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I. Introduction

The time-honored 2 parameter Beta distribution

�

� �

�� � ��

��� ���
� �� � ��+�" ,�", �	 � 
 �	 � � �	 �� ���,

which is the main subject matter of this volume is well known in Bayesian methodology as a	

prior distribution on the success probability  of a binomial distribution (see, e.g. Carlin & Louis�

(2000)). Many authors (see, e.g. Gavaskar (1988))  have quoted the suitability of a Beta random

variable  in different applications due to its flexibility. The transformation � � � � �����

transforms the  support of  into the support  of , while still inheriting the�	 �� � �	 �� �

flexibility of . Hence, the use of the Beta distribution as a prior distribution is by no means�

restricted to a bounded domain. For example, Van Dorp (1998) utilizes the above transformation

to specify a prior distribution on the positive shape parameter of a Weibull distribution.
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Amongst -variate extensions of the Beta distribution (i.e.  - dimensional joint� �

distributions with Beta marginals) the Dirichlet distribution (see, e.g., Kotz et al. (2000)),
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where has enjoyed wide popularity in� � �	 � � �	 � 	 �	 
 �	 � � �	 � 	 � � �3 3�
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Bayesian methodology (see, e.g., Cowell (1996), Johnson & Kokalis (1994) and Dennis (1998)).

Application areas include Reliability Analysis (see, e.g., Kumar & Tiwari (1989), Coolen (1997)

and Neath & Samaniego (1996)), Econometrics (See, e.g. Lancaster (1997), and Forensics (see,

e.g., Lang (1995)). The use of the -variate Ordered Dirichlet distribution (see, e.g., Wilks�

(1962))

� �

� �

� ��
� �3æ"

7þ"

3

3æ"

7þ"

3
3æ"

7þ"

3 3�"
�"

� �

�� � � � 	 ���)3

where 1  in� � � � � � �	 � � � � � � �	 � � �	 � 	 � � �	 
 �	 � � �	 � 	 � � 	! 7þ" 3�" 3 3�

Bayesian applications is less prevalent and the distribution is generally less well known. To the

best of our knowledge, applications of have been limited so far to reliability analysis���

problems (see, e.g., Van Dorp et al. (1996), Van Dorp et al. (1997), Erkanli et al. (1998), Van

Dorp and Mazzuchi (2003)). A fundamental difference between the Dirichlet distribution

(defined on a simplex) and the Ordered Dirichlet distribution (defined on the upper pyramidal

cross section of the unit hyper cube) is their support. Figure 1 below illustrates this difference for

the bivariate case. Both the Dirichlet and Ordered Dirichlet random vector � � �� 	 � 	 � �" 7

inherit the flexibility of its Beta marginals . Transforming these -variate� 	 � � �	 � 	 � �3

extensions by means of the transformation  allow for flexible prior� � � ���� �	 � � �	 � 	 �3 3

distributions not restricted to the unit hyper cube. Van Dorp and Mazzuchi (2003) used a similar
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transformation to define a prior distribution on a set of ordered failure rates on via an�	 ��7

ordered Dirichlet distribution.
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Figure 1. A: Support of a Bivariate Dirichlet Distribution

B: Support of a Bivariate Ordered Dirichlet Distribution

Practical implementation of subjective Bayesian methods involving the Beta distribution and

its Dirichlet extensions evidently require the specification of their parameters. To avoid being

incoherent in these Bayesian analyses, the specification of these prior parameters preferably

should not rely on classical estimation techniques which use data, such as maximum likelihood

estimation or the method of moments. The specification of the prior parameters ought to be based

on expert judgment elicitation. To define the prior parameters, expert judgment about quantities

of interest are elicited and equated to their theoretical expression for central tendency such as

mean, median, or mode (see e.g. Chaloner and Duncan (1983)). In addition, some quantification

of the quality of the expert judgment is often given by specifying a variance or a probability

interval for the prior quantity.  Solving these equations generally would lead to the required

parameter estimates.
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Methods for eliciting the parameters of a Beta distributions have focused on eliciting: (a) a

measure of central tendency such as the mean and a measure of dispersion such as the variance

