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Abstract: Recent advances in computation technology for decision/simulation and uncertainty

analyses have revived interest in the  the triangular distribution and its use to describe uncertainty of

bounded input phenomena. The trapezoidal distribution, explicitly suggested by Pouliquen (1970) in

the framework of risk and uncertainty analysis, is a generalization of the triangular distribution that

allows for the specification of the modal value by means of a range of values rather than a single

point estimate. While the trapezoidal and the triangular distributions are restricted to linear

geometric forms in the successive stages of the distribution, the generalized trapezoidal (GT)

distribution introduced by van Dorp and  (2003) allows for a non-linear behavior at its tails andKotz

a linear incline (or decline) in the central stage. In this paper we shall develop two novel elicitation

procedures for the parameters of a special case of the GT family by restricting ourselves to a

uniform (horizontal) central stage in accordance with the central stage of the original trapezoidal

distribution.
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1. Introduction

In a recent survey paper a leading Bayesian statistician, O'Hagan (2006), explicitly mentions a

need for advances in elicitation techniques for prior distributions in Bayesian Analyses, but also

acknowledges the importance of their development for those areas where the elicited distribution

can not be combined with evidence from data, because the expert opinion is essentially all the

available knowledge. Garthwaite, Kadane and   (2005) provide a comprehensive review onO'Hagan

the topic of eliciting probability distributions dealing with a wide variety of topics, such as, e.g., the

elicitation process, heuristics and biases, fitting distributions to an expert's summaries, expert

calibration and group elicitation methods.  We encourage the reader to review the bibliography of

Garthwaite, Kadane and  (2005) which is impressive and contains over 100 references.O'Hagan

Merkhofer's (1987) paper, not listed in Garthwaite, Kadane and  (2005), also provides aO'Hagan

practical perspective in using judgmental probability distributions in real-world problems.

The topic of this paper deals with fitting a specific parametric distribution to a set of summaries

elicited from an expert. Experts are traditionally classified into two, usually unrelated, groups: 1)

substantive technical domainexperts (also known as  experts or  experts) who are knowledgeable about

the subject matter at hand and 2)  experts mainly possessing knowledge of the appropriatenormative

quantitative analysis techniques (see, e.g., DeWispelare  (1995) and  and Simolaet al. Pulkkinen

(2000)). In the absence of data and in the context of decision/simulation and uncertainty analyses,

substantive experts are used (primarily by necessity) to specify input distributions.

Advances in decision/simulation and uncertainty analysis methodology and their penetration

into applied sciences and engineering during the last several decades (recall  by now standard 

tools such as Decision Tool Suite by the Palisade Corporation, Crystal Ball by Decision Engineering,

and ARENA by Rockwell Software) have reinvigorated the use of distributions with bounded

support (that were not initially popular options). Integration of graphically interactive and statistical

procedures for bounded input distribution modeling has become a topic of research (see, e.g.,

DeBrota  (1989), AbouRizk  and Wagner and Wilson (1995, 1996)) in order toet al. et al. (1992)

facilitate their elicitation by experts. AbouRizk   have developed software with a graphicalet al. (1992)
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user interface (GUI) to ease fitting of beta distributions using a variety of methods and DeBrota et al.

(1989) have developed software for fitting bounded Johnson S  distributions  Wagner and WilsonF Þ

(1995, 1996) introduced univariate Bézier distributions (or curves), which are a variant of spline

functions, and the software tool PRIME with a GUI to specify them. All these methods involve the

requirement of  the lower and upper bounds of the distribution's support. While tspecifying he system

of Bézier distributions allows for great flexibility in input distribution modeling for stochastic

simulations, Wagner and Wilson (1996) point out that random variate generation from a Bézier

distribution is at present computationally inefficient since its the inverse cumulativeJ Ð"

distribution function (cdf)) cannot be expressed in a closed form. The same applies for the beta or

Johnson S  distributions. Fortunately, triangular, trapezoidal and generalized trapezoidalF

distributions  form cdf's.do have closed

Trapezoidal distributions have been advocated for use in risk analysis problems, initially by

Pouliquen (1970) and more recently by  and Calvete (1987),  (1989), Powell andHerrerías Herrerías

Wilson (1997) and Garvey (2000). Other applications of trapezoidal distributions are prominent in

applied physics problems (see, e.g., Davis and Sorenson (1969), Nakao and Iwaki (2000), Sentenac et

al. (2000)) and medical ones, specifically in the screening and detection of cancer (see, e.g., Flehinger

and Kimmel (1987), Brown (1999) and Kimmel and Gorlova (2003)). Trapezoidal distributions have

also been used as membership functions in fuzzy set theory (see, e.g., Chen and Hwang (1992) and

Bardosi and Fodor (2004)).

