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A Novel Asymmetric Distribution with Power Tails

Amita Singh , J. René van Dorp , Thomas A. Mazzuchi1 2 3

The George Washington University, Washington D.C. 20052

Abstract. In this paper we propose a four-parameter  doubly-Pareto uniform (DPU)asymmetric

distribution with support ( ) whose density  and cumulative distribution functions are∞ß∞

constructed by seamlessly concatenating the left and right Pareto tails with a uniform central part.

Properties of the distribution are described and a maximum likelihood estimation (MLE) procedure

for its parameters is obtained. Two illustrative examples of the MLE procedure are provided. The

first example utilizes an i.i.d. sample of standardized log-differences of bi-monthly 30-year U.S.

conventional mortgage interest rates (1971-2004). The second example deals with the height of 100

female Australian athletes.

Keywords: Heavy-tailed and skewed distribution, maximum likelihood.

1. Introduction

Distributions of financial returns usually involve special functions, e.g., the Bessel function (Eberlein

and Keller, 1995, Barndorff-Nielsen, 1997) or the hypergeometric function (Knight et al., 2002,

Heinrich, 2004). This causes some difficulties in practice even with the aid of modern computers.

The main purpose of this paper is to "humanize" financial distributions by proposing a distribution

expressed in terms of elementary functions which seems to adequately represent some financial

stochastic phenomena and is more transparent in its structure.
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Further confirmation that distribution of financial returns are fat-tailed, peaked and skewed have

appeared in the relevant literature (e.g., Levy and Duchin, 2004, Kotz and van Dorp , 2004, McFall

Lamm, 2003, Kotz et al., 2001, Solomon and Levy, 2000). This fact has reinvigorated the search for

continuous distributions of this nature. the proposed distributions Among are the asymmetric

Laplace (AL) distribution (e.g., Kotz et al., 2001)
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involves the complex gamma function ). Both the pdf and cdf evaluations of  Pearson-type IV>Ð †

distribution require the use of numerical approximations.

Lévy (1925) introduced a heavy-tailed family of probability laws referred to as "Lévy stable" 

distributions. Nolan (2005) among others describes basic facts about univariate stable distributions

in detail. Lévy stable pdf's have also recently been applied to the modeling of financial tail behavior

(e.g., Bardou et al., 2002, Huang and Solomon, 2001, Matacz, 2000, Solomon and Levy, 2000 and

Bouchaud et al., 1998, amongst others) due to their attractive power-tail property. Unfortunately, the

Gaussian and Cauchy distributions are the only two members in this family with a closed form

expression for their pdfs. Other members are defined only via their characteristic functions (e.g.,

Nolan, 2005) requiring advanced numerical techniques for their application.
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The asymmetric doubly Pareto-uniform (DPU) distribution to be discussed in this paper has support

Ð ∞ß∞Ñ  and exhibits power laws in both its tails similar to the Lévy stable and Pearson-type IV

distributions.  A distinct advantage of the DPU family is that its pdf and cdf can be described using

only elementary functions. In addition, the classical measures of skewness and kurtosis of DPU

distributions may take values in  and , respectively. A DPU distribution shouldÐ ∞ß∞Ñ Ò"Þ)ß∞Ñ

not be confused with the recently proposed four-parameter double Pareto-Lognormal (DPL)

distribution of Reed and Jorgensen (2003) with support .Ò!ß∞Ñ

Our primary motivating example for DPU distributions is drawn from the financial domain. Figure

"A-C compare the Maximum Likelihood (ML) fit of the normal (Gaussian), asymmetric Laplace 0 ,Ð Ñ

and Pearson-type IV 0  distributions utilizing Ð Ñ standardized bi-monthly log-differences of 30-year

conventional U.S. mortgage  interest rates (1971-2004) obtained via the Auto-Regressive Conditional

Heteroscedastic (ARCH) time series model devised by Engle (1982). Figure D plots the ML fit of a"

DPU density. An empirical kernel density function is also displayed in Figures 1A-D. The empirical

density was generated using the Bartlett-Epanechikov kernel (e.g., Izenman, 1991) combined with

the over smoothed bandwidth (e.g., Sheather, 2004). Apparently, for the empirical density function

in Figure , the normal distribution is "not peaked" sufficiently while the AL distribution is "overly"

peaked". Presumably, a sample kurtosis of for the data in Figure 1 (Þ!# should be attributed to its

heavy tailed behavior rather than its peakedness. A visual analysis of Figure  shows that both the"

DPU and Pearson-type IV pdf's provide a "better" fit than the normal and AL distributions. A

detailed fit analysis is presented in Section 4.

