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Abstract 

We develop a Bayesian multivariate analysis of expert judgment elicited using an 

extended form of pairwise comparisons. The method can be used to estimate the effect of 

multiple factors on the probability of an event and can be applied in risk analysis and 

other decision problems. The analysis provides predictions of the quantity of interest that 

incorporate dependencies amongst the various experts. In this form we may learn about 

the dependencies between the experts from their responses. The analysis is applied to a 

real data set of expert judgments elicited during the Washington State Ferries Risk 

Assessment. The effect of the statistical dependence amongst experts is compared to an 

analysis assuming independence amongst them. 

 

Keywords: Expert judgment; Pairwise Comparisons; Bayesian statistics; Multivariate 

analysis. 
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1. Introduction 

Many applications of expert judgment elicitation involve the estimation of the 

probabilities of events, with these probabilities sometimes affected by multiple factors. 

Merrick et al. (2000) propose an expert judgment elicitation method that estimates the 

effect of multiple factors on the probability of an event. This form of elicitation has been 

applied in the Prince William Sound (PWS) Risk Assessment (Merrick et al. 2002) and 

the Washington State Ferries Risk Assessment (WSF) (van Dorp et al. 2001) to estimate 

the probability of human error given organizational factors, such as the experience and 

training of the crew, and to estimate the probability of an accident given situational 

factors, such as the proximity and type of nearby vessels and the environmental 

conditions at the time.  While the elicitation method was proposed for use in risk 

analysis, it can be applied in other decision situations where applicable data is lacking.  

Clemen and Winkler (1999) review several models for combining experts’ 

judgments about probabilities with the decision maker’s prior information under the 

Bayesian aggregation framework developed in Morris (1974, 1977, 1983). It would seem 

natural to extend one of these techniques to incorporate the relevant factors. However, 

empirical research has shown that experts overestimate probabilities near zero (Cooke, 

1991). In our previous risk assessment work in the maritime domain, we have found that 

experts are more comfortable assessing the relative probability of an event in two 

situations when these probabilities are low. Thus, the form of the elicitation in Merrick et 

al. (2000) asks the experts to assess the ratio of the probabilities of the event for the two 

scenarios. The multiple factors describe two scenarios to the expert in a meaningful 

manner and in each comparison one factor is changed between the two scenarios. The 
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method is akin to that in Bradley and Terry (1952), but the aim is to estimate the effect of 

the multiple factors rather than developing a ranking scale.  

The occurrence and non-occurrence of the events is modeled by exchangeable 

Bernoulli trials with an unknown probability that depends on the factors describing the 

scenario. To link the probabilities to the factors, Merrick et al. (2000) assume a log-linear 

relationship. This assumption implies that the decision maker is interpreting the experts’ 

responses through her assumed model. Merrick et al. (2000) use a classical multiple 

regression to assess the parameters of this relationship. Szwed et al. (2004) develop a 

Bayesian analysis of these expert judgments. However, the Bayesian analysis in Szwed et 

al. assumes that the responses of the experts are independent. While each of these 

analyses only provides predictions of the ratios of the probabilities of the event in two 

scenarios, actual probabilities of the event can be obtained if the probability of one 

scenario can be assessed, a reference scenario; the probability for another scenario is then 

found by multiplying the probability for the reference scenario by the ratio of the 

probabilities for the required scenario and the reference scenario.  

There is a fundamental difference, however, between most Bayesian aggregation 

methods and our development. In most such methods, the experts are assessing an 

unknown quantity that is potentially, but not currently, observable by the decision maker. 

More formally Morris’s framework requires that the likelihood for the experts’ 

assessments should be conditioned on the observable quantities of interest. These 

assessments are then aggregated directly with the decision maker’s prior beliefs. In our 

approach, the decision maker first assumes a log-linear model and then interprets the 

experts’ assessments through this model. The decision maker aggregates estimates of the 
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parameters of the model based on each expert’s assessments, but does not aggregate their 

assessments directly. Thus our development is more similar to that in Dawes (1979) in 

intention, where the behavior of the experts is considered in taking factors as cues in their 

assessments of probabilities or other unknown quantities. Thus we and Dawes model the 

experts’ responses with a linear model that Dawes refers to as an improper, first-order 

approximation of the true relationship.  

In this paper, we offer an extension of the Bayesian analysis in Szwed et al. 