Figure 1A plots a trapezoidal probability density function (pdf) suggested by Pouliquen (1970)

with the boundary parameters  and  The trapezoidal pdf depicted in+ œ !ß , œ !Þ$ß - œ !Þ& . œ "Þ

Figure 1A is a generalization of the "classical" triangular distribution dating back as far as Simpson5

(1755, 1757). Analogously to the triangular distribution, the trapezoidal distribution is appealing in

practice mainly due to the ease of the physical interpretation of its parameters  and . This+ß ,ß - .

would allow for their straightforward elicitation via a substantive expert knowledgeable about an

5Thomas Simpson (1710-1761) a prolific writer of mathematical textbooks and able teacher at the Royal Military
Academy in Wolwich (England) made original and important contributions to statistics and actuarial sciences.
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uncertain phenomenon represented by the distribution. However, the requirement of specifying the

bounds when using input distributions with bounded support in decision/simulation and uncertainty

analyses poses some challenges. Although the use of bounded distributions in the absence of data is

by now prevalent, the fact that the lower and upper bounds of an uncertain phenomenon as a rule

fall outside of the accumulated experience of a substantive expert (see, e.g., Selvidge (1980),

Davidson and Cooper (1980), Alpert and Raiffa (1982), Keefer and Verdini (1993)) is rarely

acknowledged. Instead these authors suggest the elicitation of lower and upper quantiles instead.

Keefer and Bodily (1983) solved for the lower and upper bounds of a triangular distribution in the

case when a point estimate for its mode is also available.  extendedKotz and Van Dorp (2006)

Keefer and Bodily's (1983) procedure for Two-Sided Power (TSP) distributions that are

generalizations of triangular distribution allowing for non-linear behavior in the two tails.

Van Dorp and Kotz (2003) provide the probability density function (pdf) of the Generalized

Trapezoidal (GT) distribution with parameters , and  given byα +ß ,ß -ß .ß 7 8
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The parameter  and is referred to as a boundary ratio parameter Theα @ @œ 0 Ð,l ÑÎ0 Ð-l Ñ Þ\ \

generalization allows  for non-linear behavior in the tails of the pdf via the tail parameters  andÐ"Ñ 7

8 and a linear incline (or decline) of the pdf in the central stage by setting the boundary ratio

parameter 1. It possesses a closed form cdf. Figure 1B plots a generalization of the pdfα Á

presented in Figure 1A with the same boundary parameters  and  and the additional+ß ,ß - .

parameter values and . By substituting  and  in  the pdfα αœ " ß œ $ œ & 8 œ 7 œ # œ " Ð"Ñ"
% 7 8
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Ð"Ñ reduces to the "classical trapezoidal" pdf. Apparently, elicitation procedures for the additional

parameters of the GT distribution have not so far been developed. These type of procedures may be

useful for its application in problems of decision/risk and uncertainty analysis.
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Fig. 1. Generalized trapezoidal (GT) densities with common boundary parameters + œ !ß , œ !Þ$ß - œ !Þ&

and ; A: Original trapezoidal pdf with , B: GT pdf with and ,. œ " œ #ß œ #ß œ " œ $ß œ &ß œ "7 8 7 8α α "
%

C: GT Uniform pdf with and , D: GTU cdf with and 7 8 7 8œ $ß œ &ß œ " œ $ß œ &ß œ "Þα α

We shall restrict ourselves in this paper to the analysis of GT distributions with a uniform

central stage. This is achieved by setting  in and  and referring to it as α œ " Ð"Ñ Ð#Ñ Generalized

Trapezoidal-Uniform (GTU) distributions it has the pdf:
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Figure 1C (Figure 1D) displays the GTU pdf (cdf) of  Figure 1B after substituting instead ofα œ "

α œ " Ð$Ñ"
% . Note that the modal value of the GTU pdf is attained for all values in the central stage

Ò,ß -Ó. Hence, similarly to the original trapezoidal distribution (Figure 1A) one may directly elicit this

modal range by means of a substantive expert (who may be more "comfortable" here, being relieved

of providing a fixed point estimate for the modal value as required for a triangular distribution).

Unfortunately, this is not plausible for the more general GT family  involving the boundary ratioÐ"Ñ

parameter  (see, e.g., vα an Dorp and Kotz (2003)).

