that in its interpretation resembles the well known V#

measure in regression analysis. The models discussed in Section 2 and 3 allow for elicitation of

dependence parameters through  the use of expert judgment in a meaningful manner. Section 4

discusses a theoretical result related to the dependence model in Section 2.  In Section 5, the

model is applied to a PERT example . In the example, the effect of(see, e.g., Winston (1993))

neglecting dependence will be benchmarked against a longstanding controversy regarding the use

of beta distributions and triangular distributions in PERT analyses (see e.g. Clark (1962), Grubbs

(1962) and Kamburowski (1997)) with an assumption of independence between the random

variables. Table 1 below summarizes the analysis results. A small project network consisting of

18 activities (see Figure 1) and its accompanying minimal completion time was used to compare

the effect of a mild dependence assumption amongst the durations of these activities against an

existing controversy regarding the type of distribution that should be used to model duration

uncertainty (combined with an independence assumption). The distributions that were used in the

PERT analysis were triangular distributions (suggested by Johnson (1997)), a four parameter beta
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distributions (following a method suggested by Malcolm et al. (1959)) and the Two-Sided Power

(TSP) distribution, a recent extension of the triangular distribution and suggested by Van Dorp

and Kotz (200 ).#
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Figure 1. Example Project Network  for Production Process.c

Mean St. Dev.
Triangular - Independence
Beta - Independence
TSP (  - Independence
Triangular - Mild 

"&&Þ"& &Þ!%
"&!Þ!" %Þ!'

8 œ &Ñ "%*Þ)& #Þ*'
Dependence "&%Þ*# )Þ(%

Table 1. Mean and Standard Deviation of the Project Completion Time

Distribution using Triangular Beta and TSP  under Independenceß Ð8 œ &Ñ

 and  Triangular distributions under Dependence.

Note that the standard deviation of the project completion time practically doubles in case of a

mild dependence assumption (fourth row in Table 1) when compared to standard deviations

regarding the existing controversy of using a triangular or beta distribution (first and second row

in Table 1). Finally, Section 6 provides some concluding remarks.
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2. MULTIVARIATE DEPENDENCE MODEL

Figure 2 displays the influence diagram representing the multivariate dependence model

between random variables . \ 4 œ "ßá ß 84, An aggregate risk factor in Figure 2 is a combined

measure of risk for a particular random variable arising from multiple common risk factors.
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Figure 2. A Model for Statistical Dependence between Random

Variables due to Common Risk Factors

Similar to latent variables, common risk factors may not have a natural attribute scale, such as,

e.g. Engineering Change Orders (ECO's) and different common risk factors may be measured on

different scales. In light of these constraints it is suggested to follow the uniform latent variable

approach (see, e.g., Bartholomew (1987)), namely to model common risk factors as independent

uniform latent random variables , , where the lowest risk level for risk factor  isY 3 œ "ßá ß7 33

transformed to 0 and the highest to 1.  different risk factors to uniform latentTransforming

variables allows for elicitation of tradeoff weights for each risk factor throughA ß 3 œ "ßá ß73
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expert judgment utilizing, for example, psychological scaling methods (See, e.g., Cooke (1991))

or the Analytical Hierarchy Process (AHP) method (Saaty, (1980).  Figure 3 displays an example

pairwise comparison question in the context of the example discussed in Section 5 when utilizing

the AHP process.

Please compare the effect that these risk factors have on
the uncertainty in the completion of the activity identified.

ACTIVITY: Erect Foundation

Risk Factor Risk Factor

ECO'S Crane Availability
Left Hand Side More Right Hand Side More

9 8 7 6 5 4 3 2 1 2 3 4 5 6 7 8 9

1 Same effect
3 Three times more
5 Five times more
7 Seven times more
9 Nine times or more

Figure 3. Example AHP Question in the Context of the Example

 in Section 5 for Eliciting Trade Off Weights between Risk Factors.

The proposed aggregate risk factor  for random variable  is then calculated as a weighted] \

linear combination

] œ A Y ß A œ "ß A   !ß Ð"Ñ� �
3œ" 3œ"

7 7

3 3 3 3

where ,  are as mentioned above. For each random variable  in Figure 1,Y 3 œ "ßá ß7 \3 4

relative contributions of the common risk factors  need to be specified toA ß 3 œ "ß á ß734

aggregate risk from the common risk factors  In addition, a dependence parameter between Þ \4

and the random variable's aggregated risk factor needs to be specified. Hence, the total number]
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of dependence parameters that need to be elicited, equals . With and 7 † 8  8 7 œ & 8 œ "!!

random variables this amounts to  dependence parameters compared to the '!! ˆ ‰"!!
# œ %*&!

correlations in a correlation matrix approach to build dependence between specified marginal"!!

distributions. Also, no modifications to the dependence parameters are needed due to possible

inconsistencies when expert judgment is used to assign these parameters, as is the case with the

correlation matrix approach (see, e.g., ) utilized by popular softwareIman and Conover (1982)

programs such as @Risk (See, Palisade Corporation (1997)).

3. BIVARIATE DEPENDENCE MODEL

The multivariate dependence model in Figure 2 utilizes expression  and a bivariateÐ"Ñ

dependence model between a random variable  and its aggregated risk . A one parameter\ ]

copula approach (see, e.g., Genest and Mackay (1986)) will be used for this bivariate

dependence modelÞAlthough a variety of copulas may be used in Figure 2, it is suggested to use

the diagonal band (DB) copula (shown in Figure 4A) with dependence parameter , first)

introduced by Cooke and Waij (1986).
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The advantage of using the  copula is that utilizing its structure, its single parameter HFÐ Ñ) )

may be indirectly elicited via expert judgment and a new dependence measure (to be defined in

the next section). In addition, the effect of sampling from the  copula is small comparedHFÐ Ñ)

to, for example, sampling from the Maximal Entropy copula (see, e.g., Van Dorp (1991) and

Meeuwissen (1993)) with identical correlation. This is especially true when the latter differences

are compared to those associated with an assumption of independence (See, Van Dorp (1991)).