The remainder of this paper is organized as follows: in Section 2 we present the pdf and cdf of the

DPU family of distributions and discuss some of its properties. A maximum likelihood procedure

for estimating the DPU parameters is described in Section 3. Section 4 provides two examples of the

ML procedure a detailed analysis of the mortgage interest rates data presented in Figure 1 and a
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comparison of the ML fit of 100 heights of Australian athletes to the skew generalized normal

(SGN) fit recently obtained by Arellano-Valle et al., 2004. Section 5 contains some concluding

remarks. Mathematical details of the ML procedure are deferred to the Appendix.

2. DPU distributions and their properties

The construction of the DPU pdf  utilizes the method of the  mixture0ÐBl ß ß7ß 8Ñα " modified

technique applied for the generalization of the trapezoidal distribution in Kotz and Van Dorp

(2004). This technique seamlessly concatenates densities with disjoint but connecting supports.

Specifically,
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where , the pdfs 3 are Pareto distributions (e.g., Arnold, 1983) and  is a7ß8  ! 0 ß 3 œ "ß 0\ \3 2

uniform distribution on . Hence, for the pdf we obtainÒ ß Óα "
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The values of the mixing probabilities  ensure the continuity of the pdf at the boundaries of theÐ$Ñ

central stage . The pdf will be referred to as the doubly Pareto-uniform (DPU) distributionÒ ß Ó Ð%Ñα "

in view of its two Pareto tails and the central uniform stage. From the mixing probabilities  itÐ$Ñ

immediately follows that

7 œ Î 8 œ Î Ð'Ñ1 1 1 1# " # $ and . 

Hence, the power parameter in the left tail (right tail) equals the ratio of the probability mass in the

central part divided by the probability mass in the left tail less than  (right tail larger than ). Settingα "

] œ Ð(Ñ
\ 
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one obtains the "standardized" DPU pdf of the random variable  from the pdf  given by:] Ð%Ñ
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Standardized DPU distributions have a uniform  central stage (see Figure 2A). The parametersÒ!ß "Ó

7 8 and  will be referred to as the  of the DPU distribution and the parameters tail shape parameters α

and  the ." mode location (centrality) parameters

Integrating the pdf Ð%Ñ we arrive at the corresponding cdf:
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Figure 2A (Figure 2B) plots an example DPU pdf  (cdf , with parameters Ð%Ñ Ð*ÑÑ α "œ !ß œ "ß

7 œ &ß 8 œ "&.  Note that the central stage in Figure 2A is symmetric around  and observe a"
#

linear behavior in the central part in both Figures 2A and 2B. Figure 2C (Figure 2D) plots an
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example DPU pdf  (cdf , with parameters Ð%Ñ Ð*ÑÑ α "œ  " ß œ  ß7 œ &ß 8 œ "&" (
) )  exhibiting

a more peaked behavior than the distribution in Figures 2A and B.  The two distributions in Figure 2

are asymmetric due to differing tail behaviors.

2.1. Inverse Cumulative Distribution Function

The inverse cdf is immediately obtained from :Ð*Ñ as
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In  the quantiles of a DPU distribution are written as a linear combination of the mode locationÐ"!Ñ

parameters  and . Sampling from a DPU distribution is straightforward, utilizing the inverseα "

cumulative distribution function theorem and a pseudo-uniform random number generator (e.g.,

Banks et al.  2001).ß

2.2. Limiting Distributions

The mixture probabilities  3 are solely functions of the powers  and  and not1 1 1" # $ß ß Ð Ñ 7 8

functions of the location parameters  and . Keeping  fixed and letting , oneα " 7  ! 8 Ä ∞
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Thus in this case, the pdf  converges to the pdfÐ%Ñ
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which we shall call the  (LPU) distribution. Similarly keeping   fixed andLeft-Pareto uniform 8  !

letting  the pdf  converges to the  (RPU) distribution with the density7 Ä ∞ß Ð%Ñ Right-Pareto uniform
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Letting , the original pdf  converges to a uniform distribution on .7 Ä ∞ß 8 Ä ∞ Ð%Ñ Ò ß Óα "

Finally, analogous to the uniform distribution with support  the pdf  Ò ß Óß 0ÐBl ß ß7ß 8Ñ Ð%Ñα " α "

converges to a single point mass at (or ) when .α " α "Å

2.3. Moments of the DPU distribution

The central moments for  follow immediately from those of , utilizing\ ] Ð(Ñ

IÒÐ\  IÒ\ÓÑ Ó œ Ð  Ñ IÒÐ]  IÒ] ÓÑ Ó Ð"$Ñ5 5 5" α .