In the remainder of this paper we shall propose two elicitation procedures for the parameters of

GTU distributions . In Section 2, the first method will be presented assuming that the boundaryÐ$Ñ

parameters  and  are known due to natural boundary constraints such as, for example, a+ .

percentage of a total population or a probability having a natural support . After eliciting theÒ!ß "Ó

central stage bounds  and , the tail parameters and will indirectly be elicited from a, - 7 8

substantive expert following the fixed interval method mentioned in Garthwaite, Kadane and

O'Hagan (2005). The second method, to be discussed in Section 3, deals with unknown boundary

parameters  and  and elicits also a lower  and upper quantiles  which are used to+ . +  , .  -: <

solve for these lower  and the upper  bounds  and  are usually assumed to be equal to and+ . Ð: < !Þ!&

!Þ*& !Þ"! !Þ*! or  and , respectively).
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2. Indirect elicitation of tail parameters with fixed lower and upper bounds

Mixing distributions is common practice in dealing with e.g. Phase-Type, Erlang, Poisson and

Normal distributions (see, e.g., Johnson and Taaffe (1991) and Karlis and Xekalaki (1999)). The pdf

Ð$Ñ may be expressed as a mixture (see, e.g., van Dorp and Kotz (2003)) involving three densities

0 ß 0 ß 0\ \ \" # $
 with bounded support, such that
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where V F 1Ð Ñ Ð%Ñ is given by . Observe that the mixture weight of the first stage  decreases as its tail
"

parameter  increases. A similar observation can be made for the third stage with obvious7

modification.

After some algebraic manipulations we derive from Ð&Ñ  Ð*Ñ
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Note that in expressions  and  the second factor is a weighted sum of the support widthsÐ"!Ñ Ð""Ñ

Ð,  +Ñß Ð-  ,Ñ Ð.  -Ñ and , where the weights of the first and the third terms are also, but not

solely, determined by the tail parameters  and , respectively. 7 8 Expressions and  allow forÐ"!Ñ Ð""Ñ
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where the mixture probabilities  and  are given by . Note that the quantile function1 1 1" # $ß Ð*Ñ

J ÐCl Ñ"
\ F  involves convex combinations of the boundaries of each stage reminiscent of the quantile

function of a uniform distribution. This allows for a straightforward implementation of a sampling

procedure from GTU distributions using a pseudo-random number generator (see, e.g. Banks et al.

(2005)).

Assume now that the parameters  and  are known and that + . the modal range  has beenÒ,ß -Ó

directly elicited from a substantive expert. We shall now proceed using the fixed interval method

mentioned in . Namely, we suggest eliciting the relativeGarthwaite, Kadane and   (2005)O'Hagan

likelihoods of the uncertain quantity at hand falling in the1 1 1 1# " # $Î Îand (or their reciprocals) 
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central stage  relative to the tails  and , respectively. Ò,ß -Ó Ò+ß ,Ñ Ð-ß .Ó Next, we directly solve for the

tail parameters and utilizing relationships:7 8


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which immediately follow from . Observe that expression  implies that the ratio of theÐ*Ñ Ð"%Ñ

central stage and first (third) stage probability equals ( times the ratio of the widths of their7 Ñ8

corresponding supports.

As an example of the above elicitation procedure, suppose a decision maker Jasmine Devereaux

(J.D.) whishes to estimate her market share of a new clothing line in the upcoming season. J.D  isÞ

convinced it will most likely fall between % and %. Moreover, she believes it to be twice as$! &!

likely for this market share to fall within the range Ò$! ß &! Ó% % as compared to being either less than

$! &!% or more than %.  Figure 1C (Figure 1D) depicts a GTU pdf (cdf) with natural support

Ò!ß " Ó00%  that is consistent with J.D. degree of beliefs. From her statements we deduce it is twice as

likely for her market share to fall within the modal range %  as compared to the tailsÒ ß &! Ó$!%

Ò!ß Ñ Ð&! ß " Ó Î œ Î œ # œ !Þ& œ œ !Þ#&$!%  and % 00% . Hence, , yielding and .1 1 1 1 1 1 1# " # $ # " $

The parameter values  and  in Figure 1C and D now follow directly from . J.D.7 8œ $ œ & Ð"%Ñ

evaluates from  and  a mean market share of % and a market share standard deviationÐ"!Ñ Ð""Ñ %!Þ#

equal to %. She utilizes  to evaluate the quantiles and"%Þ" Ð"$Ñ B ¸ "(!Þ!& Þ& B ¸ %!%, %!Þ&!

B ¸ '$Þ) Þ!Þ*& % (see Figure 1D)  In other words, she believes her median market share is virtually

identical to her mean market share and its subjective % credibility interval equals *! Ð"(Þ& ß%

'$Þ) Ñ% .

3. Indirect elicitation of tail parameters and lower and upper bounds

The elicitation of lower and upper quantiles for a bounded uncertain quantity adheres to the

prevailing view that lower and upper bounds of an uncertain phenomenon as a rule fall outside of

the accumulated experience of a substantive expert (see, e.g., Selvidge (1980), Davidson and Cooper
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(1980), Alpert and Raiffa (1982), Keefer and Verdini (1993))  Forcing a substantive expert in such a.

scenario to provide strict lower and upper bound estimates may lead to a misrepresentation of

uncertainty. he elicitation of the quantiles  and  was suggested by Keefer and Verdini T + .!Þ"! !Þ*!