The probability density  at the end-points of the diagonal band (Areas  and 5 in.Ð?ß @Ñ "

Figure 4) equals and is exactly twice that of the middle part (Area 3 in Figure 4)Ð"  Ñ) "

"
#

"Ð"  Ñ) and attributes no probability mass above and beneath the diagonal band (Areas 2 and

4 in Figure 4). For illustration, Figure 4B displays a random sample of size  generated from a"!!

DB-copula with . From the structure of the DB copula it follows that for ) ) )œ !Þ(& œ ! Ð œ "Ñ

Y Z !   " and  are independent  (identical), while for an intermediate degree of positive)

dependence is specified (negative dependence may be attained by distributing mass along the

second diagonal from to ). It is straightforward to calculate the correlation inÐ"ß !Ñ Ð!ß "Ñ  a DB

copula to be

3 ) ) )( , ) .\ ] œ Ð"   Ñ#  Ð#Ñ

To elicit the dependence parameter  of the DB copula a stepwise approach could be: i) use a)

direct elicitation approach for the rank correlation and ii) solve for . In general, however,)

correlations are difficult to interpret perhaps suggesting the need for alternative indirect

elicitation procedures to determine . Clemen and Reilly (1999) and Kraan (2002) discuss a)

variety of methods for eliciting dependence that use the somewhat intricate statistical concepts

like correlation, probability of concordance, joint probability and conditional probability. Kraan

(2002) states that for all of these techniques the experts require some training regarding these

concepts. When eliciting information from experts, it is desirable to design a meaningful

elicitation procedure for engineers so that such information can easily be related to observables

(see, e.g., Chaloner and Duncan (1983)). Although the probability concepts above fall within this
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category, a new dependence measure will be constructed below, exploiting  the structure of a DB

Copula, that is observable, can be expressed in terms of  and utilizes only basic statistical)

concepts such as a simple average and range of a random variable. rankNote that Spearman's 

correlation   such an measure3( , ) given by  is\ ] Ð#Ñ not observable .

3.1. Eliciting the DB Copula Parameter

Restricting ourselves to absolute continuous random variables  with bounded support \ Ò+ß ,Ó

and c.d.f.  the concept of  denoted by , is introduced asJÐ † Ñß ß VÐ\Ñrange of the support  \

VÐ\Ñ œ ,  +Þ Ð$Ñ

The measure describes the total range where realizations of  can be observed. Next,VÐ\Ñ \

consider the range of the conditional distribution of , i.e. the distribution of Ð\l] œ Cß Ñ \)

where one knows i) the state of the different common risk factors resulting in aggregate risk ]

(cf.  and ii) the dependence parameter  of the DB copula. Alternatively, we may useÐ"ÑÑ )

Ð\lK ] œ ?ß Ñß KÐ † Ñ ]( ) where is the c.d.f. of .  In the case presented in Figure 4A, it follows)

that

VÖÐ\l] œ Cß Ñ× œ VÖÐ\lK ] œ ?ß Ñ× œ Ö,Ð ? ×  J Ö+ ß ? ×Þ Ð%Ñ) ) ) )( ) , ) ( )J" "

From  it follows that the  range of the support of the conditional distributionÐ%Ñ average

Ð\l] œ Cß Ñ VÐ\l] ß Ñß) ), denoted by  equals

VÐ\l] ß Ñ œ VÖÐ\lK ] œ ?ß Ñ×.?Þ Ð&Ñ) )(
?œ!

?œ"

( )

Utilizing and  a meaningful dependence measureÐ$Ñ Ð&Ñ

0 )Ð\l] ß Ñ œ "  "!! Þ Ð'Ñ
V

V
Œ Ð\l] ß Ñ

Ð\Ñ

)
%

is introduced. The dependence measure  and its interpretations resemble0 )Ð\l] ß Ñ  the popular

V#-measure in regression analysis. The measure  may be interpreted as0 )Ð\l] ß Ñ  the average

percent  in the range </.?->398 of by knowing the state of the common risk factors. Similarly\
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to Pearson's product moment correlation it can be shown that 0 )Ð\l] ß Ñ is invariant under linear

transformations of  (see, e.g., . However, unlike  product moment\ Joag-Dev (1984)) Pearson's

correlation, the behavior of   dependent on the form of the marginal distribution c.d.f.0 )Ð\l] ß Ñ is

JÐ † Ñ \ of  and the dependence parameter , but   ) not dependent on the structural form of the c.d.f.

KÐ † Ñ ] of the risk factor . In contrast, it is well known that the Spearman's rank correlation

3 )Ð\ß ] Ñ Ð#Ñ HFÐ Ñ \ ] (cf.  for the  distribution) between  and  is invariant under all non-

decreasing transformations of  and  and is thus not dependent on either the marginal form of\ ]

JÐ † Ñ KÐ † Ñ nor that of  (see, e.g., . Hence we conclude, at least conceptually,Joag-Dev (1984))

that the dependence measure  given by  lies somewhere in between Pearson's0 )Ð\l] ß Ñ Ð'Ñ

product moment correlation and Spearman's rank correlation.

Figure 5 studies the effect of the marginal form of the c.d.f.  on the resulting dependenceJ

parameter  and the corresponding rank correlation  (cf. ) as a function of  a specified) 3Ð\ß ] Ñ Ð#Ñ

value for . Figure 5A, displays the required level of  and corresponding rank0 ) )Ð\l] ß Ñ

correlation (on the -axis) to achieve a particular average % explanation  for both aC Ð\l] ß Ñ0 )

symmetric and a X<3+81Ð!ß !Þ&ß "Ñ F/>+Ð!ß "ß # ß # Ñ" "
# #  distribution (cf.  with and cf.Ð#&Ñ 8 œ #

Ð#$Ñ, respectively). It can be shown that the mean and the variance of a  X<3+81Ð!ß !Þ&ß "Ñ and