Hence, from we may conclude that for the DPU distribution the statistical measures ofÐ"$Ñ

variability and shape such as the coefficient of variation ( ), skewness ( ) and kurtosis ( ), areGZ È" "" #

solely functions of the tail shape parameters  and  and not of the mode location parameters 7 8 α

and . After some straightforward manipulation, the -th moment of  about zero follows for" 5 ] Ð(Ñ

7  5 8  5 Ð)Ñ, from  to be
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where  and7ß8  "

IÒ] Ó œ Ð7ß 8Ñ ‚  ß Ð"'Ñ
" 8  " #

$ 8  # 7Ð7 "ÑÐ7  #Ñ
# ^ ’ “

where . Expressions and  allow for straightforward evaluation of the variance7ß8  # Ð"&Ñ Ð"'Ñ

Z +<Ò] Ó œ IÒ] Ó  I Ò] Ó 7ß 8  # IÒ] Ó Ä ∞Ð∞Ñ 7 Æ " Ð8 Æ "Ñ   for . Note that,  when  # #

keeping  fixed  fixed) Similarly, when either  or  while8  " Ð7  " Þ Z +<Ò\Ó Ä ∞ 7 Æ # 8 Æ #

keeping the other tail parameter fixed at a value larger than . In the special case that#

7 œ 8  "ß IÒ] Ó 7 œ 8  #the mean value reduces to  and for "
#

Z +<Ò] Ó œ Ä 8 Ä ∞
" 8  8  ' "

"# Ð8  "ÑÐ8  #Ñ "#

#

as .

(Recall that the uniform distribution  is the limiting distribution of the pdf asÒ!ß "Ó Ð)Ñ

7 Ä ∞ß8 Ä ∞ .)

2.4. Moment Ratio Diagram

Moment ratio plots, popularized for Pearson-type distributions by Elderton and Johnson (1969),

provide a visual assessment of the skewness and the kurtosis in a particular family of asymmetric

distributions. A moment ratio diagram is a plot with the skewness on the abscissa and theÈ""

kurtosis on the ordinate, with the convention that  retains the sign of  (e.g., Kotz and" " .# " $È
Johnson  1985). Values of  and  for DPU distributions can be calculated using the generalß È" "" #

expression for the moments around the origin    and their.w 5
5 œ IÒ] Óß 5 œ "ßá ß %ß Ð"%Ñ

relationship  with the central moments = , , , (e.g., Stuart and Ord.5
5IÒÐ]  IÒ] ÓÑ Ó 5 œ #ß $ % ß

1994). Explicit forms of  and  for DPU distributions result in somewhat cumbersomeÈ" "" #

expressions and are omitted.

Figure 3 displays the moment ratio diagram coverage for the DPU family . For referenceÐ%Ñ

purposes, the moment ratio coverage of the AL family Ð"Ñ as well as the locations of the Gaussian
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and uniform distributions are included in Figure 3. Recall that the left and the right exponential

distributions indicated in Figure 3 are limiting distributions of the AL family From Figure 3 weÐ"Ñ. 

observe the leptokurtic behavior of the DPU family since its moment ratio coverage is not bounded

from above (exceeding the Gaussian value of 3). Figure 3 may be somewhat misleading as it seems

to indicate that the attainable range for skewness for the DPU family is less than that for the AL

family of distributions. However, from it immediately follows that for the DPU family ofÐ"%Ñ

distributions    when letting  and keeping  fixed letting  andÈ"" Ä ∞ Ð Ä ∞Ñ 7 Æ $ 8 Ð 8 Æ $

keeping  fixed  Values of for the DPU distribution do not exist for or  (and thus7 ÑÞ 7 Ÿ % 8 Ÿ %"#

Figure 3 only covers tail shape parameter ranges and .7  % 8  %Ñ

3. Maximum Likelihood Estimation

For a random sample from the distribution  the likelihood function\ œ Ð\ ßá ß\ Ñ =" = of size  Ð%Ñ

is by definition:

PÐ ß ß7ß 8Ñ œ Ð7ß 8Ñ ‚ Ð"(Ñ
"
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where ,  and \  \  á  \ < <Ð"Ñ Ð#Ñ Ð=Ñ " # are the order statistics of  and  are such that:\