(1993).  Instead of specifying the values and   an alternative procedure could be: œ !Þ"! < œ !Þ*!

to request the substantive expert to specify some other quantile levels  and  that he/she is: <

comfortable with. Thus we shall assume here that the lower and upper bound parameters  and + .

and tail parameters  are 7 8 and unknown.

Moreover, we shall assume that the bound parameters  and tail parameters and +ß . 7 8 need to

be determined from ( ) a directly elicited modal range , ( ) the relative likelihoods  and3 Ò,ß -Ó 33 Î1 1# "

1 1 1 1 1 1# $ : < # " # $Î 333 +  , .  - Î Î, and ( ) a lower  and upper  quantiles. The ratio  ( ) may be

elicited here by eliciting the likelihood of the central stage  relative to the uncertain quantityÒ,ß -Ó

being less (larger) than the lower bound  (upper bound ) of this central stage. The probabilities, -

associated with each interval are then obtained utilizing that their sum must be  (see, " Garthwaite,

Kadane and   (2005)O'Hagan ). From expression , we can immediately write the lower  and theÐ"%Ñ +

upper  bounds as  functions of the tails parameters  and , respectively. Specifically,. linear 7 8

 + œ ,  ´ + Ð Ñß

. œ . Ð Ñ

1
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#

Ð-,Ñ ‡
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7 7

8 8-  ´
Ð"&Ñ

1
1

3Ð-,Ñ

#
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(Notation + Ð Ñ Ò. Ð ÑÓ‡ ‡7 8   for   emphasizes their dependence on  .) Note that the+ Ò.Ó 7 Ò8Ó

expressions   the lower Ð"&Ñ do not involve + .: < and upper  quantiles, but result directly from the

relations  linking the probability in each stage of the GTU distribution with the width of theÐ"%Ñ

support of each stage via the tail parameters  and .7 8

In the Subsections 3.1 and 3.2 we shall derive two additional functions such that  and+ Ð Ñ´ +~ 7

. Ð Ñ´ .
~

8 7 8 that describe a  relationship between the tails parameters  and  and thenon-linear

lower  and upper  bounds. These relationships   and  and, under certain+ . + .do involve : <

uniqueness conditions, we may solve for  ( by setting (by setting7 8 7 7Ñ Ð Ñ+ Ð Ñ œ‡ +~

. Ð Ñ œ‡ 8 8.
~
Ð Ñ).
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3.1. Solving for the left tail parameter   and the lower bound 7 +

From the expressions for the GTU cdf  and the definition of a lower quantile  we obtainÐ"#Ñ +  ,:

(by substitution) that

J Ð+ l Ñ œ œ : Í + œ +  Ð,  + Ñ ´ Ð Ñ Ð"'Ñ
+  + Ð ß :ß Ñ

,  + "  Ð ß :ß Ñ
\ : " : :

: "

"
F 1

- 1

- 1
 7 7

7
7+~ ,

where  and:  1"

!  Ð ß :ß Ñ œ Ð:Î Ñ  "Þ Ð"(Ñ- 1 17 " "
"Î7

Note that the left hand side (LHS) of expression links the first stage probability to theÐ"'Ñ 1"

quantile level  the width of the support of the first stage  and the distance  from:ß Ð,  +Ñ Ð+  +Ñ:

the lower bound to the lower quantile + Þ:

Note that both + +~ are just expressions for the same parameter  in differentÐ Ñ7 7 and + Ð Ñ‡  

situations. e may now solve for a tail parameter  satisfying the lower quantile constraint 4  byW 7 Ð" Ñ

setting

+ ß Ð")Ñ~Ð Ñ œ7 7+ Ð Ñ‡

where  is the linear function defined by . + Ð Ñ‡ 7 Ð"&Ñ In the appendix we shall prove that the LHS

lower bound function +~Ð Ñ Ð")Ñ7  in  is concave, strictly decreasing with the asymptote

TÐ Ñ œ Þ Ð"*Ñ
,  + + 

Ð Ñ
7 7

,

#
: :

log :
1"



From + +~ ~Ð Ñ  +  ! Ð"'Ñ Ð Ñ7 7 7  for all  (see ) and the properties of the function : , it

immediately follows that the number of solutions of equation  equals that of the equationÐ")Ñ

TÐ Ñ œ Ð#!Ñ7 7+ Ð Ñ‡ .

However, this number can be at most one, since both functions in  are linear From,Ð#!Ñ Þ

+  ,

#
œ Ð#"Ñ

:
TÐ!Ñ  + Ð!Ñ œ ,‡ .