(2004) to relax the assumption of independence between the experts. It is well accepted 

that the judgments of multiple experts can be correlated and that the treatment of these 

correlations is necessary for proper analysis of such data (Winkler 1981; French 1980 

1981; Lindley 1983 1985; Mosleh et al. 1988; Clemen 1987; Clemen and Reilly, 1999; 

Jouini and Clemen 1996). Such correlation is often introduced, in the language of Clemen 

(1987), by overlapping information available to the experts and thus used in determining 

their responses to the questionnaires. Winkler (1981) and Clemen (1987) use a normal 

assessment error model to aggregate expert judgment concerning a continuous quantity.  

We develop a Bayesian aggregation method (Morris, 1974) for this type of 

elicitation, but at the level of the parameters of our log-linear relationship. Combining the 

log-linear assumption with Winkler’s multivariate normal error structure, our analysis 

takes the form of a multivariate regression analysis of the experts’ responses and the 

factors in the questions. This form allows for correlation between the experts’ responses. 

While the analysis mirrors the development of Bayesian multivariate regression (Press 

1982), it is a special case as each expert is providing judgments on the same quantities, 

not different quantities as in the case of a full multivariate regression.  
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The development herein is part of an extension of the methodology for maritime 

risk assessment discussed in Merrick et al. (2000) to assess the uncertainty of accident 

frequency estimates. The expert judgment method is one part of this methodology; the 

other part is a simulation of the maritime transportation system that estimates the 

frequency of the occurrence of the factors that affect the accident probability. Merrick et 

al. (2004a) develop a Bayesian simulation method and a meta-model on the outputs of the 

simulation. Merrick et al. (2004b) combine the Bayesian simulation and its output meta-

model with the development herein; the methodology is applied therein to a case study of 

proposed ferry service expansions in San Francisco Bay. This is one application of our 

expert judgment method and the Bayesian aggregation analysis developed here. 

The outline of the paper is as follows. In Section 2, we illustrate the type of 

question used in our elicitation technique with an example drawn from a maritime risk 

study. We then illustrate the form of the underlying probability model assumed and show 

how this leads to regression as a suitable analysis methodology. Our multivariate 

extension is justified and developed in Section 3. The expert judgment data collected in 

the WSF Risk Assessment and the process used to collect it is described in Section 4 and 

this data is used to illustrate the use of our analysis method. We compare the analysis 

herein incorporating dependencies with one that assumes independence analogous to 

Szwed et al. (2004). Some concluding remarks are drawn in Section 5. 

2. The Elicitation Method 

2.1 The Questions 

The following discussion will be based on the questionnaire used in the WSF Risk 

Assessment, although the same technique was used in the PWS Risk Assessment and can 
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be used in many risk analysis and general decision problems. As an example, we shall 

examine the questionnaire for the likelihood of a collision between a ferry and another 

vessel given that the ferry has suffered a navigational aid (radar) failure. To assess the 

probability of an accident, experts were asked to compare two situations, as shown in 

Figure 1.  

Issaquah class ferry on the Bremerton to Seattle route in a
crossing situation within 15 minutes, no other vessels around,

good visibility, negligible wind.

Other vessel is a navy vessel Other vessel is a product tanker  

Figure 1. An example of the type of question used in the expert judgement 

This is essentially a pairwise comparison type of question (Bradley and Terry 1952). 

However, the questionnaires are used to estimate the effect of several factors, rather than 

the single factor in standard pairwise comparisons.  

The questions ask the expert to consider two situations between which only one 

factor has changed. The basic situation in Figure 1 is an Issaquah class ferry traveling 

from Bremerton to Seattle on a clear day with no wind. There is another vessel crossing 

the bow of the ferry less than 1 mile away. In the situation on the left-hand side, the other 
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vessel is a Navy vessel, while on the right-hand side it is a product tanker. The questions 

were asked in the format of Figure 2. The responses were given on the scale at the bottom 

of Figure 2, which is taken from Saaty (1977). 

Situation 1 Attribute Situation 2 

Issaquah Ferry Class - 

SEA-BRE(A) Ferry Route - 

Navy 1st Interacting Vessel Product Tanker 

Crossing Traffic Scenario 1st Vessel - 

< 1 mile Traffic Proximity 1st Vessel - 

No Vessel 2nd Interacting Vessel - 

No Vessel Traffic Scenario 2nd Vessel - 

No Vessel Traffic Proximity 2nd Vessel - 

> 0.5 Miles Visibility - 

Along Ferry Wind Direction - 

0 Wind Speed - 

 Likelihood of Collision   

 9   8   7   6   5   4   3   2   1   2   3   4   5   6   7   8   9  

 
Figure 2.  An example of the question format 

We instruct the experts to interpret their response as the ratio of the probability of an 

accident in the two situations pictured. If the expert circled a “1”, the two probabilities 

would be equal. We assume that if the expert circled the “9” on the right (left) then the 

ratio of the probabilities would be 9 (1/9). The questionnaires are designed to obtain as 

much information as possible in the minimum number of questions. 