(see, e.g., Press (1989)), (b) the mean and a quantile (see, e.g. Martz and Waller (1982)) or (c)

equivalent observations (e.g. Cooke, 1991). Elicitation of the mean (and certainly the variance), 

however, requires a level of cognitive processing that elicitation procedures which demand it,

may well produce little more than random noise (see, Chaloner and Duncan (1983)). Hence, it is

desirable, for designing of a meaningful elicitation procedure for engineers, that elicited

information can be easily related (i.e. involving little cognitive processing)  to observables (see,

e.g., Chaloner and Duncan (1983)).  While Chaloner and Duncan (1983), (1987) elicit Beta prior

parameters and Dirichlet prior parameters by relating these parameters to the modes of

observable random variables and non-uniformity around their modes, they also advocate the use

of quantiles, such as the median and a lower quantile, for the elicitation of prior parameters. An

additional advantage of eliciting quantiles is that it allows for the use of betting strategies in an

indirect elicitation procedure (see e.g. Cooke (1991)).

This chapter addresses the problem of specification of prior parameters of a Beta distribution

and its Dirichlet extensions above via quantile estimates. It is envisioned that these quantile

estimates are elicited utilizing expert judgment techniques thereby allowing coherent and

practical application of the Beta distribution and its Dirichlet extensions in Bayesian Analyses.

Solving for the parameters of these prior parameters via quantile estimates involves using the

incomplete Beta function given by��� �	 ��

��� �	 �� � � �� � �� !�	 �"� | 
�

� �

�� � ��

��� ���
	
!

B
+�" ,�"

where incomplete Beta function has no closed-form (analytic)� 
 �	 � 
 �. The  ��� �	 ��

expression. Hence, Weiler (1965) resorted to solving graphically for the two parameters of the

Beta distribution given the -th and -th quantile. This graphical approach, however, is# �� � #�

limited to the number of graphs plotted. For intermediate solutions interpolation methods must

be used, which are often subject to an interpolation error.
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The adaptability of the Beta distribution will be reconfirmed in Section II by proving that a

solution exists for the parameters of a Beta distribution for any combination of a lower quantile

and upper quantile constraint. numerical procedure will be described which solves for A 

parameters  and  of a Beta distribution (cf. ) given these constraints. The contents of� � ���

Section II is based on Van Dorp and Mazzuchi (2000). The numerical procedure derived in

Section II can be easily adapted to the Weiler’s (1965) methodology and improves on his

graphical method. In addition, the numerical procedure can be adapted to the case where the

median and an another quantile are specified as measures of central tendency and dispersion. In

Sections III and IV the methods of  Section II will be utilized to specify the parameters of the

Dirichlet and Ordered Dirichlet distributions, respectively. In addition, some properties of the

Dirichlet and Ordered Dirichlet distribution will be listed in Sections III and IV.

II.  Specification of Prior Beta Parameters

For reasons to become evident from the discussion below, we will reparameterize the Beta

density given by  by setting and ; This yields the following expression for��� � � � � �� � +
+þ,

the probability density function of a Beta random variable �

� �

� � � � � �

� �

� $ � � $ �� � ��
� �� � �� �" ! " !÷ �" ÷µ"� ¶�", � �	 �� �%�,

where The reparameterization is a one-to-one transformation from  to � � � �	 
 � & ��� �%�� �

and vice versa. Note that the condition  is identical to the condition on the original� � �	 ��

random variable . For the purpose of this chapter, a random variable  distributed following� �

�%� � ' �()� will be denoted as ( , ). The latter notation is somewhat unconventional as� �

�()���	 �� ��� usually refers to the structural form of the pdf provided by . Perhaps the consistent

use of   and  rather than   and  may help alleviate this source ofGreek notation Latin notation� � � �

confusion.
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A. Basic Properties of the Beta Distribution

It easily follows from that�%�

*� 	 � � �+�� � � 

, �-� 	 � � & �.�
$ �� � �

� � ��
� �

� �

�

Hence, the reparameterization provided in  allows one to interpret  as a location parameter�+� �

and  as a shape parameter that determines the uncertainty in . T� � he -th moment of  around� �

zero in terms of  and  can be expressed utilizing as� � �%�

*�  	 � � � $ 	 � � �	 �	 �	 � �/�

� $ � � � �� � $ � � � ��

� � � � �� � � � � ��

8 3æ" 3æ"

8 8�"

3æ"

8

3æ"

8�"
� � �

� � � �

� �

� �
� �

with the usual convention that . Using the structure of and  we can�
3æ"