Johan René van Dorp, Salvador Cruz Rambaud, José García Pérez, and Rafael Herrerías Pleguezuelo (2007). "An Elicitation Procedure for the Generalized Trapezoidal
Distribution with a Uniform Central Stage", Decision Analysis Journal, Vol. 4, pp. 156 - 166.

MANUSCRIPT TEXT 12

it next follows that a unique solution for the tail parameter  exists for equation when the7 Ð")Ñ iff 

slope of the asymptote TÐ Ñ7 7 is less steep than that of the  function linear + Ð Ñ‡  defined by ,Ð"&Ñ

i.e.

,  +
 ,  Ð-  ,Ñ  + Ð##Ñ

:

:
:

log 1"


Ð-  ,Ñ1

1
"

#
Í 0 ,

where

0 œ  !Þ Ð#$Ñ
:

1

1
"

#
log 1"

Hence, condition  determines both the existence and uniqueness of a solution for equationÐ##Ñ

Ð")Ñ.

Figure 2A depicts both functions and the asymptote for the case that~+ Ð Ñ‡ 7 7,  +Ð Ñ TÐ7Ñ 

, œ )!ß - œ "!! Î œ "Þ& Î œ " + œ (", and  and lower quantile . We have from1 1 1 1# " # $ !Þ"!

1 1 1 1# " # $Î œ "Þ& Î œ "and  that

1 1 1" # $œ ß œ œ Ð#%Ñ
" $

% )
.

For the data in Figure 2A the condition  reduces toÐ##Ñ

)!  "$
"

$
logÐ#Þ&Ñ ¸ '(Þ()$  + œ ("Þ Ð#&Ñ!Þ"!

Hence, a unique solution of equation  exists for the data in Figure 2A. Ð")Ñ Solving for  using a7

standard root finding algorithm yields

7 œ "Þ%"* Ð#'Ñ

and substituting  in either 7 7 7œ "Þ%"* + Ð"&Ñ~  yields the lower boundÐ Ñ Ð"'Ñ  or + Ð Ñ‡  

+ œ + Ð#(Ñ~ .Ð7 7Ñ œ ¸ '"Þ!)&+ Ð Ñ‡

Figure 2B plots the functions  +~Ð7Ñ 7 7, + Ð Ñ‡  and the asymptote for the boundary caseTÐ Ñ Ð##Ñ

+ ¸ '(Þ()$!Þ"! . Observe that in this case no solution for equations  and  existsÐ")Ñ Ð#!Ñ Þ
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From and we conclude that the pre-assigned quantile level  provides a lowerÐ##Ñ Ð#$Ñ :

threshold for the quantile  defined . This threshold is just a function of the width of the+ Ð##Ñ:

central stage , its probability , the first stage probability  and the quantile level . In caseÐ-  ,Ñ :1 1# "

a substantive expert specifies a set of values for ,  and  and  for which the condition + ß , - Ð##Ñ: # "1 1

is not met, he/she may be given the option to revise his/her assessments utilizing the threshold

value  in as feedback. The use of feedback to enhance consistency in an expert's,  Ð-  ,Ñ Ð##Ñ0

judgment is quite common (see, e.g., Denham and Mengersen (2007)).
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Fig. 2  Lower bound functions  Þ + Ð Ñ Ð"&Ñ‡ 7 7 7  and ~+Ð Ñ Ð"'Ñ with its asymptote TÐ Ñ Ð"*Ñ  for the data

, œ )!ß - œ "!! œ #& œ $(Þ& + œ (" + ¸, %, %; A: lower quantile , B: lower quantile .1 1" # !Þ"! !Þ"! '(Þ()$

3.2. Solving for the right tail parameter  and the upper bound 8 .

After fully digesting the derivations in subsection 3.1 this subsection is straightforward. From the

expression for the GTU cdf  and the definition of the upper quantile  we obtain thatÐ"#Ñ .  -<

J Ð. l Ñ œ œ < Í . œ .  Ð.  -Ñ ´ Ð Ñß Ð#)Ñ
.  B Ð ß <ß Ñ

.  - "  Ð ß <ß Ñ
\ < < <

$

$
F

. 1

. 1
"  1$ 8 8

8
8.

~
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where  and1$  "  <

!  Ð ß <ß Ñ œ ÖÐ"  <ÑÎ ×  "Þ Ð#*Ñ. 1 18 $ $
"Î8

Analogously as in Subsection 3.1, we may solve for the tail parameter  satisfying the upper8

quantile constraint  by settingÐ#)Ñ

. ß Ð$!Ñ
~
Ð Ñ œ8 8. Ð Ñ‡

where  is the linear function defined by . . Ð8Ñ Ð"&Ñ‡ T ~he following properties of are derived in.Ð Ñ8  

the appendix:  is strictly increasing is convex and possesses the asymptote. .
~ ~
Ð!Ñ œ . ß Ð Ñ ß< 8

WÐ Ñ œ Þ Ð$#Ñ
-  . .