Our design approach is similar to the idea of factorial designs, but with a 

difference due to our use of pairwise comparisons. A simple two-factor, two-level 
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factorial design can be pictured as a square. Each corner of the square is an experimental 

run (using the language of experimental design). Measuring the response at the bottom-

left corner and the bottom-right corner allows us the estimate the size of the effect for one 

factor. Measuring the response at the top-left corner and comparing this to the bottom-left 

corner allows estimation of the effect for the other factor. Measuring the response at the 

top-right corner as well allows the estimation of an interaction term between the two 

factors. However, as we are performing pairwise comparisons, each question in our 

approach represents the sides of the square, asking for the ratio of the response for two 

corners. Thus rather than the requirement for four experimental runs to estimate two main 

effects and their interaction, we require three questions. These three questions compare 

(1) the bottom-left corner to the bottom-right corner; (2) the bottom-left corner to the top-

left corner; and (3) the bottom-left corner to the top-right corner. Using this approach, we 

design our questionnaire to estimate the main effect of each individual factor and specific 

second-order interactions which we believe may exist. We can ask additional questions to 

assess center points as well.  

2.2 Analyzing the Experts’ Responses 

The model assumed in the PWS and WSF Risk Assessments takes the form of a 

proportional probabilities model, based on the idea of the proportional hazards model 

(Cox 1972). Let ( )TqxxX ,,1 …=  denote the q  factors describing a situation in which the 

event of interest could occur. The conditional probability of the event, given the situation 

defined by X , is assumed to be 

 ( )0 0( | , , ) exp ,TP Event X p p Xβ β=  (1) 
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where ( )Tqβββ ,,1 …=  is a vector of q parameters and 0p   is a baseline probability 

parameter. Consider two situations defined by the factor vectors L  and R . The ratio of 

the probabilities that the experts are assessing is then given by 

( )0

0

( | , ) exp( ) exp ( ) ,
( | , ) exp( )

T
T

T
P Event R p R R L
P Event L p L

β β β
β β

= = −              (2) 

where (X1 - X2) denotes the difference vector between the two factor vectors. Thus, for 

this probability model, the ratio of the probabilities of the event given the two situations 

depends solely upon the difference between the two situations and the parameter vector 

β .  

Each question asked the experts to assess the ratio of probabilities of the event (a 

collision) given the two situations. Multiple experts complete each questionnaire, so there 

are multiple responses to each question. Let the experts be indexed by ( )pj ,,1…=  and 

the questions be indexed by ( )Ni ,,1…= , so the experts’ responses can be denoted zi,j. We 

now have that zi,j  is the j-th expert’s estimate of the ratio of probabilities for the i-th 

question, while the model gives this relative probability as ( )βT
iXexp , where iX  is a 

vector representing the difference between the two situations in question i  ( )i iR L−  and 

iL  and iR  are the factor vectors for the left and right scenarios in the i-th question. This 

gives the basis for the regression equation used, specifically 

ji
T
iji uXz ,, )ln( += β      (3) 

where jiu ,  is the residual error term representing the variation between the experts’ 

responses around the model. 
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Assuming that the errors  jiu ,  are independent and normally distributed with zero 

mean and variance 2σ , this equation is a standard linear regression, where ( )jiji zy ,, ln=  

is the dependent variable, iX  is the vector of independent variables, β  is a vector of 

regression parameters and jiu ,  is the error term. Clemen and Reilly (1999) observe that it 

is often necessary in expert judgment analysis to use such transformations to arrive at the 

normal distribution. Kadane et al. (1980) develop a method for assessing prior 

hyperparameters on a linear regression model; however, their approach is based on direct 

assessments rather than pairwise comparisons. A conjugate Bayesian analysis of (3) is 

developed in Szwed et al. (2004) assuming conditional independence of the experts’ 

responses given the model parameters. Pulkkinen (1993 1994a 1994b) was first to 

introduce, to the best of our knowledge, a Bayesian analysis of pairwise comparisons, but 

his Bayesian paired comparison inference model also assumed independence amongst 

experts. 