0
0 $ 1 � � �%�	 �+�	 �.� �/�

readily draw conclusions regarding the limiting distributions of a Beta random variable by letting

� � �2 � 3 � and  (for any fixed value of ). Consider the two different classes of degenerate

distributions presented in Figure 2. It follows from and  that the degenerate distribution in�+� �.�

Class 1 of Figure 2 is the limiting distribution obtained by letting . From 8  it follows� 2 � � �

that the moments of the limiting distribution when letting coincide with the moments of the� 3 �

degenerate distribution in Class 2 of Figure 2 (i.e. of a Bernoulli variable with a point mass of �

at ). As both the limiting distribution of by letting  and the degenerate distribution of� � 3 ��

Class 2 have a bounded support, it follows from the agreement of their moments that the

degenerate distribution in Class 2  the limiting distribution by letting  (see e.g. Harrisis � 3 �

(1966), p. 103). The limiting distributions of Class 1 and Class 2 (and how they arise from the

limiting behavior of the parameter ) play a central role in deriving the theoretical result in the�

next section.
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Figure 2. Two classes of degenerate Beta distributions.

An additional property of the Beta distribution utilized in this derivation is that for  (using� 
 �

the notation of )���

� � � � � 4 � � 	 5 � ��	 �� �6�" # " #��� 	 �� 
 ��� 	 �� |  | x ,  

and for � 
 �

� 
 � 
 � 4 � � 	 5 � ��	 �� ����" # ��� 	 � � 
 ��� 	 � � |  | " # x ,  

(see e.g. Proschan and Singpurwalla 1979) . From  and it follows (using the notation of� � �6� ����

�%�) that

� � � � � � �# " # "
 
 �	 
 � 4 	 � � 	 � ����7 -�� � � 7 -�� � � .

Finally, the quantile constraint concept defined in Definition 1 below will be used as well.

Definition 1: Let A random variable with support satisfies� � � � �	 � � # � �& � �	 ��;

quantile constraint if and only if�� 	 #� 7 -0� � � 1 � #; ; .
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B. Solving for the Prior Beta Parameters

To specify the prior Beta parameters based on quantile estimates we need to solve problem�"

below. Solving problem  involves the use of the incomplete Beta function given by  and�" �"�

therefore has no closed form (analytic) solution. Also, the quantile constraints in problem  can�"

be considered a set of two nonlinear constraints in two unknowns, i.e. , and may not� � and 

necessarily have a feasible solution. To construct a numerical procedure with solves problem �"

in a finite number of iterations, it is necessary to verify that problem  has a solution for any�"

combination of the two quantile constraints. This assertion will be proved in Theorem 1 by

means of limiting arguments.

Problem �" � Solve  and  for  ( cf.  ) under the two quantile constraints� � � ' �()�� 	 � �%�� �

�� 	 # � �� 	 # �	 # � #; P ; Y P Y ÃP Y
and where

Theorem 1: There exists a solution of problem � 	 �� �ø ø �"&

Proof � The proof involves four steps. In the first step it will be proved, using the notation in ,�%�

that for a given 0 and a quantile constraint  a unique  exists such that� �
 �� 	 #�	;
û

� ' �()�� 	 � �%��û � (cf. ) satisfies this quantile constraint. In the second step it will be shown

that for  the parameter ( ). The third step validates that for  the parameter� � �3 � 2 � � # 2 �û

�û
;2 � . Finally, in the fourth step, the statement of this theorem will be verified.

Step 1: Let a quantile constraint be specified for Assume that 0 is given and�� 	 #� �& 
; �

introduce the function ,  such that� � �� �

� � � � � � �� � � 7 -0� � �  	 1 � #	 � � � � 
 �& ����, , ;

From the structure of  it follows that �%� � � �� �,  is a continuous differentiable function for

� � � 
 �& � � 
� � � � � �1, ,  when 0 fixedConsider 0 and . From and  it follows,� 3 �+� �.�

respectively, that
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���
3 �

��� , �-
3 �

�

�

*� 	 � � �

� 	 � � �

� �

� �

,

,

respectively, for any fixed Hence, 0, the distribution of  converges to a� �
 �& 3 �when 

degenerate distribution with a single point mass concentrated at With �& � � � � �	 � � # � �;  

it thus follows from that����

��� � � � 
 �	 ����
3 ��

� � �,  � � #

for any fixed Similarly, using and using the fact that the distribution of � 
 �& �+�	 �.� �

converges to a degenerate distribution with a single point mass concentrated at 1 as ,� 8 �  we

obtain

��� � � � � � ��"�
� 8 �

� #� � �,  

for any fixed � 
 �& From with ,  being a continuous function, it follows that����	 ��"� � �� � �

9 � ��	 �� � 	 � � � 5 
 � ��%� : ,  .� � � � �û û

Utilizing expression  it follows that  is a strictly decreasing function in for any����	 � 	 �� � � �

fixed . Thus, given fixed 0,  is the unique solution to  and� � � � � �
 � 
 � 	 � � �û

� �� 	 #� 
 &' �()�� 	 � �%�� �û
;�  (cf.  ) satisfies the quantile constraint given fixed 0

Before proceeding to Step 2, note that the solution  depends on  (cf. )  and  (cf.� �û
;#	 � ����

��%�) motivating the following notation

� � �û
B� � 	 ��+�
;

)

where ): , , , such that�B ;;
� $ ��	 �� 2 ��	 �� � � � � � � � # � �

� � � � �� � � � � 5 
 � ��.�B; ), ,  .

From the structure of , and the implicit function theorem  it follows that ) is also a�%� ��.�	 	 �� �B;

continuous function for  Using the definition of  given by and , it follows� � � �
 �& � 	 � ���� ��.�

that
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7 -0� � �  � 	 1 � #	 5 
 � ��/�; B� � � �
;

) .

Step 2: Consider ), and let � � � 3 �&' �()�� 	 � �%� 	� � � � �û û
B�  (cf.  ) where 
;

From

continuity of 7 -0� � �  � 	 1 � ��/�; B ;� � � �
;

)  in  for fixed it follows from that

��� 7 -0� � �  � 	 1 � #& ��6�
3 ��

� �; B; )  �

For the structure of the density it has been shown above that as , the distribution of �+� 3 � ��

converges to a degenerate distribution of Class 2 in Figure 2. The limiting expectation of  as�

� 3 � thus becomes the expectation of a Bernoulli random variable and from it follows that��6�

��� * � � 	 � � � � # ����
3 ��

� � �  )  .B;

However, from  we have�+�

*� � 	 � � � 	 ���� ) )� � � � �B B; ;

for any and using and one concludes� 
 � ���� ����

��� � � � � #& ����
3 ��

� �B; )

In other words, the parameter ( ) as .� �û 2 � � # 3 �

Step 3:  Consider ), and let . From � � � 2 � �.�' �()�� 	 � �%� 	� � � � �û û
B�  (cf.  ) where 
;

it follows that as  the distribution of  converges to a degenerate distribution of Class 1� 2 � �

in Figure 2 with a single point mass concentrated at some  � � �	 ��&Ö From continuity of

7 -0� � �  � 	 1 � ��/� � � �; B ; ;� � � �
;

)  in  for fixed it follows from that . This means that,Ö

��� * � � 	 � � �
2 ��

� � �  ) .B; ;

Hence, from  we have�+�

��� � � � ����
2 ��

� �B ;;
) .

In other words, the parameter  as .� �û
;2 � 2 �
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Step 4: Let and be two quantile constraints� � 	 # � � 	 # �' �()�� 	 � �+� & � �� �  (cf.  )  Let ; P ; YP Y

specified for , such that  . Consider the associated functions ) and ) each� # � # � �P Y B B� � � �
; ;P Y

defined implicitly by and ( ), respectively. Introducing the function���� �.

:� � � � � �� � � � �B B; ;P Y
) )

it follows from that����

��� :� � � �� � # � � �� � # � � # � # 
 �& ��"�
3 ��

� P Y Y P

Similarly from it follows that	 ����

��� :� � � � � � � �& ��%�
2 ��

� ; ;P Y

From the continuity of  ) and ),  and  it follows that� � � �B B; ;P Y
� � ��"� ��%�

9 
 � ; :� � � �& ��+�� �ø ø

Denoting ) cf. it follows from that� � �ø ø
B� � � ��+��	 ��+�
;P

� � � � �ø ø ø
B B� � � � &
; ;P Y

) )

In other words,  satisfies both quantile constraints  and� �� 	 # �' �()�� 	 � �%�� �ø ø
; P(cf.  ) 
P