 , , .\ Ÿ  \ \ Ÿ  \ ! Ÿ < Ÿ < Ÿ =Ð< Ñ Ð< "Ñ Ð< Ñ Ð< "Ñ " #" "
α "2 2

By convention  Note that, for the case that we have\ œ ∞ß \ œ ∞Þ < œ < œ <ßÐ Ñ Ð="Ñ " #0

the restriction

\ Ÿ  Ÿ \ ß < œ !ßá ß =ÞÐ<Ñ Ð<"Ñα "

Scenarios with  correspond to a set of order statistics such that no observations have been< œ <" #

observed in the center stage of the DPU distribution. We propose the following direct algorithm to



10

maximize the likelihood   and estimate the ML estimates of the parameters ,PÐ ß ß7ß 8Ñ Ð"(Ñ\lα " α

", and :7ß 8

5 >2 M>/<+>398-  :

Step 0: Set 5 œ "ß œ \ ß œ \ ß 3  4ß 7 œ ß 8 œ Þα "1 1Ð3Ñ Ð4Ñ " "
43 43
3 =4

Step 1: Determine by maximizing over 8 PÐ ß ß7 ß 8Ñ 8Þ5" 5 5 5\lα "

Step 2: Determine by maximizing over 7 PÐ ß ß7ß 8 Ñ 7Þ5" 5 5 5"\lα "

Step 3: Determine by maximizing over α α " α5" 5 5" 5"PÐ ß ß7 ß 8 Ñ Þ\l

Step 4: Determine by maximizing over " α " "5" 5" 5" 5"PÐ ß ß7 ß 8 Ñ Þ\l

Step 5: If  lPÐ ß ß7 ß 8 Ñ  PÐ ß ß7 ß 8 Ñl  WXST\ \l lα " α " %5 5 5 5 5" 5" 5" 5"

 Else  and Goto Step 1.5 œ 5  "

In Step above, we initialize and  to be the -th and -th order statistic respectively. The! 3 4α "1 1

starting values for  and  follow from and the stage probability estimates7 8 Ð'Ñ" "

  1 1 1s s sœ ß œ ß œ
3 4  3 =  4

= = =
" # $

follow in turn from ,  The advantage of this initializationα "1 1œ \ ß œ \ " Ÿ 3  4  =  "ÞÐ3Ñ Ð4Ñ

set-up is that we can easily search for ML estimates from different starting points. This is necessary

since the likelihood    may have multiple local maxima. Figure 4 plots anPÐ ß ß7ß 8Ñ Ð"(Ñ\lα "

example of a likelihood profile as a function of  and , which exemplifies the existence of localα 7

maxima for the hypothetical data set of size = œ ) À

\ œ Ð!Þ"!ß !Þ#&ß !Þ$!ß !Þ%!ß !Þ%&ß !Þ'!ß !Þ(&ß !Þ)!Ñ Ð")ÑÞ

For the data set  we obtain two local maximaÐ")Ñ

 and α "s s sœ \ œ !Þ#&ß œ \ œ !Þ)!ß7 œ &Þ#)" 8 Ä ∞ßs
Ð#Ñ Ð)Ñ

with a likelihood of and'Þ&&)
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α "s s sœ \ œ !Þ"!ß œ \ œ !Þ)!ß7 Ä ∞ 8 Ä ∞ßs
Ð"Ñ Ð)Ñ and 

with a likelihood of Hence, the resulting ML fit for the data set is the second local"(Þ$%(Þ Ð")Ñ

maximum. Observe that it coincides with the ML fit for a uniform distribution. (This is achieved in

the algorithm above by setting the tail parameters to an arbitrarily large value.) The first local

solution coincides with the local maximum in Figure 4, while the second one continues to follow the

"ridge" in Figure 4.

A software program with the ML algorithm above (requiring a set of order statistics in an ASCII text

file as input) is available from the authors upon request. Mathematical details regarding the algorithm

steps above are presented in the Appendix.