Ð Ñ
8 8

- 

#
< <

log "<
1$



A unique solution to equation  exists iffÐ$!Ñ

.  -  Ð$$Ñ< <Ð-  ,Ñß

where

<
1

1
œ  !Þ Ð$%Ñ

3

#
log 1$

"  <

Figure A depicts both functions defined by and the~
$ . Ð"&ÑÐ Ñ Ð#)Ñß8 8 defined by  . Ð Ñ‡  

asymptote for the case that  WÐ8Ñ Ð$#Ñ defined by  , œ )!ß - œ "!! Î œ "Þ& Î œ ",  and 1 1 1 1# " # $

and upper quantile For this data a unique solution of  exists since the RHS. œ "#"Þ Ð$!Ñ!Þ*!

threshold of equalsÐ$$Ñ -  <Ð-  ,Ñ 

"!!  #! . œ "#" Ð$&ÑlogÐ$Þ(&Ñ ¸ "#'Þ%#&  !Þ*! .

Solving for  using a standard root-finding algorithm yields8

8 œ #Þ(&( Ð$'Ñ

and substituting  in either 8 8 8œ #Þ(&( . Ð"&Ñ
~ defined by  yields theÐ Ñ Ð#)Ñ defined by  or . Ð Ñ‡  

upper bound

. œ . Ð$(Ñ
~
Ð8 7Ñ œ ¸ "&&Þ"$&. Ð Ñ‡ .
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Figure 3B plots the functions  .
~
Ð7Ñ 7, . Ð Ñ‡  and the asymptote for the case of the LHSWÐ Ñ8

boundary given by . O. Ð$&Ñ!Þ*! ¸ "#'Þ%#&  bserve that here no solution exists for equation Ð$!ÑÞ
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Fig. 3  Upper bound functions Þ . Ð Ñ Ð"&Ñ‡ 8 8 and ~.Ð8Ñ Ð#)Ñ with its asymptote WÐ Ñ Ð$#Ñ  for the data

, œ )!ß - œ "!! œ œ $(Þ& . œ "#" . ¸, %;  A: upper quantile , B: upper quantile .1 1# $ !Þ*! !Þ*! "#'Þ%#&

After first scrutinizing the uncertainty for her market share of the new clothing line in the

upcoming season (at the end of Section 2 in this paper), she decides to force ahead. Drawing from

her past experience, J.D. assesses that she is 90% sure that the amount of fabric needed over the

season will be above 71,000 yards, but with the same certainty level will not exceed 121,000 yards. In

addition, she believes that the most likely value ranges between 80,000 and 100,000 yards. Finally,

she assesses that it is 1.5 times more likely for the number of yards to fall within the estimated modal

range 80,000 100,000 than being less than 80,000, while it is equally likely to be larger than

100,000 yards. (A somewhat optimistic assessment.). A distribution that is consistent with J.D.'s

degree of belief statements above is the GTU distribution  in Figure 4 and  in 1000 's).Ð$Ñ Ð+ß ,ß - .

Figure 4 presents the GTU distribution which satisfies the constraints , œ )!ß - œ "!!ß
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1 1 1 1# " # $ !Þ"! !Þ*!Î œ "Þ& Î œ " + œ (" . œ "#" Þand  and possesses lower  and upper  quantiles Its

mixture probabilities  and   follow from and . The unique tail1 1 1 1 1 1 1" # $ # " # $ß Ð#%Ñ Î œ "Þ& Î œ "

parameters  and  that follow next are provided by  and . The unique lower and upper7 8 Ð#'Ñ Ð$'Ñ

bounds  and  are given by  and .+ ¸ . ¸ Ð#(Ñ Ð$(Ñ'"Þ!)& "&&Þ"$&

J.D. evaluates from  and  a mean fabric yards needed of  and aÐ"!Ñ Ð""Ñ *%Þ(*) ‚ "!!! yards

standard deviation equal to  She utilizes  to evaluate the quantiles")Þ(") ‚ "!!! yards. Ð"$Ñ

B ¸ '( *$ B ¸ "#)Þ&)* Ð "!!! Þ!Þ!& !Þ*&Þ"') Þ$$$, B ¸!Þ&! and all in yards)  In other words, she

believes her median fabric yards needed equals  and its subjective %*$ *!Þ$$$ ‚ "!!! yards

credibility interval equals .Ð'( "#)Þ&)*ÑÞ"') ‚ "!!!ß yards
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Fig. 4  GTU distribution  , lower quantile  andÞ Ð$Ñ , œ )!ß - œ "!! ß + œ ("with 1 1 1 1# " # $Î œ "Þ&ß Î œ " !Þ"!