F/>+Ð!ß "ß # ß # Ñ" "
# #  are identical. Observe from Figure 5A, that the corresponding values for )

and the rank correlation are practically identical. The same holds for Figure 5B, where the

analysis involves a skewed  distribution and a skewed X<3+81Ð!ß !ß "Ñ F/>+Ð!ß "ß "ß #Ñ

distribution, again with identical means and variances. From Figure 5A and 5B it may be

observed that the dependence parameter  and corresponding rank correlation seems to primarily)

be affected by the mean and variance of the c.d.f. . (Recall that the forms of the density of aJÐ † Ñ

X<3+81Ð!ß !Þ&ß "Ñ and F/>+Ð!ß "ß # ß # Ñ" "
# #  are quite different.) Figure 5C compares a similar

analysis for the symmetric  distributions, the latterX<3+81Ð!ß !Þ&ß "Ñ and skewed X<3+81Ð!ß !ß "Ñ

one having a larger variance measure than the former. Finally, Figure 5D presents analogous

results for the symmetric X<3+81Ð!ß !Þ&ß "Ñ Y8309<7Ð!ß "Ñ and  distributions, the latter one also

having a larger variance measure than the former. From Figure 5C and 5D it may be observed, at
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least empirically, that the larger the uncertainty in the marginal distribution  of , the largerJÐ † Ñ \

the dependence has to be in the copula to achieve the same average % explanationHFÐ Ñ)

0 )Ð\l] ß Ñ J Ð † Ñ ] in  by the common risk factor .
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Figure 5. Relationship between Average % Explanation, Diagonal Band parameter )

and rank correlation between risk factor and marginal distribution

A:  and ; B: 0  and ;X<3+81Ð!ß ß "Ñ F/>+Ð!ß "ß # ß # Ñ X<3+81Ð!ß ß "Ñ F/>+Ð!ß "ß "ß #Ñ" " "
# # #

 C:  and 0 ; D:  and ( );X<3+81Ð!ß ß "Ñ X<3+81Ð!ß ß "Ñ X<3+81Ð!ß ß "Ñ Y8309<7 !ß "" "
# #
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Suppose, for example that for a particular activity duration with risk factor  being ß ] "The

Weather", a range of 10 days has been assessed without knowing the state of the weather. The

average percent reduction ,  may next be elicited from an expert by asking a question of0 )Ð\l] Ñ

the following type:

wwNot knowing the state of the weather a spread of 10 days has been assessed for the activity.

Suppose you knew the state of the weather during the completion of the activity,  on average

within a spread of how many days could you now assess the completion of this activity?".

If the expert answers  days,  (cf. ) corresponds to 0%. In other words, % of the& Ð\l] ß Ñ Ð'Ñ & &!0 )

original uncertainty of the activity durations is explained by knowing the weather. Note that the

question is formulated in terms of the range of the original random variable , which is\

9,=/<@+,6/ \ µ X<3+81Ð!ß &ß "!Ñ. In case of the marginal distribution   or F/>+Ð!ß "!ß # ß # Ñ" "
# #

we conclude from Figure 5A, utilizing the invariance of 0 )Ð\l] ß Ñ under linear transformations,

that  (and  in the ) 3 )¸ !Þ'& ¸ !Þ)!Ñ HFÐ Ñ copula to achieve such an average % explanation

0 )Ð\l] ß Ñ X<3+81Ð!ß !ß "!Ñ  or by it follows from] . On the other hand, if \ µ F/>+Ð!ß "!ß "ß #Ñ 

Figure 5B that ) 3¸ !Þ'( ¸ !Þ) Ñ \ µ Y8309<7Ò!ß "Ó (and  2 . Finally,  it follows from Figureif 

5D that 1 (and  . ) 3¸ !Þ( ¸ !Þ)&Ñ

Regardless of the function form of it follows from the structure of the copulaJÐ † Ñ HFÐ Ñ)

that

œ 0 ) )
0 ) )
Ð\l] ß Ñ œ ! œ !
Ð\l] ß Ñ œ "!! œ "ß

Ð(Ñ
%

%

and values of  result in values of If  is known in closed form,) 0 )− Ð!ß "Ñ Ð\l] ß Ñ − Ð!ß "ÑÞ J Ð † Ñ

as in the case of the triangular distribution,  may be expressed in terms of  in a closed0 ) )Ð\l] ß Ñ

form. However, if   is not known in closed from, as in the case of a beta distribution, itJÐ † Ñ

follows from  that a bisection method (see, e.g., Press et al. 1989)) may be designed to solveÐ(Ñ Ð

for  up to a desirable level of accuracy (higher than, for example, the accuracy achieved by)
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utilizing Figure 5 and interpolation techniques).  Such a bisection method is described in the

appendix in Pseudo Pascal (and may also be used when  is available in a closed form).JÐ † Ñ

As suggested by one of the referees, the range of support method above (which is connected

to the diagonal band copula) has intuitive appeal to experts working with triangular distributions

and four parameter beta distributions, which are used in a PERT context,  but not elsewhere, and

may thus be considered a limitation. However, applications of the beta distribution go far beyond

that of the PERT context including the fields of, e.g., Ecology, Reliability and Statistical Quality

Control, spawning the publication of a separate handbook entitled "Beta Distributions and its

Applications" and edited by Gupta and Nadarajah (2003). The use of the triangular distribution is

particularly popular in Monte Carlo Software programs such as @Risk (See Palisade Corporation

(2000)), Arena (See, Kelton et al. 2002) and Crystal Ball (See Decision Engineering, Inc. (2003))

with additional application areas such as e.g. business and finance, engineering design and

environmental assessment. National Energy Board (1998) is an example of a publication in the

environmental assessment arena utilizing triangular distributions. In addition, recently, the

choices of families of distribution with bounded support have been enhanced by the discovery of

the two-sided power distributions and their generalizations (see, Van Dorp and Kotz (2002,

2003a)) and generalized trapezoidal distributions (see, Van Dorp and Kotz (2003b)). In my

opinion, most applied phenomena and their uncertainty are of a bounded nature.