�� 	 # � � � &; Y
ø ø

Y
 and thus ,  is a solution to problem � � �" �

 

Theorem 1 proves the existence of a solution to problem . The uniqueness of the solution�"

� 	 �� �ø ø  to  would follow by showing that; (i) ) has  or 1 stationary points for ; (ii)� � �" :� � 
 �

if ) has a stationary point for 0 this stationary point coincides with a global maximum. It:� 
� �

is conjectured that the above assertions hold. Numerical analyses in the examples below support

this conjecture (see Van Dorp and Mazzuchi (2000)). In case multiple solutions exist to problem

�", the numerical algorithm below is designed so that the selected solution coincides with the

solution with the lowest value for , and thus the highest level of uncertainty. The latter solution�ø

would be a preferred solution, given that � �; ;P Y
and  ought to be elicited through expert judgment

in Bayesian Analysis.
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C. Design of a Numerical Procedure

Since problem   cannot be solved in a closed form, a numerical procedure that determines�"

a solution to problem  with a prescribed level of accuracy  in a finite number of iterations, is�" 	

desirable. Below, such a numerical procedure will be informally described  The numerical&

method uses a procedure for solving for the -th quantile of a Beta distribution. Such a procedure#

is described in the Appendix in Pseudo Pascal (denoted .�<=*>? ��

From and it follows that  is a  and  is an�+� �.� � �location parameter uncertainty parameter

given the value of These� � and higher values of  coincide with lower uncertainty levels.

interpretations of the parameters � � and  are used in the design of the numerical procedure to

obtain a solution to  which�" " ". Assume for now that an interval  is obtained containing � 	 � � �ø

yields a solution of where . Let  be the midpoint of this interval The� 	 � 	 � &� � � �ø ø ø
"� �B

ø
;
� ) �

@-th iteration of the numerical procedure will be described below.

To solve  satisfying the quantile constraint of  given a value for ,� �� 	 # �� �û�5 ; Y "Y
� 5

successive shrinking intervals are calculated containing the solution .  From ! 	 ( � � �%�8 8 5�û�

follows that .  Hence,  .  Next,  is set to the midpoint of � � �	 �� ! 	 ( � � �	 �� ! 	 ( �� �û�5 " " 8 8 8

and the probability mass  is calculated.  In case the�# � � 7 -0� �  	 1 �# � � # 	Y 8 ; 8 Y 8 Y�
Y
� �5

Beta distribution is skewed excessively towards 1.  Therefore, it follows from that the value�+�

of the location parameter  is too high.  Hence, the next interval containing is� �8 5� û�

! 	 ( � � ! 	 �& �# � 
 # 	8þ" 8þ" 8 8 Y 8 Y  On the other hand, when  the Beta distribution is skewed�

excessively towards .  Therefore it follows from that the value of the location parameter � �+� �8

is too small.  Hence, the next interval containing can be set to� ! 	 ( � �  	 ( �&� �û�5 8þ" 8þ" 8 8

Finally, the next estimate  is set to be the midpoint of the interval . The above�8þ" 8þ" 8þ"! 	 ( �

procedure is repeated until  is close to   with a pre-assigned level of accuracy. The�# � #Y 8 Y

quantile constraint of is satisfied once this accuracy has been reached and  is�� 	 # � �; Y " 5Y
� �û�

set equal to the . The algorithm above is a bisection method See, for example, Press et al.,�8 �

1989) and is provided in the Appendix in Pseudo Pascal (denoted   )  A specific�<=*>? � &

example of the algorithm in  is presented in Figure 3, where �<=*>? � �� 	 # � � ��&/�	 �&.��; YY
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and . The starting interval for equals , hence . Thus it follows� �" " " "� � ! 	 ( � � �	 �� � �&%�"

that , hence  and  Now we have , hence�# � 
 �&. ! 	 ( � � �&%	 �� � �&.%& �# � � �&.Y " # # Y�# 2

! 	 ( � � �&%	 �&.%� � �&+�%& �# � A �&. � # �$ $ Y $ Y and  Consequently we have ,  is set to� �$
û

"�

� �$ "� �&+�% � ' �()��� 	 �, the algorithm terminates and  satisfies the quantile�û
"� (cf.  )�%�

constraint  .�� 	 # � � ��&/�	 �&.��; ?Y
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Figure 3. An example of bisection method . A: Beta PDF’s and shrinking�<=*>? �

bisection intervals B: Beta CDF’s and sequence of ! 	 ( �	 �# � 	 � � �	 � 	 �8 8 Y 8

