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A Versatile Bivariate Distribution on a Bounded Domain:

Another Look at the Product Moment Correlation
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Systems Engineering, The George Washington University, Washington, D.C.

Abstract -  The Fairlie-Gumbel-Morgenstern (FGM) family has been investigated in detail for

various continuous marginals such as Cauchy, normal, exponential, gamma, Weibull, lognormal

and others. It has been a popular model for the bivariate distribution with mild dependence.

However, bivariate FGM’s with continuous marginals on a bounded support discussed in the

literature are only those with uniform or power marginals. In this note we study the bivariate

FGM family with marginals given by the recently proposed two-sided power (TSP) distribution.

Since this family of bounded continuous distributions is very flexible, the properties of the FGM

family with TSP marginals could serve a reliable indication of the structure of the FGM

distribution with arbitrary marginals defined on a compact set. A remarkable stability of the

correlation between the marginals has been observed.

1. INTRODUCTION

The arsenal for constructing continuous bivariate distribution with specified marginals on a

bounded set is rather limited. Most continuous bivariate distributions with specified marginals

are constructed on either the whole  or on a positive orthant. This is due mainly to the fact that�#

the vast majority of univariate continuous distributions are defined on an infinite interval (with
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the notable exceptions of the beta distribution - and its particular cases uniform and power

distributions - and the triangular distributions.) Indeed, the by far most widely used continuous

distribution on a bounded interval is the uniform followed by the beta distribution, the power

distribution and only recently some attention has began to be paid to the triangular distribution

(see, e.g., . The fact that bivariate distributionsJohnson (1997) and Johnson and Kotz (1999))

with specified continuous marginals have not been investigated for the case of beta marginals

may partially be explained by the fact that specification of marginals requires the use of the

cumulative distribution function (cdf) in a closed form, not available for this distribution.

Actually, to the best of our knowledge, even bivariate distributions with specified triangular

marginals have not been studied. While the Dirichlet and Ordered Dirichlet distribution are

multivariate distributions with beta marginals (on a bounded support), they do not allow for

arbitrary specification of beta marginals (see e.g. Kotz et al. (2000) and Van Dorp et al. (1996)).

It would seem that construction of bivariate distributions with  marginals witharbitrary specified

bounded support may still be considered an unchartered area.

Fortunately there exist several mechanisms for constructing bivariate distributions. A new

method of generating bivariate distribution based on the modification of a bivariate uniform

distribution and a subsequent "cloning" has been proposed by Johnson and Kotz (2001). Earlier

mechanisms for constructing bivariate distributions with arbitrary specified marginals center

around the use of copulas (see, e.g., Genest and Mackay (1986)). The easiest and most natural

approach embodied in the general class of bivariate distributions is perhaps the one originally

proposed by Morgenstern (1956), Gumbel (1960) and Farlie (1960) known in the literature as the

FGM family. This family has only one governing parameter which determines the degree of

dependence (in addition to the parameters of the marginal distributions). A vast literature on this

topic exists (see, e.g., by now the recent book by Drouet and Kotz (2001)).

The starting point for the constructing of a FGM family is the case of uniform marginals.

Here the bivariate cdf is given by
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� �� � � � � � � �� 	 �� 
 � ��� 
 � ��� � �  �� � � � � �� � � �� �� ���Y ÄY " # " # " # 3" #
� �

and the pdf is simply

� �� � � � � �� 	 �� 
 �� ��� 
 �� ��� � �  �� � � � � �� � � �� �� ���Y ÄY " # " # 3" #
� �

In general a FGM bivariate distribution with marginal cdf’s  and pdf’s� �� �� � �� �\ " \ #" #