However, if one were to prefer the use of univariate distributions with unbounded support

and different copulas than the diagonal band copula, only a minor modification of the range of

support method above is needed. Instead of range of support as defined by  the conceptÐ$Ñ

Ð"  Ñ \α % credibility range of a random variable  would need to be introduced given by

V Ð\Ñ œ  Ñ  Ñß Ð)Ñ
# #

α J J" "Ð" Ð
α α

using for example popular values for  such as or In addition, α !Þ!"ß !Þ!& !Þ"!Þ Ð%Ñß Ð&Ñ Ð'Ñand 

would need to be modified accordingly, yielding

V Ö\l] œ Cß × œ V Ö\lK ] œ ?ß Ñ× œ Ð" Ð Ð*Ñα α) )( ) J JÐ\l] œCß Ñ Ð\l] œCß Ñ) )
" " Ñ  Ñß

# #

α α
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V Ð\l] ß Ñ œ V Ö\lK ] œ ?ß Ñ×.?ß Ð"!Ñα α) )(
?œ!

?œ"

( )

and

0 )α
α

α
Ð\l] ß Ñ œ "  "!! Þ Ð""Ñ

V

V
Œ Ð\l] ß Ñ

Ð\Ñ

)
%

In ,  is the conditional c.d.f. of the random variable , were one to know theÐ*Ñ J ÐBÑ \Ð\l] œCß Ñ)

state of aggregate risk  and the parameter  of the diagonal band distribution. Expressions ] Ð)Ñß)

Ð*Ñß Ð"!Ñ Ð""Ñand  allow for straightforward generalization to other copulas than the diagonal

band copula in Figure 4.

The measure  (cf. may be interpreted as0 )αÐ\l] ß Ñ Ð""ÑÑ  the average percent  in</.?->398

the % credibility range  Ð"  Ñα  of a random variable \ by knowing the state of the common risk

factors. However, the inclusion of the parameter  in the dependence measure α 0 )αÐ\l] ß Ñ (cf.

Ð""ÑÑ requires an additional level of cognitive processing when using this measure to elicit

dependence via expert judgment and therefore looses intuitive appeal. Combining the latter with

the observation that the effect of sampling from the  copula is small compared to, forHFÐ Ñ)

example, sampling from the Maximal Entropy copula (see, e.g., Van Dorp (1991) and

Meeuwissen (1993)) with identical correlation, leads me to prefer the more intuitive measure

0 )Ð\l] ß Ñ Ð'ÑÞ given by  The Maximal Entropy copula is the most natural copula given two

marginal distributions and a correlation constraint (see, .Meeuwissen (1993))

4. DISTRIBUTION OF A LINEAR COMBINATION OF UNIFORM VARIABLES

To use the copula approach to model bivariate  dependence between a random variable \

and its aggregated risk , both  and  need to be transformed to the uniform marginals and] \ ] Y

Z \ ] JÐ\Ñ KÐ] Ñß of the copula. The required (integral) transformations of and  are and where

the functions  and are the c.d.f.'s of and , respectively. For a known marginalJÐ † Ñ KÐ † Ñ \ ]

distribution for random variable ,  is readily obtained either in closed form (e.g., in the\ JÐ † Ñ
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case of a triangular distribution) or through numerical routines (e.g., for a beta distribution). The

c.d.f. of the linear combination  (cf. is given by] Ð"ÑÑ

KÐCÑ œ T<Ð] Ÿ CÑ œ á Ð  "Ñ " ÐC  A @ ÑÞ Ð"#Ñ

C  A @ Ñ

7x A

� � � Ÿ
�
#@ œ! @ œ! 3œ"

" " 8@ 3œ"

7

3 3
7

3œ"

7

3

Ò!ß∞Ñ 3 3

" 7

3œ"

7

3
� (

(see, Mitra (1971) or Barrow and Smith (1979)). Unfortunately their proofs  geared towards

mathematically oriented readers  are very concise and somewhat difficult to follow. The proof

discussed in the next section which seems to be new, is geometric in nature and is based on the

time honored inclusion-exclusion principle

T< E œ T<ÐE Ñ  T<ÖE ∩ E ×  Ð"$Ñ
3 œ " 3  4

3  4  5
T<ÖE ∩ E ∩ E × á  Ð  "Ñ T< E

3 œ "

š ›. � ��
��� ,š

7

3 3 3 4

3œ"

7

3 4 5 3
7

7 ›,

for arbitrary events  (not necessarily disjoint) (see, e.g., Feller (1990) ). The geometricE ßá ßE" 8

nature of the proof allows for an efficient algorithm for evaluation of  needed for itsÐ"#Ñ

application in Monte Carlo based uncertainty analyses.  The Appendix describes the algorithm in

Pseudo Pascal .

4.1. Theoretical Result

Let be the unit hyper cube in . LetG œ Ö7 7? @  l ! Ÿ ? Ÿ "× œ Ð@ ßá ß @ Ñß @ − Ö!ß "×3 " 7 3‘

be a vertex (or corner point) of the unit hyper cube G W ÐCÑ7 and define the simplex at the vertex@

@ as

W ÐCÑ œ Ö A ? Ÿ Cß ?   @ ß 3 œ "ßá ß7×ß Ð"%Ñ@ ? | �
3œ"

7

3 3 3 3

where ,  For example, Figure 6A displays and the simplex  cf.A   ! A œ "Þ G W ÐC Ñ Ð3 3 "
3œ"

7
$

Ð!ß!ß!Ñ
�

Ð"%ÑÑ.
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u2

u3
w1u1 + w2u2 + w3u3 = y2

u1

e3=(0,0,1)

e1=(1,0,0)

e2=(0,1,0)

v =(1,1,0)

v =(1,0,1)

v =(0,1,1)
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u3
w1u1 + w2u2 + w3u3 = y1
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v =(1,1,0)

v =(1,1,1)

A B

Figure 6. A: Evaluating (cf. ) for  ;KÐC Ñ œ T<Ð] Ÿ C Ñ Ð"#Ñ 7 œ $" "

B: Evaluating (cf. ) for KÐC Ñ œ T<Ð] Ÿ C Ñ Ð"#Ñ 7 œ $Þ# #  

Note that, for this particular value only the simplex  at the origin  is!  C  " W ÐCÑ œ Ð!ß !ß !Ñ" ! !