The pairwise comparisons made by the experts are used to assess a distribution 

for β  only. This raises an interesting question. This method can only be used to estimate 

ratios of probabilities for two scenarios. How then does a decision maker obtain the 

actual probability of an event with particular values for the factors for use in decision 

making? The decision maker can assess the probability for one reference scenario, 

denoted 0X . Suitable techniques for aggregation of probability assessments are reviewed 

in Clemen and Winkler (1999). The probabilities for another scenario, *X , can be found 

by multiplying  

( )*
0 0 * 0

0

( | , )( | ) ( | ) exp ( ) .
( | , )

TP Event XP Event X P Event X X X
P Event X

β β
β

× = × −  
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Caution should be used in estimating 0( | )P Event X  from expert judgment directly 

though. As absolute assessments of probabilities by experts are less calibrated for 

probabilities near zero or one (see Cooke, 1991 for discussion), it might be preferable to 

assess the probability of the event for the value of 0X  that makes the probability of the 

event as near as possible to 0.5. One should also note that it is possible to calculate 

probabilities above one using this method (but not below zero), thus requiring truncation. 

However, while the support of the distributions would allow incoherent values, they are 

extremely unlikely as we are dealing with low probability events in this context. 

3. Analysis for Correlated Experts 

3.1 A Multivariate Model 

Clemen (1986 1987), Winkler (1981) and Mosleh et al. (1988) discuss the need for the 

representation of correlation between the experts in the analysis of expert judgment data. 

Winkler (1981) develops an aggregation technique for experts’ assessments of a single, 

continuous quantity θ  using the multivariate normal distribution, although here we 

follow more the form and notation of Clemen and Winkler (1985). If we denote the 

experts’ point estimates of θ  as ( )pµµµ …,1=  and let θµ −= iie  be their judgment 

errors around the parameter θ , then Winkler’s likelihood is formed by assuming that 

( )Σ,0~
1

MVNormal
e

e
e

p















= # , 

where ( )0,MVNormal Σ  denotes a multivariate normal distribution with mean vector 0 , 

a vector of p  zeros, and covariance matrix Σ . Winkler specifies the decision maker’s 

prior distribution on θ  as diffuse and updates using the multivariate normal likelihood 
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),,,;( 1 ΣpL µµθ … . Winkler’s initial set-up requires the decision maker to specify the 

covariance matrix Σ  as a hyperparameter of the analysis. Winkler shows that the 

posterior distribution of θ  can then be re-written as 

( )( )2*2* 2/exp),;( σµθµθπ −−∝Σ     (4) 

where 

11/1 11* −−= ΣΣ TT µµ      (5) 

  11/1 12* −= ΣTσ      (6) 

and ( )1 1, ,1T = …  is a vector of p  1’s. The mean tem in (5) is in fact a linear combination 

of the experts’ assessments based on their covariance Σ . Winkler’s second set-up allows 

the decision maker to specify a prior distribution on Σ , specifically an inverted Wishart 

distribution.  

 In our case, the single quantity θ  is replaced by the multiple assessments of 

( )βT
iXexp  ( Ni ,,1…= ) that are linked by the common parameter vector β . Note, 

however, that the term ( )βT
iXexp  is a function of the decision maker’s model parameter 

and is not an observable quantity. Thus our aggregation model is defined at the level of 

β , the parameters of this model, and is used purely to find a posterior distribution for β  

given the experts’ responses. We are essentially modeling the experts’ responses to form 

a new prediction as in Dawes (1979).  

There are multiple assessments made by multiple experts, which we denoted by 

( )jiji zy ,, ln= . We may mirror Winkler’s development by defining βT
ijiji Xyu −= ,,  and 

letting  
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( )Σ,0~

,

1,

MVNormal
u

u
u

pi

i
T

i















= # .    (7) 

Here Σ  is a parameter of the expert aggregation model in (7), while β  is a parameter of 

the decision maker’s assumed log-liner model defined in (1). We may re-write this model 

in matrix form to obtain 

1,1 1, 1,1 1, 1 1 1,1 1,

,1 , ,1 , ,1 ,

p q p

N N p N N q q q N N p

y y x x u u

y y x x u u

β β

β β

      
      = +      
      
      

" " " "
# % # # % # # % # # % #

" " " "
 

or  

 1Tβ= +Y X U  (8) 

This equation is similar to a full multivariate regression model 

 UXBY += , (9) 

where X is a ( )qN × -matrix of differences between the q  covariates for the N  

questions, B is a ( )pq× -matrix where each column represents the covariate effect 

parameters for an expert and U is a ( )pN × -vector of residual errors. The difference 

between (8) and (9) is that in (8) columns of the regression parameter matrix B are 

restricted to be equal as each expert is providing estimates of the same quantity.  