� �� �� � �� ��\ " \ #" #
is represented as

� �� � � � � �� 	 �� 
 �� 
 �� ���\ Ä\ " #" #
� �� �� �� � � �� �� � �� ��\ " \ # \ " \ #" # " #

�

or in terms of pdf’s (if they exist) as

� �� � � � � � �� 	 �� 
 �� �� 
 �� �� ���\ Ä\ " #" # \ " # \ " \ #\" " ##
�� �� �� � �� �� �� ���

where as above � �  �� � � � � �� � � �� ��� 3  The basic theory of FGM distributions and its

correlation structure has been investigated for various continuous marginals with unbounded

support such as Cauchy, Normal, exponential, gamma, Weibull, lognormal and many others in

Johnson and Kotz (1975), (1977), Schucany et al. (1978), Cook and Johnson (1986), D’ Este

(1981), Lingappaiah (1984), Barnett (1965) and Drouet and Kotz (2001), among other sources.

As to FGM distributions with bounded support, besides those with uniform marginals, only the

case of power marginals with the density    seem to receive� ��� � �� � � � � � �� � � �\
8�"

any attention. (See, e.g., Schucany et al. (1978)).

The product moment correlation coefficient for  the FGM distributions with continuousall

marginals is less than /  with the maximum being attained for the uniform marginals. The� �

model is thus applicable to the cases of a "mild" correlation which occurs in engineering and

medical applications (see, e.g., Blischke and Prabhaker Murthy (2000) and Chalabian and

Dunnington (1998)). The maximum correlation coefficient for normal marginals is  ,  for�� ����

exponential marginals,  for the Laplace and gamma marginals (with the shape parameter�����

equal to ) and is  (ranging from  to for power marginals.� ��� 	 ������ 	 �� � ����#



4

Journal of Applied Statistics, Vol. 29, No.8, pp. 1165-1179, 2002

We shall study the correlation structure of a bivariate FGM family with marginals given by

the two parameter, two-sided power (TSP) distribution introduced by van Dorp and Kotz

(2001a,b). The distribution in its canonical form is given by the cdf

� ��� � ���
� � � �

� 
 �� 
 � � � � �
\ 8

B
8

"�B
"�

�����
� �

� �
� �

� �

)

)

and the density

� ��� � ���
� �  � �

� � �  ��
\

B
8�"

"�B
"�

8�"

�����
� �
� �

)

)

�

�

where 1,  The mean and the variance of the random variable  are� � � � � �� ��

���� � �� � ���
�� 
 �� 	

� 	 �
�

� 1

and

 !"��� � �� � ���
� 
 ��� 
 �� �� 
 �

�� 	 ���� 	 ��
�

� �
#

,

respectively. We shall denote this family using the abbreviation . This family of#$%� � ���

bounded continuous distributions is so flexible and versatile that it is very likely that the FGM

family with the TSP marginals may serve as a reliable indicator of the structure of FGM

distributions with arbitrary "non-pathological" marginals defined on a compact set. The

flexibility of the TSP distribution is similar to that of the beta distribution and both families

include U-Shaped , , J-Shaped ) and unimodal ( ,  or��  � & ��� ��� � & '�� �( � � � & ��� ��� � �

� & '�� �(� forms and posses the same limiting distributions (See, Van Dorp and Kotz (2001a)).

The uniform distribution , power distribution (  and triangular distribution �� � �� � �� �� � ���

all belong to the  family. Similarly to the power distribution the TSP family is not a#$%� � ���

location-scale family thus yielding a product moment correlation coefficient function of the

marginal parameters (unlike the uniform, normal, exponential and lognormal distributions). In
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Section 3, the correlation coefficient for the FGM family with TSP marginals is derived as a

function of the parameters. We investigate the extremes of this correlation coefficient and its

behavior in Section 4. Finally, we shall provide some concluding remarks in Section 5.