a non-empty set since is an element of the half space  | . When the! ?œ Ð!ß !ß !Ñ Ö A ?  C ×�
3œ"

7

3 3 "

value of  increases in , additional corner points of the unit hyper cube will join the halfC Ð"%Ñ @

space  |  resulting in additional non-empty simplices at those points. ForÖ A ?  C ×? �
3œ"

7

3 3 "

example, consider Figure 6B for a particular value . In Figure 6B, we may!  C  "ß C  C# # "

recognize the simplex at the origin  as the largest one. In addition, we can observe theW ÐCÑ! !

three smaller simplices   and  at the corner points W ÐC Ñß W ÐC Ñ W ÐC Ñ œ Ð"ß !ß !ÑßÐ"ß!ß!Ñ Ð!ß"ß!Ñ Ð"ß!ß!Ñ# # #
"/

/ /# œ Ð!ß "ß !Ñ œ Ð!ß !ß "Ñand , respectively, of approximately equal size. Finally, the three$

smallest simplices in Figure 6B (indicated with dotted lines) are ,  andW ÐC Ñ W ÐC ÑÐ"ß"ß!Ñ Ð"ß!ß"Ñ# #

W ÐC Ñ Ð"ß "ß !Ñß Ð"ß !ß "Ñ Ð!ß "ß "ÑÐ!ß"ß Ñ1 #  at the corner points and , respectively. No simplex can be

observed at the eighth corner-point in Figure 6B since is an element of the halfÐ"ß "ß "Ñ Ð"ß "ß "Ñ

space  | . Our proof of  utilizes the hypervolume of the simplices defined byÖ A ?  C × Ð"#Ñ? �
3œ"

7

3 3 #

Ð"%ÑÞ
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P/77+ " À The hyper volume of the simplex  given by equalsZ ÖW ÐCÑ× W ÐCÑ Ð"%Ñ@ @

(
.

C  A @ Ñ

7x A
† " ÐC  A @ Ñ Ð"&Ñ

�
# �3œ"

7

3 3
7

3œ"

7

3

Ò!ß∞Ñ

3œ"

8

3 3

T<990 À  From the definition of it immediately follows that Ð"%Ñ for C   !

Z ÖW ÐCÑ× œ á .? á.? Þ Ð"'Ñ! ( ( (
? œ! ? œ! ? œ!

" " ? " ?

7 "
" # 7

3œ" 3œ"

" 7"
A A3 3
C C3 3� �

Changing the variables of integration to , , the integral in becomesD œ A ? ÎC 3 œ "ßá ß7 Ð"'Ñ3 3 3

Z ÖW ÐCÑ× œ á .D á.D Ð"(Ñ
C

A
!

7

3œ"

7

3
D œ! D œ! D œ!

" " D " D

7 "# ( ( (
" # 7

3œ" 3œ"

" 7"

3 3� �
.

The integral in is the hyper-volume of the unit simplexÐ"(Ñ

W œ Ö ? Ÿ ß ?   ß 3 œ "ßá ß7×Þ Ð")Ñ? | 1 0�
3œ"

7

3 3

Realizing that the Dirichlet distribution (see, e.g., Kotz et al. (2000)) with density function

> (

> ( /

Ð Ñ

Ð † Ñ

† Ð? Ñ "  ? Ð"*Ñ# Œ Œ $ �
3œ"

7"

3
3œ" 3œ"

7 7

3 3
† "

†

 ( /
( /

3
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where has support ( / / !ß  !ß œ "3 3
3œ"

7"� W Ð Ð")Ñ Ð"*Ñ cf. ) and by setting its parameters in 

equal to ( œ 7 "ß /3
"

7"œ ß 3 œ "ßá ß7  " Ð"(Ñ Ð"*Ñ it immediately follows from , and

the fact that thatW ÐCÑ œ g C  !!  for  

Z ÖW ÐCÑ× œ † " ÐCÑÞ Ð#!Ñ
C

7x A
!

7

3œ"

7

3

Ò!ß∞Ñ#
Again changing variables we arrive utilizing   atB œ ?  @ ß 3 œ "ßá ß7 Ð"%Ñ3 3 3

Z ÖW ÐCÑ× œ Z ÖW ÐC  A @ Ñ× Ð#"Ñ@ ! �
3œ"

8

3 3 .
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The lemma now follows from and Ð#!Ñ Ð#"ÑÞ

X2/9</7" À The c.d.f. of the weighted linear combination  given by , where are] Ð"Ñ Y3

independent uniform random variables is given by .Ò!ß "Ó Ð"#Ñ

T<990 À The support of  follows from as . ] Ð"Ñ Ò!ß "Ó Let 0  be the origin vertex of! œ Ð!ßá ß Ñ

the unit hyper cube and l be the unit vertices of  (See,G œ Ð/ ßá ß / Ñß 3 œ "ßá ß7ß G7 3 7
" 7et /

Figure 6), i.e.  / œ "ß / œ !ß 4 œ "ßá ß7ß 4 Á 3Þ3 4 For illustration we shall consider the case

7 œ $ T<Ð] Ÿ C Ñ !  C  "and evaluating for the value of indicated by Figure 6A and that" "

of for the value of  depicted in Figure 6B. Figure 6A displaysT<Ð] Ÿ C Ñ C  C ß !  C  "ß# # " #

G W ÐC Ñ Ð Ð"%ÑÑÞ G W ÐC Ñß W ÐC Ñß W ÐC Ñ W ÐC Ñ Ð"Ñ$ $
" # # # #and  cf. Figure 6B displays ,  and . From ! ! / / /" # $

and the independence of   it follows that in Figure 6AY ß 3 œ "ßá ß73

T<Ð] Ÿ C Ñ œ Z W T<Ð] Ÿ C Ñ" #{ In Figure 6B the calculation of is somewhat more!ÐC Ñ×Þ"  

complicated. Figure 6B shows that

T<Ð] Ÿ C Ñ œ Z ÖW C Ñ×  Z W Ð Ð##Ñ
3 œ "