 The form in (8) suggests that we follow the analysis of a multivariate regression 

model, such as that developed in Press (1982). Equation (7) implies that the rows of U  

are independent vectors distributed according to a multivariate normal with a zero mean 

vector and covariance matrix Σ . The rows of U are assumed to be independent as they 

are responses to the individual questions, but the columns are dependent as they represent 
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the responses of the experts to each question. Analyzing the model in (7) will make our 

analysis different from Winkler’s, as the prior distribution on Σ   will be updated by the 

judgments of the experts.  

 The overall model can be best displayed as a Bayesian belief net (Figure 3). 

 

( )
( )

i

i

p R
p Lβ

( )( ) e
( )

T
i iR Li

i

p R
p L

β−=

,1iz

,i pz

,1iu

,i pu

, ,
( )ln ln
( )

i
i j i j

i

p Rz u
p L

= +

Σ

( ),1 ,,..., ~ (0, )i i pu u MVN Σ

# #

 

Figure 3. The aggregation model for the i-th question. 

In Figure 3, we show deterministic relationships with a hexagon. The assumed functional 

forms are shown as equations below. Note that we do not need to show the ,i ju , but 

include them to show the multivariate normal error structure that gives us the multivariate 

regression format. 

3.2 Posterior Analysis 

While the following analysis mirrors the Bayesian analysis in Press (1982), the likelihood 

and posterior distributions for the column restricted form in (8) requires additional 

development. Adapting Press’s likelihood for (9) to our form in (8), we may write 

( ) ( ){ } ( ) ( )( ){ }1 12 1 1| , , exp   exp 1 12 2
N TT TTp tr trβ β β− − −∝ − − − −Y X Σ Σ VΣ B X X B Σ

� �
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where ( ) ( )BXYBXYV ˆˆ −−=
T

 is the usual sufficient statistic for the unrestricted model 

and ( ) YXXXB TT 1−
=
�

 is the least squares estimates of B from the unrestricted model in 

(9), providing estimates of each parameter for each expert. Completing the square in β  

for the second exponential term, we may re-write the likelihood for (8) as  

( ) ( ) ( ) ( )( ){ }1

* * *
1| , , exp .2

T
p β β ββ β µ β µ

−
∝ − − Σ −Y X Σ                     (10) 

where 

1

* 1

ˆ 1
1 1T

βµ
−

−
=

BΣ
Σ

      (11) 

and 

( ) 1

* 11 1

T

T

X X
β

−

−
=Σ

Σ
       (12) 

Note the similarity of (12) and (6). The similarity of (11) and (5) is more obvious were 

(8) defined on the transpose, whereas we follow the convention in Press. The mean term 

in (11) is a linear combination of the least-squares estimates of the parameters for each 

expert in B
�

. 

 A natural conjugate analysis is made possible by the following distributional 

assumptions, 

( ) ( )mWishartInv ,~ G−Σ ,    (13) 

which defines an inverse Wishart distribution of dimension p  with parameter matrix G 

and m degrees of freedom, and 

( ) 1| ~ ,
1 1TMVNormalβ φ

−

 
 
 

AΣ
Σ

.   (14) 
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φ , A , G  and m  are prior hyperparameters determined by the decision maker. Given the 

experts’ responses to the questionnaires, the posterior distributions are 

( ) ( )| , ~ ,Inv Wishart m N− + +Σ Y X G V             (15) 

and 

( ) ( ) ( ) 11111 1
1 1

ˆ 1| , , ~ ,
1 1 1 1

T
T T

T TMVNormalβ φ
−−−−− −

− −

 +  + +    

A X XBΣY X Σ A X X X X A
Σ Σ

. (16) 

Thus the analysis is conjugate, making calculation, and therefore application, easier.  

3.3 Prediction 

Once the Bayesian update has been performed, the next step is to develop the predictive 

distribution. In this case, we wish to predict how much more likely an accident is in one 

scenario compared to the other, or the ratio of the probabilities of an accident in the two 

scenarios. Actual probabilities in a given scenario can then be assessed by comparison to 

the reference scenario as discussed in Section 2.2.  

One would imagine that the development of a predictive distribution would mirror 

the development for multivariate regression, but with posterior distributions drawn from 

our parameter restricted model form. However, we are not attempting to predict what the 

experts would assess for the two situations. We have used their assessments to update the 

decision maker’s prior on β  in a Bayesian expert aggregation method. We may then use 

the decision maker’s posterior distribution for β  and the first level of the model defined 

in (2) to estimate the ratios of probabilities. The natural logarithm of the ratio to be 

predicted for two scenarios with difference vector *x  conditioned on Σ  will be a 

multivariate normal distribution defined by  
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( ) ( ) ( ) 1111* * 1 1 * *
1 1

ˆ 1| , , ~ ,
1 1 1 1

T
T T T T T

T Tx MVNormal x x xβ φ
−−−−− −

− −

 +  + +    

A X XBΣY X Σ A X X X X A
Σ Σ

  (17) 

We may then integrate out Σ  using (15). 