upper quantile . The tail parameter values . œ!Þ*! "#" "Þ%"* #Þ(&( '"Þ!)&7 8¸ ß ¸ ß + ¸and the lower and

upper bounds  were determined utilizing the equations and .. ¸ "&&Þ"$& Ð")Ñ Ð$!Ñ

Concluding Remark

The purpose of introducing the generalized trapezoidal-uniform distribution here is not to replace

well established distributions such as the beta, triangular, asymmetric Laplace, gamma or any other

appropriate distribution. It, however, does provide one  additional distribution to the arsenal of

available distributions to match to a substantive experts' degree of beliefs statements.
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We have described two elicitation procedures for generalized trapezoidal-uniform distributions

defined in  and . The first method assumes that the lower and upper bounds are known basedÐ$Ñ Ð%Ñ

on some physical boundary constraints. The second one, which is possibly more realistic albeit more

involved, solves for the lower and upper bounds by eliciting a lower and upper quantiles. We believe

that these elicitation procedures will facilitate an application of generalized trapezoidal-uniform

distributions in problems of decision, risk and uncertainty analysis.
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Appendix. Mathematical Properties of non-linear lower and upper bound functions involved

in the elicitation procedure.

Here we shall show that: ( ) the function3

0Ð8Ñ œ  Ð  Ñß 8   !ß
B

"  B
α " α

"Î8

"Î8
ÐEÞ"Ñ

with the auxiliary parameters s a strictly decreasing concave (increasing convex)B − Ð!ß "Ñ, and  iα "

function in  provided  Also, ( )8  Ð  ÑÞ 33α " α "

637 0Ð8Ñ œ 8  Þ ÐEÞ#Ñ
8 Ä ∞

" α α 

ÐBÑlog
"

#

and finally ( ) for all :333 8   !

0Ð8Ñ  8  ÐEÞ$Ñ
" α α

α "
 

ÐBÑ
Í 

log
"

#
.

In other words, the RHS of (which also appears in ) is an asymptote of the functionÐEÞ#Ñ ÐEÞ$Ñ

0Ð8Ñ ÐEÞ"Ñ defined by  and the two curves do not intersect.



Johan René van Dorp, Salvador Cruz Rambaud, José García Pérez, and Rafael Herrerías Pleguezuelo (2007). "An Elicitation Procedure for the Generalized Trapezoidal
Distribution with a Uniform Central Stage", Decision Analysis Journal, Vol. 4, pp. 156 - 166.

MANUSCRIPT TEXT 18

Lemma 1: The function 0Ð8Ñ ÐEÞ"Ñ  defined by is strictly decreasing and concave for  and is strictlyα "

increasing and concave for .α "

Proof: Assume, without loss of generality, that  or equivalently . (Obviousα " " α   !

modifications can be carried out for the case ). α " Taking the first order derivative of  with0Ð8Ñ

respect to  we have8  !

. B

.8
0Ð8Ñ œ ÐEÞ%Ñ

B Ñ
Ð  Ñ ÐBÑ  !

8 Ð" 
" α log

"Î8

"Î8# #

since B − Ð!ß "ÑÞ 0Ð8Ñ   ! Hence, the function is strictly decreasing when . Taking the" α

second order derivative with respect to  we have8

. B .

.8 .8
0Ð8Ñ œ  0Ð8Ñ ÐEÞ&Ñ

B

# "Î8

# "Î8

log
log

ÐBÑ " "  #

8 8 ÐBÑ" 
  .

To prove that  is a concave function it is required to show that for all .0Ð8Ñ 0Ð8Ñ  ! 8  !.
.8

#

#

Utilizing it is sufficient to prove that, for all ,  and ÐEÞ%Ñ B − Ð!ß "Ñ 8  !

"  # #

" 
‚ 8   ! Í 1Ð8Ñ ÐEÞ'Ñ

ÐBÑ ÐBÑ

B

B

"Î8

"Î8
"

log log
  ,

where

1Ð8Ñ œ ‚ 8 ß 8  ! ÐEÞ(Ñ


" 

1
.

B

B

"Î8

"Î8
"

From and  it follows immediately  as ÐEÞ(Ñ B − Ð!ß "Ñ 1Ð8Ñ Ä ∞that  since 0 as8 Æ ! B Æ"Î8

8 Æ ! 8 Ä ∞ 1Ð8Ñ. Letting now , after some algebraic manipulations involving and applying the L'

Hopital rule we easily obtain

637 ÐEÞ)Ñ
8 Ä ∞

1Ð8Ñ œ 
#

ÐBÑlog
.

Thus to confirm the condition  for all  it is only required to prove that  is a strictlyÐEÞ'Ñ 8  ! 1Ð8Ñ

decreasing function.