# #

$

! /Ð C Ñ Þš . 3 # ›
Note that also holds for the value  in as Ð##Ñ C W Ð" Figure 6A  Generalizing/3 C Ñ œ gß 3 œ "ßá$Þ"

to‘7 we obtain directly

T<Ð] Ÿ CÑ œ Z ÖW ÐCÑ×  Z W Ð Ð#$Ñ
3 œ "

! /š .7 3 CÑ›
The inclusion-exclusion principle (cf. ) yieldsÐ"$Ñ

Z W Ð œ Z ÖW Ð ×  Z ÖW Ð ∩ W Ð ×  Ð#%Ñ
3 œ " 3  4

3  4  5
Z ÖW Ð ∩ W Ð ∩ W Ð × á  Ð  "Ñ Z W Ð Þ

3 œ "

š . � ��
��� ,š
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3œ"
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/ / / /

/ / / /

3 3 3 4

3 4 35
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CÑ CÑ CÑ CÑ

›
›

Utilizing  it follows that the intersections of the simplices  in  are all of followingÐ"%Ñ W Ð Ð#%Ñ/3 CÑ

form
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,
3 − M

W ÐCÑ œ W ÐCÑ Ð#&Ñ/ @3

where and  in Figure 6B is the intersection ofM § Ö"ßá ß7× W ÐC Ñ@ /œ �
3−

3

I
 . For example, Ð"ß"ß!Ñ #

W ÐC Ñ W ÐC ÑÞÐ"ß!ß!Ñ # #Ð!ß"ß!Ñ and  From ,  and  we conclude thatÐ#&Ñ Ð#%Ñ Ð#$Ñ

T <Ð] Ÿ CÑ œ á Ð  "Ñ Z ÖW ÐCÑ×Þ Ð#'Ñ� �
@ œ! @ œ!

" " @

" 7

3œ"

7

3�
@

The proof of the theorem follows from Lemma 1Þ

From the proof it follows that an efficient method to evaluate the distribution in  for aÐ"#Ñ

particular value of  and a given set of weights is to develop a  recursiveC œ ÐA ßá ßA ÑA " 7

algorithm enumerating all vertices of the hypercube and evaluate the hypervolume of the@ G7

simplex at each vertex   given by when a vertex is visited by the procedure. The next@ Ð"&Ñ

section will discuss an application of the dependence model in the PERT domain.

5. EXAMPLE - A CONTROVERSY IN PERT

Johnson (1997) proposed the triangular distribution to be used as an alternative to the beta

distribution. Its parameters have a one-to-one correspondence to an optimistic estimate , a most+

likely estimate  and a pessimistic estimate  of an activity duration in a PERT network.7 , X

Much earlier, Malcolm et al. (1959) fitted a four-parameter distributionF/>+Ð+ß ,ß :ß ;Ñ

0 Ð>l+ß ,ß :ß ;Ñ œ
Ð>  +Ñ Ð,  >Ñ

Ð,  +Ñ
X

:" ;"

:;"

>

> >

Ð:  ;Ñ

Ð:Ñ Ð;Ñ
+ Ÿ > Ÿ ,ß :  !ß ;  !ß

Ð#(Ñ

by estimating ,  and  and using the method of moments to overcome difficulties involved+ 7 ,

with interpreting the beta parameters by setting
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Ú
ÛÜ

IÒX Ó œ
+  %7 ,

'
Z +<ÒX Ó œ Ð,  +Ñ Þ

#)
"
$'

#
( )

Solving for the beta parameters using has been controversial (see e.g. Clark (1962), GrubbsÐ#)Ñ

(1962)) and its use is still (see e.g. Kamburowski (1997)) subject to a discussion. Van Dorp and

Kotz (200 ) suggested the use of a Two-Sided Power  distribution, an extension# XWTÐ+ß7ß ,ß 8Ñ

of the triangular distribution, defined by the density

0 ÐBl+ß7ß ,ß 8Ñ œ Ð#*Ñ
+  B Ÿ 7

7 Ÿ B Ÿ ,
\

8 B+
Ð,+Ñ 7+

8"

8 >B
Ð,+Ñ ,7

8"

ÚÝÛÝÜ
Š ‹
Š ‹  ,

as a proxy to the beta, specifically in problems of assessment of risk and uncertainty (such as in

PERT). For  in  the TSP density coincides with the density of a triangular distribution.8 œ # Ð#*Ñ

The expressions for the mean and the variance for result inÐ#*Ñ

IÒ\Ó œ Ð$!Ñ
+  Ð8  "Ñ7  ,

8  "

and

Z +< \ œ Ð,  +Ñ † Ð$"Ñ
8  #Ð8  "Ñ

Ð8  #ÑÐ8  "Ñ
( ) .#

Ð7+Ñ Ð,7Ñ
Ð,+Ñ Ð,+Ñ

#œ 
From  it follows that for a triangular distribution   may over- or under estimateÐ$!Ñ Ð8 œ #Ñ IÒ\Ó

IÒX Ó Ð#)Ñ 7 Ð+  ,ÑÎ#Þ in  depending on whether  is less or greater than the midpoint However,

for a TSP distribution with , the mean values  in  and in  coincide.8 œ & IÒX Ó Ð#)Ñ IÒ\Ó Ð$!Ñ

Perhaps more importantly, it follows from that in case of a triangular distributionÐ$"Ñ Ð8 œ #Ñ

Z +<ÒX Ó œ Ð,  +Ñ  Ð,  +Ñ Ÿ Z +<Ò\Ó Ÿ Ð,  +Ñ Þ Ð$#Ñ
" $ "

$' (# ")
# # #

and for a TSP distribution with  we have8 œ &

" & "