After solving for  (utilizing ) the procedure calculates the -th quantile� �<=*>?� #�û�5 P

( ) (utilizing  of . When ( ) the uncertainty in� � �; ; ;P P P5 5 5 5�<=*>?�� �()��� 	 � ��û� �

�()��� 	 �� �û�5 5 (cf.  )�%� is too high. Therefore, the current estimate of the uncertainty

parameter should be too low. Hence, the next interval which contains can be set to� �5
ø

� 	 � � �  	 � � 
 �()��� 	 �5þ" 5þ" 5 5 5 5 5 . On the other hand, if ( ) the uncertainty in is� � �� �; ;P P

û�

too low Therefore, the current estimate of the uncertainty parameter is too high. Hence, the& �5

next interval which contains can be set to   Finally, the next estimate� �ø � 	 � � � � 	 �&5þ" 5þ" 5 5

�5þ" 5þ" 5þ"is taken to be the midpoint of the interval . The above procedure is then repeated� 	 � �

until the current estimate ( )  is close to  with the pre-assigned desired level of accuracy.� �; ;P P5
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The quantile constraint of  is met once this accuracy has been reached. The�� 	 # �; P "P
�

parameters  are set equal to the pair  The algorithm above is a� 	 �� �ø ø that solve �" 5 5�� 	 �&� �û�

bisection method and is provided in the Appendix in Pseudo Pascal denoted A
 ��<=*>? � &

specific example of the algorithm  is presented in Figure 4, where�<=*>? �

�� 	 # � � ��&��	 �&���	 �� 	 # � � ��&/�	 �&.�� � � � � �&+�%; P ; Y "P Y
,  and .� �û

"�

qU

qL

Cumulative Distribution Function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

xqU(xqL
)1 (xqL

)2

(xqL
)3 ≈ xqL

Probability Density Function

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[a1,b1] = [0, 6]

β1 = 3
[a2,b2] = [0, 3]

β2 = 1.5

[a3,b3] = [1.5, 3]
β2 = 2.25

(α°)1 = 0.625 

(α°)2 = 0.554 

(α°)3 = 0.600 

qU

qL

Cumulative Distribution Function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

xqU(xqL
)1 (xqL

)2

(xqL
)3 ≈ xqL

Probability Density Function

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[a1,b1] = [0, 6]

β1 = 3
[a2,b2] = [0, 3]

β2 = 1.5

[a3,b3] = [1.5, 3]
β2 = 2.25

qU

qL

Cumulative Distribution Function

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

xqU(xqL
)1 (xqL

)2

(xqL
)3 ≈ xqL

Probability Density Function

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[a1,b1] = [0, 6]

β1 = 3
[a2,b2] = [0, 3]

β2 = 1.5

[a3,b3] = [1.5, 3]
β2 = 2.25

Probability Density Function

0

0.5

1

1.5

2

2.5

3

3.5

4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

[a1,b1] = [0, 6]

β1 = 3
[a2,b2] = [0, 3]

β2 = 1.5

[a3,b3] = [1.5, 3]
β2 = 2.25

(α°)1 = 0.625 

(α°)2 = 0.554 

(α°)3 = 0.600 

Figure 4.  An example of bisection method . A: Beta PDF’s and shrinking�<=*>? �

bisection intervals B: Beta CDF’s and a sequence of � 	 � �	 �� � 	 @ � �	 � 	 �5 5 ; 5P

The starting interval for equals 6 . It follows that , hence�" " " ; "� 	 � � � �	 � �� � � �&�
P

� 	 � � � �	 �� � &% � � �&%%" �<=*>?��&# #  and 1 ,  (determined using  It follows that�# �û
#�

�� � 
 �&� � 	 � � � �&%	 �� � �&�% � � �&+��; " $ $P
, hence  and ,  (determined using�$ �û

#�

�<=*>?��& �� � A �&� � # 	 It now follows that , the algorithm terminates  is set; " P
ø

P
�

� � � �$ � �&�% � � �&+�� � ' �()�� 	 �,  is set to  and we have  which satisfies theø ø ø
$�û�

quantile constraints  .�� 	 # � � ��&��	 �&���	 �� 	 # � � ��&/�	 �&.��; P ; YP Y
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To determine a starting interval  containing  the following steps could be adopted� 	 � �" " �ø

in the procedure.  Set the lower bound  To obtain the upper bound set , where� � �& � 	 � �" " " 5� ,