2. THE DENSITY

Let be the joint density function given by  where  ( ) are � �� � � � ��� � � � �� � #$% � � � �\ Ä\ " # 3 3 3" #
�

random variables with cdf and pdf given by and  respectively. Figures 1 provide some��� ���

illustrative examples of the joint density   with identical marginals for a variety of� �� � � �\ Ä\ " #" #

#$%� � � � � ��� �3 3  scenarios with  Figure 1A displays the bivariate FGM with uniform

marginals , Figure B depicts the bivariate FGM with power marginals ( ,�� � �� � � �� � � ��3 3 3�

Figure C displays the bivariate FGM with symmetric triangular marginals (  and� � � � � ���3 3
"
#

Figure 1D presents the bivariate FGM with genuine symmetric TSP marginals (�3 3
"
#� � � � ���

Figures  provide some additional examples of the joint density  with  and� � �� � � � � �\ Ä\ " #" #
�

non-identical ,  marginals Figure 2A displays the FGM density with TSP#$%� � � � � � �� �� ��3 3

marginals with , Figure 2B depicts the FGM density with TSP marginals� � � � �� � � ��" # #�

with , Figure 2C presents the FGM density with TSP marginals with� � � � � � � �)" # #
"
#�

� �" " # #� �� � � � � �� � � ��, Figure 2D displays the FGM density with symmetric but unequal

TSP marginals where , .� �" " # #
" " "
# # #� � � � � � � � �

It is evident from Figures 1 and 2 that the form of the joint density functions of an FGM

distribution with TSP marginals can take great variety of forms. It is therefore of interest to

investigate the corresponding correlation structure.
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Figure 1. FGM distributions with identical TSP(θi, ni) marginals, α = 1 ;
A: ni= 1 (uniform); B: θi = 1, ni= 2 ; C: θi = 0.5, ni= 2 ; D: θi = 0.5, ni= 3, i = 1, 2. 
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Figure 2. FGM distributions with TSP(θi, ni) marginals, α = 1 ;
A: n1= 1, θ2 = 1, n2= 2 ; B: n1= 1, θ2 = 0.5, n2= 2 ; 

C: θ1 = 0 , n1= 2, θ2 = 1, n2= 2 ; D: θ1 = 0.5 , n1= 0.5, θ2 = 0.5, n2= 2 . 
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3. CORRELATION STRUCTURE

Figures 3A and 3B show the FGM distribution with uniform marginals for the extreme cases of

positive dependence (  and ). Figure 3B represents the case of independent uniform� �� � � �

marginals and the effect of degree of dependence in the joint density may visually  be observed

by comparing Figures 3A and 3B. The form of the joint density in Figure 3A shows that large

(small) values of tend to be associated with large (small) values of   and thus exhibits� �" #

positive dependence. Figures 3C and 3D depict the FGM distribution with symmetric triangular

marginals for the cases of . Figure 3D represents the independent case between the� � � ���

triangular marginals. However, comparing Figures 3C and 3D, it is evident that the degree of

dependence in Figure 3C is obscured (due to a non-uniform form of the marginals) even though

the dependence parameter  of the FGM distribution has here the same value as in Figure 3A�

(representing uniform marginals).

The basic (and time honored) measure of dependence between two variables  and is the� �" #

covariance

*+,�� �� � � ���� 
 ��� ���� 
 ��� ���� �-�" # " " # #

Among its other properties it ’filters’ the location information contained in the marginal

distributions. To make the measure independent of the units with which the variables are

expressed, the covariance is divided by the product of the standard deviations leading to the well

known product moment (or Pearson’s) correlation coefficient:

*+""�� �� � � ����
*+,�� �� �

 !"�� � !"�� �
" #

" #

" #� .

Equation (10) shows that this coefficient also ’filters’ uncertainty information contained in the

marginals distribution, thereby separating the assessment of dependence via  from the����

assessment of the location of the marginals (via ) and the assessment of uncertainty in the��� �3

marginals (via ). The product moment correlation is invariant under arbitrary non- !"�� �3

decreasing  transformations of  and has been the basic measure of linearlinear � � � � �� ��3
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dependence for over 100 years. Several other measures have been proposed in the 20-th century

to measure positive (or negative) dependence such as Spearman’s rank correlation, Kendall’s tau,

Blomquist's  and Höffding's . (see, e.g., Joag-Dev (1984)). These measures are invariant under. �

all non-decreasing transformations of  and . The product  moment correlation is not� �" #

invariant under arbitrary non-decreasing transformations and thus should be used with some

caution as a global measure of positive dependence.