)% #&# $'
Ð,  +Ñ Ÿ Z +< \ Ÿ Ð,  +Ñ  Z +<ÒX Ó œ Ð,  +Ñ Þ Ð$$Ñ# # #( )
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Hence, from  ( ) it follows that  of a triangular distribution a TSP distributionÐ$#Ñ Ð$$Ñ Z +<Ò\Ó Ð

with ) is always larger (less) than  in , regardless of the values of and ,8 œ & Z +<ÒX Ó Ð#)Ñ +ß7 ,

which possibly augments the controversy related to the setup given by .Ð#)Ñ

With a project network structure between activities, the random variables representing the

uncertainty in activity duration and an assumption of independence between these random

variables, the uncertainty in the completion time of the project can be obtained using a

combination of the Critical Path Method (CPM) (see, e.g., Winston (1993)) and Monte Carlo

methods (see, e.g., Vose (1996)). However, the independence assumption is highly suspect for

many large engineering projects involving multiple activities of a similar type and/or different

activity types which are influenced  by common risk factors (see, e.g.,  Duffey and Van Dorp

(1998)). An example of a common risk factor between activities is inclemental weather for e.g.

painting,  outfitting of piping and electrical systems or other activities scheduled under the "open

sky" conditions in the same time period. In this example it will be shown that the effect of

ignoring dependence between these activity durations on the project completion time distribution

is of the same magnitude as those observed when modeling uncertainty in activities durations via

Ð#(Ñ Ð#)Ñ Ð#*Ñ 8 œ # Ð Ð#*Ñ 8 œ & and  (beta),  with  triangular) or with  (TSP), respectively.

5.1. Description

The dependence model in Figure 2 and the elicitation methods to be described herein have

been applied in Greenberg (1998). Multiple elicitation sessions with naval architects were used to

specify: (a) the parameters , , for the uncertainty distribution of  activity durations in a+ 7 , #&%

PERT network and (b) the parameters for the dependence model in Figure 2 with  common risk&

factors: weather, manning availability, material availability, crane availability and ECO's. A

complete description of the case study is presented in Greenberg (1998). We shall demonstrate

the approach by means of a smaller example in the PERT domain. Figure 1 in Section 1 shows an

18-activity project network in the ship building domain from Taggart (1980).  The uncertainty in

each activity duration could be elicited through expert judgment via a lower bound , most like+
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estimate  and upper bound  as described in Table 2. Modern-day ship production is a7 ,

manufacturing domain in which innovative design and build strategies require special attention to

risk factors that may impact cost and delivery time.  Two major risk areas are the impact of

ECO's and crane unavailability.  Engineering changes may come from a variety of sources -- such

as owner-requested changes, inadequate design specifications, interface problems for vendor-

furnished equipment, etc.  Cranes are used to lift large prefabricated units and their unavailability

due to outages may result in substantial project delays. The relative contributions of ECO and

crane unavailability to aggregate risk and the percent reduction in range of the completion time of

the activities given the state of these risk factors are specified in Table 2.

ID Activity Name a m b wECO wCRANE S(X|Y,θ)

1 Shell: Loft 22 25 30 1 0 25%
2 Shell: Assemble 35 37 43 1 0 25%
3 I.B.Piping: Layout 19 22 29 0.5 0.5 25%
4 I.B.Piping: Fab. 4 5 10 1 0 25%
5 I.B.Structure: Layout 23 26 31 1 0 25%
6 I.B.Structure: Fab. 16 18 24 1 0 25%
7 I.B.Structure: Assemb. 11 14 20 0.5 0.5 25%
8 I.B.Structure: Install 6 7 12 0.5 0.5 25%
9 Mach Fdn. Loft 25 28 33 0.5 0.5 25%
10 Mach Fdn. Fabricate 33 35 40 0.5 0.5 25%
11 Erect I.B. 27 30 37 0.2 0.8 25%
12 Erect Foundation 6 7 11 0.2 0.8 25%
13 Complete #rd DK 4 5 9 0.2 0.8 25%
14 Boiler:Install 6 7 10 0 1 25%
15 Boiler:Test 9 10 15 1 0 25%
16 Engine: Install 6 7 12 0 1 25%
17 Engine: Finish 17 20 26 1 0 25%
18 FINAL Test 13 15 20 1 0 25%

Table 2. Parameters for modeling the uncertainty in activity durations for the project

network in Figure 1, Relative Contribution of ECO's ( andA ÑIGS

Crane Unavailability (  to aggregate Risk  and average reductionA Ñ ]-<+8/

in range given the state of the common risk factors.
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Note that due to similarity in exposure to ECO's and usage of the crane these parameters may not

need to vary by activity, thereby further reducing the assessment of dependence parameters by

pre-grouping similar activities in terms of reliance on common risk factors. A % reduction in#&

range is assumed across the board. This reduction of % may be viewed as a mild form of#&

dependence. (Reductions were observed in Greenberg (1998) in the order of %).(&

5.2. Project Completion Time Distribution Analysis

To show the effect of dependence between the activity durations, the minimal completion

time distribution of the project in Figure 1 has been generated via Monte Carlo analysis, utilizing

the information in Table 2, the dependence model described above and activity durations with a

triangular form cf.  with ). (Amongst the TSP and beta distribution, the triangularÐ Ð#*Ñ 8 œ #

distribution is the only one that is completely specified by  and  without additional+ß7 ,

assumptions.) The latter minimal completion time distribution is then compared in Figure 7 with

the project completion time distribution assuming independence between the activity durations

with a triangular form cf.  with ), a beta form (via  and employing the method ofÐ Ð#*Ñ 8 œ # Ð#)Ñ

moments) and finally a TSP form (cf.  with ). In addition, the minimal completionÐ#*Ñ 8 œ &

time of 144 days of a standard CPM analysis utilizing only the most likely estimates in Table 2 is

depicted by a vertical line. The mean and the standard deviation of the project completion

distribution for the four combinations are provided in Table 1 in Section 1. It follows from Table

1 that the results involving the standard deviation of the project completion time associated with

the independence assumption are consistent with the earlier observation that the variance in the

triangular (TSP) distributions are strictly larger (smaller) than those in its beta counter part (see

Ð$#Ñ Ð$$Ñand ). With the independence assumption between beta activity durations, the use of

Ð#)Ñ results in a significant reduction in the mean of the project completion time and a

substantial reduction in its standard deviation when compared to utilizing triangular distributions

whose parameters are directly specified by the three estimates  and  (See Table 2). Hence,+ß 7 ,

the adoption of  may not be consistent with a conservative approach towards estimatingÐ#)Ñ
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project completion time and its uncertainty. Note that when utilizing TSP distributions ( withÐ#*Ñ

8 œ &), a similar mean shift occurs in the project completion time and even a larger shift in the

standard deviation, providing an even more optimistic scenario.
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Figure 7. Comparison of Distributions of Minimal

Completion Time  for the project in Figure 5.