4. Example Results 

4.1 Elicitation for the WSF Risk Assessment 

Expert judgment was used in the WSF Risk Assessment to estimate the effect of risk 

factors on the probability of a collision given the occurrence of some triggering incident. 

The risk factors are listed in Table 1 and include the ferry class and route, the type, 

proximity and angle of interaction of the closest two vessels, the visibility conditions and 

wind speed and direction. For a discussion of the derivation of the scales used for these 

risk factors see Szwed et al. (2004). Six potential interactions are also included in Table 

1. The supposition in the inclusion of these interactions is that the types of the ferries and 

the other vessel, their manner of interaction and the visibility conditions are potentially 

dangerous in certain combinations. Other interactions were not considered as large and so 

were not included to minimize the total number of questions that each expert had to 

respond to. 

Experts may be classified in three categories (DeWispelare et al. 1995): 

• generalists who have a thorough understanding of the project and play a role in 

defining the issues addressed and communicating with the experts; 

• substantive experts who have the deep knowledge and experience of a system that 

allow them to provide information about the functioning of that system; and  
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• normative experts who have the analysis background to quantify the judgments of 

the substantive experts and combine their judgments.   

Table 1. The risk factors included in the expert judgment questionnaires. 

Description  Notation Values 

Ferry route and class FR_FC 26 

Type of 1st interacting vessel TT_1 13 

Scenario of 1st interacting vessel TS_1 4 

Proximity of 1st interacting vessel TP_1 Binary 

Type of 2nd interacting vessel TT_2 5 

Scenario of 2nd interacting vessel TS_2 4 

Proximity of 2nd interacting vessel TP_2 Binary 

Visibility VIS Binary 

Wind direction WD Binary 

Wind speed WS Continuous 

Interaction between FR_FC and TT_1 FR_FC * TT_1 26×13 

Interaction between FR_FC and TS_1 FR_FC * TS_1 26×4 

Interaction between FR_FC and VIS FR_FC * VIS 26×2 

Interaction between TT_1 and TS_1 TT_1 * TS_1 13×4 

Interaction between TT_1 and VIS TT_1 * VIS 13×2 

Interaction between TS_1 and VIS TS_1 * VIS 4×2 

 

Certain members of the risk assessment team were normative experts, with knowledge of 

decision theory, probabilistic reasoning and expert elicitation techniques.  
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Other members were generalists with both maritime experience, knowledge of maritime 

risk issues and systems engineering techniques. The substantive experts used in the study 

were the ferry captains that worked relief, filling in for captains on vacation or sick leave 

across all ferry routes. This ensured that the experts had a thorough knowledge of the 

entire system, not just a specific route. Each of the experts used had over 10 years of 

experience with the WSF. 

The elicitation team first provided to the substantive experts some background on 

the project followed by an explanation of the questionnaires and their purpose. Example 

questions were presented similar to Figure 1, but in the context of driving a car on the 

highway. This context was also explained in terms of several risk factors. The highway 

transportation mode was chosen over maritime examples to avoid biasing the experts 

before beginning the questionnaires and because everyone was familiar with the 

situations defined. The experts were then given an example question to consider in the 

driving example and discussion encouraged between the experts to ensure the idea was 

understood. It was important to remind the experts to look at all the risk factors in the 

question, rather than just the one that changed between the two situations as there can be 

interactions between the risk factors. 

Each questionnaire consisted of sixty comparisons of the type shown in Figure 2. 

The questionnaires were designed to collect the maximum amount of information from 

the sixty questions and to ensure that sufficient information was elicited to ensure the 

estimation of the main ten risk factors and six pre-defined interactions between risk 

factors. The questions were asked in random order. The randomization of the questions 
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meant that deliberate attempts to bias the results were difficult. Tests on the responses 

were performed to ensure that the experts’ responses were not affected by fatigue.  

4.2 Prior Distributions 

The first step in analyzing the expert judgment data is the specification of the prior 

hyperparameters. Clemen (1986) discusses the concept of aggregation of the decision 

maker’s beliefs with those of the experts. In our applications the decision makers have 

claimed ignorance of the effect of the factors in Table 1 on the probability of a collision 

and wished for the experts’ beliefs to dominate the predictions. In the Bayesian sense, 

this means specifying suitably vague priors. These assumptions are conservative and in 

other applications a decision maker might have more specific prior information on which 

to base the prior specifications. 