@ � � � �, and solve for satisfying  the quantile constraint of problem  utilizing�û� "Ä5 ; "Y
�

�<=*>?�& # �()��� 	 � Next, solve for the -th quantile ( ) of  (utilizingP ; " 5 "Ä5 " 5�
P , ,� �û�

�<=*>?� � �()��� 	 �).  In case ( ) the uncertainty in  is too high. Therefore,� �; " 5 ; "Ä5 " 5P P, ,� �û�

� � �" 5 " 5þ" " 5
ø

, , ,� � �� .  In that case, set    and repeat the above procedure.  Conversely, in the

case ( ) the uncertainty in  is too low. Therefore, In� �; " 5 ; "Ä5 " 5 " 5
ø

P P, , ,
 �()��� 	 � 
 &� � �û� �

that case, set and the starting interval  has been determined. Note that if multiple� � � 	 � �" " 5 " "� ,

solutions exist to problem , the starting interval is chosen in such a manner that the selected�"

solution for  by means of the algorithm coincides with the solution with the lowest value for�"

�ø, and consequently the highest level of uncertainty.

The three different bisection methods  and  �<=*>? �	 �<=*>?� �<=*>? � were

implemented in a PC-based program BETA-CALCULATOR. Figure 5 displays a screen capture

of BETA-CALCULATOR.

Figure 5. Screen Capture of BETA-CALCULATOR with

 calculation results for the first row in Table 1.
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The accuracy for  in the bisection methods and was set to be .� �<=*>?� �<=*>?� ���)

The accuracy in the bisection method  was set to be . Table 1 contains solutions�<=*>?� ���%

to problem   for 4 different combinations of a lower quantile and upper quantile constraint�

calculated using BETA-CALCULATOR.  In addition, Table 1 provides the maximum number of

iterations in each bisection method to yield the solutions with the above settings of error-

tolerances. Figure 5 contains the results for Example 1 in Table 1. Example 4 in Table 1

coincides with the setup of the Weiler’s (1965) graphical method. Finally, Figure 6 depicts the

probability density functions and cumulative distribution functions associated with the examples

in Table 1. Note that the U-Shaped, J-Shaped and Unimodal forms of the Beta distribution are

represented in Figure 6.

 Table . Some Calculation Examples of Beta Parameters�

 given an upper and a lower quantile constraints

# � �

*����B( � � �&�% �& % �&//+� �&%�6+ �� �% ��
C �&�% �&.%

*����B( � � �&"6 �&�% �&�+.� ��&�6�+ .� �" ��
C �&66 �&+�

*����B( � � �&�� �&�� �&�"�.

;
ø ø� � #  #  2 #  3

1

�&+��/ �+ �+ ��
C �&%� �&��

*����B( " � �&�% �&"% �&+��� �6&%+�% "" �% ��
C �&6% �&/�
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Figure 6. A: Beta Probability Density Functions for the Examples in Table 1,

B: Beta Cumulative Distribution Functions for the Examples in Table 1.

III.  Specification of Prior Dirichlet Parameters

Analogously to  and for a straightforward application of the numerical procedures derived in�%�

Section  (and provided in the Appendix), we reparameterize the Dirichlet distribution given by�

��� � � � � �	 � 	 �	 by introducing the new parameters   and ,  yielding the� � ��
3æ"

7þ"

3 3
)
"
3

probability density

� �

� � � � � �

� �

� $ � $ �� � �

� � � � 	 ��.�� �� �� �� �� �� �
3æ" 3æ"

7 7

3 3
3æ" 3æ"

7 7

3
÷ �"

3

÷µ"� ¶�"
" !

" !