It is perhaps noteworthy to point out that ML estimates for the mode location parameters  and α "

do not have to be attained at an order statistic. In addition, the ML procedure behaves in a manner

such that it will not remove the central stage of the DPU distribution. Removal of this central stage

would indicate that ML fit of the DPU distribution has converged to a single point mass (which has

a likelihood of  when more than one distinct observation has been observed). Moreover, we!

observe from Figure 4 that   is non-differentiable in the mode locationPÐ ß ß7ß 8Ñ Ð"(Ñ\lα "

parameter  (and the parameter ). Hence, asymptotic normality of the ML estimators with aα "

minimum variance equal to the Cramer-Rao lower bound may not be attained when .= Ä ∞

4. Illustrative examples

We shall illustrate the ML procedure for the DPU distribution for two separate data sets. The first

one utilizes the monthly 30-year U.S. mortgage interest rates for the period from 1971-2004 as

depicted in Figure 5.   The second example considers the height of 100 female athletes derived from

the data set reported by Cook and Weisberg (1994) containing thirteen variables measured on 202
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athletes (102 males and 100 females) at the Australian Institute of Sport. Various aspects of the

Cook and Weisberg (1994) data set have been analyzed (e.g., Azzalini and Capitanio, 1999, Arnold

and Beaver, 2000). Arellano-Valle et al. (2004) recently fitted a skew generalized normal (SGN) 

density to this data. This is compared to our DPU ML fit.

4.1. Fit analysis for the data in Figure 5

One-step log differences of the mortgage rate time series in Figure 5 have an auto-correlation with

lag  of Hence, we split the time series of interest rates into two separate time series of bi-" !Þ%"$Þ

monthly log differences to reduce auto-correlation. That is, we set

œ + œ P8Ð3 Ñ  P8Ð3 Ñ 5 œ !ß "ß #ßá
, œ P8Ð3 Ñ  P8Ð3 Ñ 5 œ "ß #ß $ßá

"*5 #5# #5

5 #5" #5"

 
 . ( )

The auto-correlations with lag  of the time series  and  equal and ," + ,  !Þ!#!$ !Þ"%!%5 5

respectively. A hypothesis test of zero auto-correlation up to lag  is accepted for both time series'

with a -value of % and %, respectively. Next, we apply an  model : '# $" EVGLÐ"Ñ to remove

heteroscedasticity from the time series . An + EVGLÐ"Ñ5  is defined by

+ œ œ  + ß #!5 5 5 ! "
# #
5 5"5 / 5 α α, ( )

where  , are constants,  is serially uncorrelated and  is a sequence of i.i.d. randomα /3 5 53 œ !ß "ß +

variables with mean zero and variance 1 (Engle, 1982)  . The second time series shall be used for,5

validation purposes using the parameters fitted for .( )#!

From the  analysis, we obtain the following equation for  EVGLÐ"Ñ Às5
#
5

5s œ !Þ!!"'%  !Þ$&$)!+ #"
#
5 5"

# , ( )

where the parameters were estimated using the least squaresα œ Ð ß Ñ ¸ Ð!Þ!!"'%ß !Þ$&$)!Ñα α! "

method (cf. ( )). The values of  given in ( ) suggest that the standardized time series#! #"s5
#
5



13

/
5

5
5

5
œ ß 5 œ !ßá ß #!! Ð##Ñ

+

s
,

should be a realization from an i.i.d. time series (by design), which would allow us to use standard

maximum likelihood procedures. We have

/ / / /œ œ !Þ!!")ß Ð  Ñ œ "Þ!'&#
" "

#!" #!!
� �
5œ! 5œ!

#!! #!!

5 5
# .

An analysis of the auto-correlation function (ACF) and the partial-autocorrelation function (PACF)

of  indeed suggests that the time-series  is homescedastic and uncorrelated. (Details of our/ /5 5

specific analysis results are available from the authors upon request .)

The ML estimates of the DPU distribution fitted to the data  are/5ß 5 œ !ßá ß #!!ß

α "s s sœ  !Þ&"(ß œ !Þ*")ß 7 œ #Þ&%'ß 8 œ $Þ)&#Þs   The empirical pdf of the standardized bi-

monthly log-differences  is depicted in Figure 1 of Section 1 together with ML fitted normal/5

(Figure 1A), asymmetric Laplace (Figure 1B), Pearson-type IV (Figure 1C) and DPU (Figure 1D)

distributions. QQ plots for the ML fitted distributions in Figure 1 are provided in Figure 6 from

which we observe a better fit for the DPU and Pearson-type IV distributions compared to the

normal and asymmetric Laplace distributions.