We assumed that φ , the vector of the prior means on β , is a vector of zeros, 

which indicates that a priori all covariates have on average no effect on the probability of 

an accident. The prior matrix A  is assumed to be an identity matrix to indicate no prior 

covariance between the parameters in β . The prior matrix G  is assumed to be an 

identity matrix, indicating no prior knowledge of correlations between the experts, while 

m  is assumed to be 0.380341 calculated by Szwed et al. (2004) to represent a priori that 

all expert respond to the N questions completely at random.  

These prior assumptions are diffuse. Figure 4 shows the prior predictive 

distribution of the natural logarithm of ( )
( )

| . ,
| . ,

P Collision Nav Fail L
P Collision Nav Fail R

, where L is the 

scenario on the left and R is the scenario on the right of Figure 1. Note that the 

distribution in Figure 4 has median of zero, which is equivalent to one on the non-
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logarithmic scale implying that collisions are equally likely in each situation. There is 

wide variability with a 90% credibility interval for the ratio of probabilities between 

1.88x10-35 and 5.32x1034
. 
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Figure 4. The prior distribution of the logarithm of the ratio of probabilities for the 

scenarios pictured in Figure 1. 

4.2 Posterior Distributions 

After updating with the experts’ responses using the formulae developed in Section 3.2, 

the marginal posterior distributions of the β  parameters are as shown in Figure 5, 

represented by a circle for their mean and whiskers showing their prior 90% credibility 

interval. To demonstrate the advantage of our model including dependence, we compare 

the results to the independent experts model in (9) developed in Szwed et al. (2004). 

Figure 6 shows the marginal posterior distributions of the β  parameters obtained using 

the independent experts model from Szwed et al. (2004), on the same scale as Figure 5. 

Note that while the mean values are similar, some slight differences can be observed 
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amongst them in Figures 5 and 6. More noticeable, however, is that the posterior variance 

of every parameter is less in the dependent experts model (Figure 5) than that observed in 

the independent one by Szwed et al. (Figure 6). This is counter to most expert 

dependence examples, where positive correlations actually increase the uncertainty for a 

given number of experts. We will discuss this further in Section 4.4 and 4.5. 

 

Figure 5. The marginal posterior distribution of β  assuming dependent experts. 
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Figure 6. The marginal posterior distribution of β  assuming independent experts. 

Of particular interest in this analysis, is the posterior distribution of the covariance 

matrix Σ  representing the updated dependencies between the experts. Table 2 shows the 

posterior expected value of the correlations corresponding to Σ . Careful examination 

reveals some apparent groupings of the experts. Specifically experts 1, 3 and 7 appear to 
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be positively correlated, as do experts 2, 4 and 6. However, Table 2 does not show the 

uncertainty in these estimates. 

Table 2. The expected correlations between the experts. 

 Expert 1 Expert 2 Expert 3 Expert 4 Expert 5 Expert 6 Expert 7 Expert 8 

Expert 1 1 -0.23 0.68 0.33 -0.54 -0.33 0.33 -0.26 

Expert 2 -0.23 1 -0.11 0.29 -0.25 0.56 -0.08 0.14 

Expert 3 0.68 -0.11 1 0.36 -0.30 -0.06 0.52 -0.31 

Expert 4 0.33 0.29 0.36 1 -0.59 0.35 0.17 -0.18 

Expert 5 -0.54 -0.25 -0.30 -0.59 1 0.01 0.04 0.11 

Expert 6 -0.33 0.56 -0.06 0.35 0.01 1 0.08 0.24 

Expert 7 0.33 -0.08 0.52 0.17 0.04 0.08 1 -0.23 

Expert 8 -0.26 0.14 -0.31 -0.18 0.11 0.24 -0.23 1 

 

Figure 7 shows the posterior distribution of the correlation matrix with the 

correlation between the i-th and j-th experts indicated by the notation i,j on the top left of 

each histogram. Only lower triangular elements are shown to reduce clutter in the figure. 

A vertical line is drawn at 0, indicating no dependence between the two experts. Thus a 

histogram showing samples to the right of the line indicates a posterior probability that 

the two experts have positive dependence or overlapping information, while samples to 

the left indicates negative dependence or different information. 