The most notable result in Figure 7 and Table 1, however, follows from comparing the

completion time distribution under an assumption of (mild) dependence with the distributions

assuming independence. Although no mean shift occurs when comparing the first and fourth

rows in Table 1, the standard deviation of the completion time of the project almost . Thedoubles

same observation follows from Figure 7 where the distribution under the dependence assumption

possesses a much smaller slope and appears to have a support that overlaps all of its counterparts.

Evidently, if the use of  and its resulting underestimation of project completion time andÐ#)Ñ

uncertainty were a reason for a long standing controversy (see e.g. Clark (1962), Grubbs (1962)
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and  Kamburowski (1997)), it would seem that the issue of modeling dependence deserves

similar interest.

Note also that it follows from Figure 7 that the probability of completing the project by "%%

days calculated using the standard CPM method is less than % regardless of an assumption of"&

dependence or independence. This result is due to the fact that the ingredient distributions of the

activity durations are positively skewed. Positively skewed distributions were prevalent in the

expert judgment used in Greenberg (1998). Such a prevalence may be explained by the existence

of a motivational bias amongst experts resulting in optimism regarding the most likely value of

activity completion. This fact could serve as an explanation for a low incidence of project

success (on-time) when utilizing standard CPM analysis as a yard stick.

6. CONCLUDING REMARKS

A dependence model has been developed allowing to build a multivariate distribution

involving a large number of marginal distributions with bounded support. Dependence

parameters of the model may be elicited via expert judgment using indirect elicitation 

procedures. Via a computational example it has been shown that the effect of an assumption of

mild dependence on the minimal completion time of a small project exceeds that of a long

standing controversy (over 40 years) regarding the use of triangular or beta distributions in PERT

analyses. Although theoretically it is well known that the uncertainty of an output parameter may

be greatly under estimated when unjustifiably assuming independence (e.g. think of the well

known formula ), the benchmarking of theZ +<Ð\  ] Ñ œ Z +<Ð\Ñ  Z +<Ð] Ñ  #G9@Ð\ß ] Ñ

effect of  dependence against this controversy perhaps argues for even greater attention tomild

modeling dependence in uncertainty analyses, especially when a large number of random

variables are involved.
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9. APPENDIX

The procedure below is a bisection algorithm that calculates the bandwidthG+6-X2/>+Ð ß RÑ) 0ß

parameter  of the DB copula given a value for the dependence measure ) 0 )Ð\l] ß Ñ Ð'Ñ(cf. ). The

procedure  uses the procedure  to calculate the valueG+6-X2/>+ E@/<+1/V/.?->398Ð ßRÑ0ß )

for 0 ) )Ð\l] ß Ñ R given a value for dependence parameter  and discretization accuracy . The

procedure  uses a function  for the inverse of the c.d.f. of the randomE@/<+1/V/.?->398 J Ð † Ñ"

variable .\

E@/<+1/V/.?->398Ð ßRÑà0ß )

W>/: " À W?7 À œ !à 3 À œ "à

W>/: # À ? À œ 3
R

W>/: $ À + À œ Q+BÐ!ß ?  "  Ñà , À œ Q38Ð?  "  ß "Ñ) ) 

W>/: % À W?7 À œ W?7 J Ð,ÑJ Ð+Ñ
R"

" "

W>/: & À M0 3  R  " >2/8 3 À œ 3  "à K9>9 WXIT #à

W>/: ' À À œ "!! † " 0 Š ‹W?7
J Ð"ÑJ Ð!Ñ" "

G+6-X2/>+Ð ß RÑ) 0ß

W>/: " À M0 Ð0 0 ) 0œ ! Ñ 9< Ð œ "!! >2/8 œ à K9>9 WXIT (à% %) :5

W>/: # À . À œ !à / À œ "à

W>/: $ À À œ àE@/<+1/V/.?->398Ð ßRÑ) )5 5
./
# 05ß

W>/: % À M0 l0 0 $- 5l  >2/8K9>9 WXIT (
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W>/: ' À K9>9 WXIT $ 
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W>/: ( À À œ à) )5

The procedure ) below evaluates the c.d.f. of  given by  by making aG+6-GHJÐ ß Cß7ß ] Ð"ÑK A

call to the recursive procedure ( . The algorithm usesZ 3=3>Z /<>3-/= ß Cß 3ß ß7ß ß ÑK @ A C

functions  to calculate  to calculateT<9.?->[/312>=Ð ß7Ñ œ A ß W?7I6/7/8>=Ð ß7ÑA @C #
3œ"

7

3

D <œ @ W?7T<9.?->=Ð ß ß7Ñ œ A @� �
3œ" 3œ"

7 7

3 3 3 and  to calculate .@ A

Z 3=3>Z /<>3-/= ß Cß 3ß ß7ß ß Ñà(K @ A C

W>/: " À 30 3  7 >2/8

  (@ À œ !à Z 3=3>Z /<>3-/= ß Cß 3ß ß =?7ß7ß ß Ñà3 K @ A C

    (@ À œ "à Z 3=3>Z /<>3-/= ß Cß 3ß ß =?7ß7ß ß Ñà3 K @ A C

W>/: # À À œ W?7I6/7/8>=Ð ß7Ñà À œ W?7T<9.?->=Ð ß ß7ÑàD <@ @ A

W>/: $ À M0 ÐC  Ñ  ! >2/8 K À œ K  Ð  "Ñ< D <
C

C
7x†

G+6-GHJÐ ß Cß7ß àK A)

W>/: " À M0 C Ÿ ! >2/8K À œ !à W>9:à 
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