The results of a formal fit analysis are presented in Table 1. The Chi-square statistic is calculated

utilizing  bins ( as suggested by Banks et al., 2001 . The boundaries of the"& "& − Ò #!"ß #!"Î&Ó ÑÈ
bins are selected such that the number of observations , , in each Bin  equal 13 orS 3 œ "ßá ß "& 33

14, totaling 201 data points. Such a boundary selection procedure partitions the support of the range

of observed data in a similar manner as the "equal probability method of constructing classes" (e.g.,

Stuart and Ord, 1994). The DPU distribution results in the largest -value %) of the chi-: Ð#%Þ'

squared hypothesis test (due to more moderate bin to bin deviations), the Pearson-type IV in the

second largest ( %), while the asymmetric Laplace and normal distributions attain a -value of"*Þ' :
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less than 3% (taking into account the number of parameters of each distribution to determine the

degrees of freedom). The DPU distribution and Pearson-type IV distribution perform equally well in

terms of the KS -Statistic, but the Pearson-type IV distribution attains a slightly higher log-

likelihood.

When conducting an analogous fit analysis for validation utilizing the second time series  ( ), "*5

(using the parameter estimates from the first time series  ( )) the Pearson-type IV distribution+ "*5

outperforms all other distributions. The results are depicted in Table 2. The degrees of freedom in

Table 2 are the same for all four distributions since no parameters have been estimated during

validation. Surprisingly, all four distributions perform remarkably better in Table 2 in the chi-squared

and log-likelihood statistics when compared to the analysis in Table 1. Some deterioration of the K-S

statistic is observed in terms  for the normal and asymmetric Laplace distributions, while the

Pearson-type IV and DPU distributions show a slight improvement. Summarizing, while the

Pearson-type IV distribution provides the better fit for the full data set under consideration, the

DPU distribution can be considered a strong second.

4.2. Fit analysis for heights of 100 female Australian athletes

Arellano-Valle et al. (2004) recently fitted a skew generalized normal (SGN) density

0ÐDl ß ß ß Ñ œ Ð Ñ ß Ð#$Ñ
# D  ÐD  Ñ

 ÐD  Ñ
. 5 - - 9 F

5 5

. - .

5 - .
" #

"

# #
#

Œ È
where ( ) and are the standard normal pdf and cdf, respectively, to9 F 5 . - ‘ -† Ð † Ñ ß ß − ß   !ß" #

heights of 100 female athletes reported in the Cook and Weisberg (1994) data set. Sample statistics

for the data are and . Arellano-Valle et al.D œ "(%Þ&*%ß = œ '(Þ*$%ß œ  !Þ&') œ %Þ$#"#
" #È" "

(2004) arrived at the ML estimates  and  and a. 5 - -s œ "(!Þ$#!ß œ )&Þ&")ß œ %Þ$)" œ #%Þ")%s s s
" #

log-likelihood of  for the pdf  $%(Þ#$* Ð#$ÑÞ
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Employing the ML algorithm in Section 4 we obtain the ML estimates  α "s œ "("Þ%ß œ ")!Þ&ßs

7 œ #Þ!""ß 8 œ #Þ(&  $%*Þ'Þ ^s s and a slightly lower log-likelihood of Note that the sample mean 

is contained here within the ML fitted central stage  , Ò ÓÞs sα " Figures 7A-B compare the maximum

likelihood (ML) fit of the An SGN and the DPU distributions. empirical kernel density function is

also displayed in . The density wasFigures 7A-B Note that the data set is both skewed and fat tailed. 

generated using the Bartlett-Epanechikov kernel (e.g., Izenman, 1991) combined with the over

smoothed bandwidth (e.g., Sheather, 2004).

Figure 8 visually compares the ML fit of the SGN and DPU distributions using QQ plots. Both

seem to provide an adequate fit of the data. The Kolmogorov-Smirnov statistics takes a value of

!Þ!% !Þ!& for the SGN and a value of  for the DPU distributions. On the other hand, the chi-

squared test utilizing  bins yields a -value of % for the SGN distribution and a -value of"! : "#Þ& :

#&Þ$% for the DPU distribution. Following the same procedure as in Section 4.1, the boundaries of

the bins are selected such that the number of observations , , in each Bin  equalS 3 œ "ßá ß "! 33

*ß "! " "!! or 1 , totaling  data points. Summarizing, both the ML fitted SGN and DPU distributions

seem to provide reasonable fits for the data under consideration.