Figure 3. FGM distributions with TSP(θi, ni) marginals;
A: Dependent uniform marginals ; B: Independent uniform marginals ; 

C: Dependent triangular marginals; D: Independent triangular marginals. 
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 We have already pointed out that the values of the correlation coefficient for various

bivariate FGM distributions provided in the literature (see, e.g., Schucany et al. (1978))

unequivocally state that the coefficient is   for exponential,  for normal, � � ��� � ������ for

Laplace marginals regardless of the values of the parameters of the marginal distributions. These
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distributions form a location-scale family and thus can be transformed to the standardized form

(parameter-free) by a linear transformation resulting in a single value (for a given ) of the�

correlation coefficient for the whole family regardless of the values of the parameters. This is not

the case for the bivariate FGM with TSP marginals where functional dependence on the

parameters of the distribution is present. From the identity due to Höffding (1940)

*+,�� �� � � ' 
 � �� �� �� �(/� /� �" # \ " \ # " #
! !

" "� � � �� � � �\ Ä\ " #" # " #
����

and utilizing and  it follows that for a bivariate FGM distribution with any marginals��� ����

*+"�� �� � � ��
 !"�� �

" #

3æ"

#

3

�	� 
 �0\3 ,

where

0 � ���'� 
 ���(/� ����\ \ \
!

"

3 3 3� � � .

Substituting the cdf (cf. ) into  we have#$%� � � � ��� �����3 3

0 � � � � � ����
� 
 �� 
 �� �� 
 �

�� 	 ����� 	 ��
\ 3 3

3 3 3 3

3 3
3
�

� �

and utilizing  and  we arrive at the correlation coefficient��� ����

*+"�� �� � � ����" #

3æ"

#

|�, � �	� �� 	 �� � 
 �� 
 �� �� 
 �

� 
 ��� 
 �� �� 
 � ��� 	 ��
3 3 3 3 3

3 3 3 3 3� �

� �
,

where � � � � � � �� � � ��� �" # " # and �

4. GENERAL BEHAVIOR OF CORRELATION

We shall now investigate the general behavior of  as a function of the parameters ���� � � � ��3 3

( ). From the form of  it follows that � � �� � ���� *+""�� �� �" #|  is a separable function in�, �

pairs ) and it is sufficient to study the general behavior of the function � � � 1�3 3 � � ���  given by
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1� � �� �
�� 	 �� '� 
 �� 
 �� �� 
 �(

��� 	 �� � 
 ��� 
 �� �� 
 �
�

� �

� �#

#

����

� � 	
��� 	 �� �� 
 �� �� 
 �

��� 	 �� �'� 
 ��� 
 �� �� 
 �(#

# # # �� �

� �

to assess the effect of the marginals on the product moment correlation. Since 1� � ���  given by

���� coincides with the correlation of an FGM distribution with identical TSP marginals with

parameters , , and the dependence parameter  the � � �3 3� � � � � � � �� � � �� extremes of

1� � �� � �����  coincide with extremes of the product moment correlation (cf ).

The first factor in  is just ��� 	 ������ 	 ��# ���� the correlation  between the power

marginals (  and determines the general behavior of the product moment correlation� � ��

coefficient as a function of . The second term in  may be interpreted as a correction factor� ����

to account for increased symmetry in the TSP marginals relative to the skewed power marginals.