Now denoting ), we have for :7 ´ B B − Ð!ß "Ñ 8  !"Î8 − Ð!ß "Ñ (recall 
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7 œ ÐEÞ*Ñ8 B Í 8 œ
ÐBÑ

Ð7Ñ

log
log

,

.7 ÐBÑ 7 Ð7Ñ

.8 8 ÐBÑ
œ  B œ  ÐEÞ"!Ñ

log log
log#

#8 .

Taking the derivative of with respect to and utilizing and  we arrive atÐEÞ(Ñ 8 ÐEÞ*Ñ ÐEÞ"!Ñ

. .7 . Ð7Ñ

.8 .8 .7 Ö" 7× ÐBÑ
1Ð8Ñ œ 1Ð7Ñ œ  ‚ 2Ð7Ñ ÐEÞ""Ñ

log
log

#

# #

where

2Ð7Ñ œ #7 Ð7Ñ  Ð" 7 Ñ ÐEÞ"#Ñlog # .

Since the multiplier of in the RHS of is strictly negative it follows from ,2Ð7Ñ ÐEÞ""Ñ ÐEÞ""Ñ

7 ´ B"Î8 and  thatB − Ð!ß "Ñ

.

.8
1Ð8Ñ  ! 8  ! Í 2Ð7Ñ  ! 7 − Ð!ß "Ñ ÐEÞ"$Ñ for all for all .

From the definition of in , and noting that2Ð7Ñ ÐEÞ"#Ñ 7 − Ð!ß "Ñß

2Ð!Ñ œ " • 2Ð"Ñ œ ! ÐEÞ"%Ñ,

and observing the form of a graph of  in Figure 5, we verify that indeed  for all2Ð7Ñ 2Ð7Ñ  !

7 − Ð!ß "Ñ ÐEÞ"$Ñ ÐEÞ*Ñ 1Ð8Ñ (and thus from  and  it follows that  is a strictly decreasing function).

Admittedly the plot in Figure 5 cannot serve as a formal proof. However, it is not difficult but

somewhat tedious to show that the function  is strictly decreasing. This together with 2Ð7Ñ ÐEÞ"%Ñ

mathematically proves the RHS assertion  of . We invite the readers to provide an alternativeÐEÞ"$Ñ6

(possibly simpler) proof that the function  defined by is strictly decreasing for .1Ð8Ñ ÐEÞ(Ñ 8  !

6A proof of being strictly decreasing is available from the authors upon request.2Ð7Ñ
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Fig. 5. A Plot of the function for  defined by .2Ð7Ñ 7 − Ð!ß "Ñ ÐEÞ"$Ñ

Lemma 2: The conditions and hold for the function ÐEÞ#Ñ ÐEÞ$Ñ 0Ð8Ñ ÐEÞ"ÑÞ defined by 

Proof: From the derivative .
.8

"Î80Ð8Ñ ÐEÞ%Ñ 7 œ B given by , substituting ß B − Ð!ß "Ñ, and

applying the L'Hopital rule twice we have

lim
8 Ä ∞ 7 Ä "

.

.8
0Ð8Ñ œ 637 ÐEÞ"&Ñ

" α " α 7 Ð7Ñ 

ÐBÑ Ð" 7Ñ ÐBÑ
œ

log log
log#

#
.

Thus

637 ÐEÞ"'Ñ
8 Ä ∞

0Ð8Ñ œ
" α

V


ÐBÑ
8 

log

where V V α " is a constant. To show that the value of (see ) we evaluateœ Ð  ÑÎ# ÐEÞ#Ñ

637 0Ð8Ñ  637 Þ ÐEÞ"(Ñ
Ð  B Ñ  8Ð "  B Ñ

"  B Ñ8 Ä ∞ 8 Ä ∞
 " α " α ÐBÑ  ÑÐ

ÐBÑ
8 œ

ÐBÑÐlog
log
log

α " "Î8 "Î8

"Î8

Substituting once more 7 œ B"Î8 we have

637 0Ð8Ñ  637 ÐEÞ" Ñ
Ð  7Ñ Ð " 7Ñ

" 7Ñ8 Ä ∞ 7 Ä "
 " α " α Ð7Ñ   ÑÐ

ÐBÑ Ð7ÑÐ
8 œ

log log
logα "

. 8
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Applying of the L'Hopital rule twice to  yieldsÐEÞ")Ñ

637 0Ð8Ñ  ÐEÞ"*Ñ
#8 Ä ∞

 " α α 

ÐBÑ
8 œ

log
"

and the assertion  is valid. Condition  now follows immediately from the facts thatÐEÞ#Ñ ÐEÞ$Ñ

637 ÐEÞ#!Ñ
8 Æ !

0Ð8Ñ œ α,

α  ÐEÞ#"Ñ
α

α "


Í 
"

#

and from the concavity of the function 0Ð8Ñ iff (see Lemma 1).α "  
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