5. Closing Remarks

In the authors' opinion, fthe DPU distribution fits the data in an adequate manner or both data sets

under consideration. Further, the attractiveness of this distribution is that the density function and

the cdf of the DPU family may be evaluated using only elementary functions. In contrast, the

Pearson-type IV distribution and SGN distribution (which perhaps perform slightly better in terms

of fit than the DPU distribution in the examples in Section 4.1 and Section 4.2, respectively) require

more complicated numerical analysis techniques.  In this paper we have developed (to the best of

our knowledge) the first continuous univariate distribution with  and support power tails Ò ∞ß∞Ó
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that is leptokurtic, allows for asymmetry, and an ease of evaluation of its pdf, cdf and inverse cdf

similarly being enjoyed by other continuous univariate distributions, e.g., the asymmetric Laplace

distribution. Moreover, the parameters of the DPU distribution allow for a transparent

interpretation. Its mode centrality parameters  and  define the central stage of the distribution,α "

while the power tail parameters  and  equal the ratio of the central stage probability divided by7 8

the tail probabilities, respectively. The distribution is non-smooth at the boundaries of its central

stage which may be considered to only be a cosmetic defect, if smoothness of a density is desirable.
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Appendix: The maximum likelihood algorithm

Below we discuss some mathematical details regarding the executions of Step 1 and 3 of the

algorithm in Section 3. The development of Step 2 (Step 4) is analogous to Step 1 (Step 3). The

argument is similar to the one recently devised by Kotz and Van Dorp (2004) in connection with the

ML algorithm of the Two-Sided Power (TSP) distribution.

STEP 1: We shall separately consider the cases  and ." " \ œ \Ð=Ñ Ð=Ñ

Case A: ; From  it follows that . Considering the" " \ \ Ÿ  \ < Ÿ =  "Ð=Ñ Ð< Ñ Ð< "Ñ #2 2

loglikelihood profile of  as a function of  one can writeÐ"(Ñ 8 À
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P91ÖPÐ 8Ñ× œ =P91 Ð7ß 8Ñ  Ð8  "ÑP91  Ð#%Ñ


\ 
\l ˜ ™ œ $^ V

" α

α
   
4œ< "

=

Ð4Ñ2

where  is defined by  and  is a constant. Setting the partial derivative with respect to ^ VÐ7ß 8Ñ Ð&Ñ 8

in  equal to zero, the following quadratic equation in the parameter  is obtainedÐ#%Ñ 8

Ð7  "Ñ8 78 7P91 œ !ß Ð#&Ñ


\ 
# "

4œ< "

=

Ð4Ñ
œ 

ÍÍÍÌ $=    
2

" α

α

where Solving  for and noting that it immediately followsP91 Ð † Ñ œ "ÎP91Ð † ÑÞ Ð#&Ñ 8 8  !"

that

8 œ   Ð#'Ñ
7

#Ð7 "Ñ

" 

#Ð7 "Ñ \ 
7  %Ð7 "ÑP91

5"

# "

4œ< "

=

Ð4Ñ

ÍÍÍÍÌ œ 
ÍÍÍÌ $=      .

2

" α

α

Case B: ; We have from  that . Considering the likelihood" "œ \ \ Ÿ  \ < œ =Ð=Ñ Ð< Ñ Ð< "Ñ #2 2

profile of  as a function of  we now haveÐ"(Ñ 8 À

PÐ 8Ñ º Ð7ß 8Ñ ß Ð#(Ñ\l ˜ ™^
=

where  is defined by Maximizing the logarithm of the RHS of and taking its^Ð7ß 8Ñ Ð&ÑÞ Ð#(Ñ

derivative with respect to  yields the positive value  Hence, the RHS of  is a8 Ð7ß 8ÑÎ8 Þ Ð#(Ñ^ #

strictly increasing function in  and Hence, maximum likelihood estimation of a DPU8 8 Ä ∞Þ5

distribution  reduces to maximum likelihood estimation of a LPU distribution , which mayÐ%Ñ Ð""Ñ

be achieved by setting  equal to an arbitrarily fixed large value in the algorithm presented in Section8

$.

STEP 3: Maximizing the log-likelihood profile of  as a function of  we haveÐ"(Ñ α

P91ÖPÐ Ñ× º P91Ð  Ñ  P91Ð\  Ñ Ð#)Ñ
8  "

\lα " α α
0 �

4œ< "

=

Ð4Ñ

#
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where

0 œ < Ð7 "Ñ  Ð=  < ÑÐ8  "Ñ  = Ð#*Ñ" #

and

œ\ Ÿ  \  ß

! Ÿ <  < ß
Ð< Ñ Ð< "Ñ

" #

" "
α "

or

œ\ Ÿ  ß

! Ÿ < œ < Þ
Ð< Ñ

" #

"
α "

Evidently, the two separate cases   and  ought to be considered.0 0Ÿ !  !