Since the variance is strictly positive and utilizing  it follows that this correction factor is���

greater than  for , . For both  or  the correction factor attains its� & ��� �� � 2 � � � � �� � �

minimum equal to  and hence  attains (for a fixed ) its minimum  at� 1 � ��� 	 ������ 	 ��� � ��� #

either  or . Writing� �� � � �

�� 
 �� �� 
 � �� 
 ��

�'� 
 ��� 
 �� �� 
 �(
� �� 
 � ����


 ���� 
 ��

# # # #

8
µ"� ¶

� �

� �
� �

#

) )

it immediately follows that the correction factor is a strictly increasing function in the parameter

� � � � �� �� 
 � 1� � �� ���� � �. This implies that  (cf. ) attains its maximum for fixed  at ."#

Taking the partial derivative in  with respect to  yields���� �

3 �� 	 � ��� 
 �� '� 
 �� 
 �� (

3� ��� 	 �� '� 
 ��� 
 �� (
1� � �� � �� 
 �� � �����

� � �

�$ #

where as above . Since ,  Hence, noting that  given� � � � � �� �� 
 � & ��� �� & ��� �� 0 � � � �"
% \ 3 33

by is strictly positive it follows from  that for fixed  is a strictly increasing���� ���� � 1� � ��� �

function of  for  and a strictly decreasing one for  Hence for any fixed � �  � � � � 4 �� � the
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function attains its maximum at . Since  1 � � � 1� � �� � � �� � ���� �  we can conclude that the

product moment correlation of the FGM with TSP marginals attains its global maximum ���

when both TSP marginals are uniform. This agrees with the general result in Schucany et al.

(1978), already mentioned above, that the maximum correlation of an FGM distribution is

attained for uniform marginals. Also it follows from  that for a fixed ,���� � � (and thus a fixed )

the minimal correlation is attained either when  or . Utilizing  we derive� 5 � � 6 7 ����

1 ��-�� � �� � 8�9 1� � �� � �� 
 �
� 5 �

� � � �

1 � ����� �7� � 8�9 1� � �� � � 	
� 6 7

� �� 
 �

� � 
 � �� 
 �
� �

� �

� �
 # # �

Figures 4 summarize the extremes of the function 1� � �� ���� � as a function of the parameter 

keeping  ( ) fixed. Figure 4A focusses on the extremes of  as a function of  for values� 1� � ��� � �

of 1 and displays 1  (the global maximum) and  (cf. ) (the minimal� � 1� � � � ��� 1� � �� ��-�� �

value of  for fixed  with 1). Analogously, Figure 4B focusses on the extremes of1� � �� � �� �

1� � �� � 4 � 1� � � � ��� 1� �7� ����� � � � as a function of  for , displays 1  and (cf. ) (the minimal

value of  for fixed  with ). Figure 4C presents the extremes of  as function1� � �� � 4 � 1� � ��� � �

of  keeping  fixed and displays  the maximum for fixed ) and  (the� 1� � �� � � 1��� �� � 1��� ��� "
#

minimal value for fixed ). . Figures 4 A,� � � �� Figure 5 provides a three dimensional graph of 1 �

B and C may be interpreted as two-dimensional Figure 5 in various directions.:"+;<=>�+�? of 

From  and Figures 4 it follows that the correlation is bounded from above by the product����

moment correlation of the FGM distribution with uniform marginals and from below by���

� ���� 	 ������ 	 �� 
# the correlation of the FGM distribution with power marginals ,� � ��

or its reflection ( ). From Figures 4A and 4B it follows that for fixed  and the� � � � �" #

correlation attains it maximal value when both TSP marginals are symmetric (  and its� � �"#

minimal value when both TSP marginals attain the maximal skewness ( )  Figure 4C� & '�� �( �

shows that the maximum discrepancy between the correlation with identical power marginals

with and identical TSP marginals with  is equal to� � � � � �3 3
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/��� � 1� � �� 
 1��� �� � ����
� � � 	 � � 
 �

� � � 	 � �� 	 �
 �#

.

Figure 4. The extremes of the function g(θ, n); A: as a function of θ  ( 0 <  n  ≤ 1 ) ;
B: as a function of θ  ( n  ≥ 1 ) ; C: as a function of n (θ ∈ [0,1] ).