The experts are re-ordered in Figure 7 to show groupings that appeared in the 

expected correlations in Table 2. Experts 1, 3 and 7 do have a tendency to agree in their 

responses, as do Experts 2, 4 and 6. These groups are not completely disparate, however. 

Experts 2 and 6 tend to disagree with experts 1, 3 and 7, but expert 4 tends to agree with 

them. Expert 5 tends to disagree with experts 1, 2, 3, 4 and 6, but does not conclusively 
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agree or disagree with expert 7. Expert 8 disagrees with the group of experts 1, 3 and 7, 

but does not conclusively agree or disagree with the group 2, 4 and 6 or with 5.  
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Figure 7. The posterior distribution of the expert correlation matrix. 

4.3 Posterior Predictions 

We have seen the difference these correlations make in the variance of the β  parameters 

and to the precision of the residuals, but of more interest is their effect on the predictive 

distribution. Using the result in (14), Figure 8 shows the posterior predictive distribution 

of natural logarithm of ( )
( )

| . ,
| . ,

P Collision Nav Fail L
P Collision Nav Fail R

, where L is the scenario on the left and 

R is the scenario on the right of Figure 1. The prior distribution is also shown as a dotted 
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line to show the effect of updating. The posterior 90% credibility interval on the ratio of 

probabilities is 4.38 to 5.84, with a half-width of 0.73.  
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Figure 8. The prior and posterior density of the logarithm of the ratio of 

probabilities for the scenarios pictured in Figure 1. 

The reader should note that the question in Figures 1 and 2 is different from that 

illustrated in Szwed et al. (2004) so we give the comparison using their method on a 

common question here. 

Figure 8 also compares the posterior distribution of the ratio of probabilities for 

the same prediction obtained using the independent experts model of Szwed et al. (2004).  

The independent expert model gives a higher posterior expected value of the ratio of 

probabilities, 5.59 as opposed to 5.11 with the dependent experts model, and a larger 

variance. The posterior 90% credibility interval is 4.43 to 7.04, with a half-width of 1.3 

compared to 0.73 for the dependent expert model. 
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Clemen (1986) suggests that experts will have overlapping information implying 

positive correlations in their assessments. Clemen and Winkler (1985) show that such 

positive correlations will actually reduce the precision of forecasts when compared to an 

equivalent number of independent experts. However, in our case we have both positive 

and negative correlations between the experts (Table 2 and Figure 7) and we have seen 

increases in the level of precision in both posterior parameter distributions and posterior 

predictive distributions (Figure 8). 

5. Conclusions 

We have developed an analysis of an extended form of pairwise comparisons introduced 

in Merrick et al. (2000) from a Bayesian analysis that assumes that experts’ responses are 

independent (Szwed et al. 2004) to one that allows for correlations between experts. The 

analysis was set up using the theory of normal errors approach of Winkler (1981) to 

assess the parameters of a log-linear relationship between the probabilities and the 

defining factors. However, as the aggregation is not performed on the experts’ direct 

assessments, but on estimates of parameters of the decision maker’s model based on the 

experts’ assessments. Thus our approach is akin to that of Dawes (1979) where the 

experts’ assessments are modeled, not directly aggregated. The model itself takes the 

form of a special case of Bayesian multivariate regression.  

The method was applied to expert judgment data elicited during the WSF Risk 

Assessment. The empirical results show that there were correlations between the experts 

in this data and that allowing for these correlations decreases the posterior variance in the 

predictions made using the model compared to those obtained in Szwed et al. (2004). 

This reduction in uncertainty is counter to the commonly assumed increases in posterior 
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variance due to positive correlations representing overlapping information and could be 

critical in determining whether to apply proposed risk interventions when such risk 

interventions are evaluated using the output of this expert judgment methodology. This 

result is made possible as our set-up allows updating of prior knowledge about 

dependences between the experts.  

For our example prediction, an analysis assuming independence between the 

experts would say that a collision with a navy vessel is anywhere from 4.43 to 7.04 times 

as likely as a collision with a product tanker where each is in the same situation pictured 

in Figure 1. Our analysis that learns about the dependencies between the experts from 

their responses, would predict that the navy vessel is anywhere from 4.38 to 5.84 times as 

risky as the product tanker. This is a reduction of about 45% in the width of the 

prediction interval. While this is only demonstrated for this specific example, such a 

reduction in uncertainty could have a major impact on a decision or risk analysis. An 

alternative that would otherwise not clearly dominate another could be shown to be 

clearly superior. In other cases where positive dependence dominates the prediction, the 

admission of increased uncertainty over the independent experts analysis would also be 

helpful in making good decisions based on such pairwise expert judgments. 
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