Case A: From functions of the form  being strictly decreasing functions for0 ) αŸ !à P91Ð  Ñ

α ) 0 ß Ÿ ! 8  ! and  it immediately follows noting the restrictions

α α " \ 4 œ <  "ßá ß = Ð4Ñ #,  and ,

that  is a strictly increasing function for , whereÐ#)Ñ − Ò\ ß Óα hÐ< Ñ"

h
"

œ Ð$!Ñ
\ < − Ö!ßá ß <  "×

< œ <œ Ð< "Ñ " #

" #

"

.

Hence,  attains is maximum at the upper bound of the range  .Ð#)Ñ Ò\ ß ÓÐ< Ñ" h

Case B: Taking the derivative of with respect to  and equating it to zero yields0 α !à Ð#)Ñ

�
4œ< "

=

Ð4Ñ
#

" α 0

α



\  8 "
œ Þ Ð$"Ñ

Taking the derivative of the LHS of  with respect to  yieldsÐ$"Ñ α

�
4œ< "

=
Ð4Ñ

Ð4Ñ
#

#

"

α

\

Ð\  Ñ
Þ
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Hence, from  it follows that the LHS of  is a" "Ÿ \ ß  \ ß 4 − Ö<  "ßá ß =× Ð$"ÑÐ< "Ñ Ð4Ñ ##

strictly decreasing function in  over the range , where  is given by .  We are nowα h hÒ\ ß Ó Ð$!ÑÐ< Ñ"

able to conclude from and the definition of  , that  when   and:Ð$"Ñ Ð#*Ñ  !0 0

1. the log-likelihood  attains it maximum at �
4œ< "

=


\  8"
#

Ð4Ñ

" h
h

0 Ê Ð#)Ñ Þh

2. the log-likelihood  attains it maximum at �
4œ< "

= \

\ \ 8" Ð< Ñ
#

Ð< Ñ"

Ð4Ñ Ð< Ñ"
"

" 0 Ê Ð#)Ñ \ Þ

3. the log-likelihood  attains it maximum at a� �
4œ< " 4œ< "

= =


\  8" \ \

\

# #
Ð4Ñ Ð4Ñ Ð< Ñ

Ð< Ñ"

"

" h
h

0 "
  Ê Ð#)Ñ

stationary point  .α h‡
Ð< Ñ− Ò\ ß Ó

"
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Figure 1. Empirical pdf's of standardized bi-monthly log-differences of

30-year conventional  mortgage interest rates (1971-2004) together with

the fitted (using the ML procedure)  theoretical distributions.
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Figure 2. Cumulative distribution functions (r.h. panels) and densities (left-hand panels)Ð*Ñ Ð%Ñ  

of the DPU distribution. Panels A and B have parameters values ; while7 œ &ß 8 œ "&ß œ !ß œ "α "

panels C and D have  (C-D)7 œ #ß 8 œ "ß œ  " ß œ  Þα "" (
) )
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Figure 5.  Time series of monthly 30-year U.S. mortgage interest rates from 1971 - 2004.
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Figure 6.  QQ plots for the ML fitted distributions in Figure 1. The fitted distributions are normal (Panel

A), asymmetric Laplace (Panel B), Pearson-type IV (Panel C) and DPU (Panel D) distributions.
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Figure 7. Empirical pdf's for the height of 100 female Australian athletes reported in the Cook and

Weisberg (1994) data set, together with ML fitted SGN (Panel A) and DPU (Panel B) densities.
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Figure 8.  QQ plots for the ML fitted SGN (Panel A) and DPU (Panel B) distributions in Figure 7.
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Table 1. Goodness of fit analysis utilizing the first time series  ( ).+ "*5

Normal AL Pearson-type IV DPU
Chi-Squared Statistic 23.98 21.51 13.52 12.62
Degrees of Freedom 12 11 10 10
P-value 2.0% 2.8% 19.6% 24.6%
K-S Statistic 0.080 0.059 0.050 0.050
Log-Likelihood -291.0 -283.6 -278.0 -279.8
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Table 2. Goodness of fit analysis utilizing the second time series  ( ) for validation., "*5

Normal AL Pearson-type  IV DPU
Chi-Squared Statistic 18.26 13.32 6.90 11.42
Degrees of Freedom 14 14 14 14
P-value 19.5% 50.1% 93.8% 65.3%
K-S Statistic 0.082 0.068 0.033 0.040

Log-Likelihood -284.7 -278.7 -275.1 -279.7