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.25 0.50 0.75 1.00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.25 0.50 0.75 1.00
→ θ → θ

→ n

),
2

1
( ng

),0( ng

),( ∞θg

)1,(θg)1,(θg

)0,(θg

BA

C

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.25 0.50 0.75 1.00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00 10.00

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.00 0.25 0.50 0.75 1.00
→ θ → θ

→ n

),
2

1
( ng

),0( ng

),( ∞θg

)1,(θg)1,(θg

)0,(θg

BA

C

The function  describes, for fixed , the  discrepancy in the correlation due to the/��� � maximum

skewness parameter ; it is a strictly decreasing (increasing) function of  on  ( )). For� � ��� �� ���7

� 6 7 /��� 6 � /�7� � � �,  ( )and the largest discrepancy is attained at . Apparently (see"
$#

Figure 4C) the difference between the correlations of FGM distributions with identical TSP

marginals and identical power marginals is the largest for small values of . However, for�

� � @ ���� ����

 �� 	 ���

��
ø

�
,

/�� � � /�7� � � � �ø ø"
$# . Hence, for all values of  (which are plausible in applications) the

discrepancy  From  it follows that Thus we have/���  � �������� ���� 1��� � � @ ��������"
$#

ø
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reached the important conclusion that for   varies from  to  (the� � � 1� � �� 1��� � � 1� � ��ø ø� �

uniform case) at most .@ � 
 �������� @ �����-�"
$

Figure 5. General behavior of function g(θ, n) given by (16) as a function of θ and n.
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Summarizing the function  for values of  varies in the narrow range of1� � �� � � �� ø

@ �����-� from the correlation coefficient of an FGM distribution with uniform marginals.

Moreover, for fixed the correlation coefficient of an FGM with identical TSP marginals� � � �ø

is strictly larger than the correlation coefficient of an FGM with identical power marginals, but

differs from it by no more than    for all values  Hence, the effect of the"
$# � ������� & ��� ����

parameters  and  on the value of the product moment correlation is almost negligible for� �

practical purposes. The general behavior of the product moment correlation with TSP marginals

closely follows the behavior of the FGM with power marginals, i.e. it increases for  and� & ��� ��
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decreases for . As the values of the function  are remarkably stable for � & ���7� 1� � �� � 4 �� ø

it may be concluded that the product moment correlation is especially stable for values of

� 4 �3
ø. Also from the above analysis the product moment correlation for the FGM distribution

with beta marginals (which cannot be derived in closed form) quite likely closely mirrors the

behavior of the FGM distribution with TSP marginals exhibiting similar stability.

5. CONCLUSIONS

This paper studied a new class of bivariate FGM distribution with TSP marginals. The TSP

marginals have bounded support and include the uniform, power and triangular distributions. The

latter distribution is especially popular amongst engineers, yet modeling dependence amongst

triangular distributions has not been investigated so far. Independence assumption amongst the

marginals which is often encountered in the literature is dubious and largely motivated by

convenience. The new class of FGM distributions with TSP marginals encourages modeling of

mild dependence in practical applications which occur in e.g. the fields of medicine and

engineering. Using a linear transformation, a TSP distribution with support  may be��� ��

transformed to TSP distributions with support . The parameters of the transformed TSP�!� A�

distributions involve a lower bound , the mode  and an upper bound , (as is! 9 � �A 
 !� 	 ! A�

the case for the triangular distribution) as well as the shape parameter . The correlation structure�

of the FGM distributions with TSP marginals is not affected by these linear transformations of

marginals.

The product moment correlation coefficient for the FGM family with TSP marginals

depends, however, on the values of the parameters of the marginal distributions. Interestingly

enough, these values exhibit substantial stability, hovering between roughly  and the���

maximum possible correlation , for all plausible values of the parameters  and , � ��� � � � �� ��3 3

Only in the limiting cases we have divergent values.  The product moment correlation is strictly

speaking a measure of linear dependence and is not invariant under general non-decreasing

transformations. However, the discovered stability of the product moment correlation under a
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wide variety of marginals of diverse forms in the FGM distributions suggests that for bivariate

distributions with bounded support, this coefficient also is a suitable measure of positive  (or

negative) dependence. An extension of these results to generalized FGM distributions (with

larger correlation coefficients) could be of some interest and utility.
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