3 3æ"

7

3
!

where   and  A random vector� � �	 � � �	 � �	 � � �	 � 	 �	 � � 
 �&3 3 3 3
3æ" 3æ"

7 7� �� � �

� � �� 	 � 	 � � ��.�" 7 distributed according to the reparameterized Dirichlet distribution  will
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be denoted by ). D�-�EFB()� �%��	� Note that, as in the case of , the condition on the parameters

� � � 	 � 	 � � 	 � � �	 � 	 �&� �" 7 3 is identical to the conditions on the variables 

A. Basic Properties of the Dirichlet Distribution

Let a random vector � � �� 	 � 	 � � ' D�-�EFB()�" 7 �	�). It may be derived from that��.�

marginals distribution of  are given by  (in parameterization of )� � ' �()�� 	 � �%� 	3 3 3� �

� � �	 � 	 �. T hehe moments  follow by substituting  for  in . Analogously, t*�  � �/�3
8

3�	� � �

mean and the variance of  follow by substituting �3 � �3 for  in  and , respectively. Hence,�+� �.�

the parameter  of the may be interpreted as the common shape� D�-�EFB()��	�) distribution 

parameter amongst � � �� 	 � 	 � �" 7 , whereas the vector  may be interpreted� � � 	 � 	 �� �" 7

as a location parameter of .� Such an interpretation was not valid for the original

parameterization given by  involving the parameters Similar to the��� 	 � � �	 � 	 � � �&�3

analysis in Section 2.1 it follows that we may draw conclusions regarding the limiting

distributions of the D�-�EFB()��	� �) based solely on the limiting behavior of the parameter .

Letting ) distribution converges to a� 2 � we observe that a  degenerateD�-�EFB()��	�

distribution with a single point mass concentrated at , we deduce that the�. Letting � 3 �

D�-�EFB()��	 ��) distribution converges to an -variate Bernoulli distribution with marginal

parameters  in Class 2 of Figure 2, . The dependence structure in the limiting -�3 � � �	 � 	 � �

variate Bernoulli distribution is obtained by studying the limiting behavior of the pairwise

correlation coefficients in a . Utilizing theD�-�EFB()��	�) distribution as � 3 �

reparameterization in  it��.�  follows that

>GH � � � � ��/�
�

( , )
1   3 4

3 4� �

�

and with and ��/� �.�

>G- � � � � � ��6�
>GH�� 	 � �

, �-�� �, �-�� �
( , ) .

  
3 4

3 4 3 4

3 4�  � �

�� � ��� � �� �3 3
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Apparently, the correlation structure in a D�-�EFB()��	�) distribution does not depend on the

common scale parameter , and  describes the dependence structure of the limiting -� ��6� �

variate Bernoulli distribution when  Relation  is consistent with the well-known result� 3 �. ��6�

(see Kotz et al. 2000) that the correlations in a "classical" Dirichlet distribution are negative.

We now present several basic properties of the ) distribution below utilizingD�-�EFB()��	�

reparameterization . It would appear (similar to the result in  that some further��.� ��6��

transparency may be achieved by expressing these properties in terms of ). Firstly, f��	� or any

index set ,I J 0�	 � 	 �1

�E E' D�-�EFB()� 	 ����� 	�)

where �E E
3 3� 0�  � � I1 � 0  � � I1 and . Next,� �

� �
3�E 3�E

3 3� ' �()�� 	 �� �

and

�

�
' �()�� 	 �&

4 4

3�E
3

3�E
3 3�E

3� � ��

�
� �

Finally, utilizing  we may derive the conditional probability density function of ���� �  �	� �E E-

where  denotes the complement of i.e.  yieldingI I	 I � 0�	 � 	 �1 K I	- -

� � � �� �� �
� �� �� �

� � �

� $ � $ �� � �

L

M � M

�

� �

� � � � � �

�

"

" !
" !

•

• •
• •

�"

3�E 3�E
3 3

3�E 3�E

÷ �"
3 3

÷µ"� ¶�"

•

• • • 

3 3�E
3

!

����

where
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� � � �
�

� � � � 	 � $ �� � �	 ����
� �

� � �
4�E 3�E

4 3

3�E
3- -

-

    .• �
�

3
3• �

The distribution in  may be recognized as that of an - dimensional vector , where����  I  I �

indicates the cardinality of the index set , andI

� � � �N N, ,' D�-�EFB()� 	 ��• •

where  are given by . Setting  in  and  yields�• •� 0 ���� I � 0�1 ���� ����� �3 3
• • � � I1 and  and �

what is called the  of  as a transformed  with thefull conditional distribution � �()�� 	 �3 3� �• •

support

�	 � � � ��
4æ"Ä4¦3

4 .

The latter result is relevant to the application of the Markov Chain Monte Carlo (MCMC)

methods utilizing a (see, e.g., Casella & George (1992)). The MCMC methodsD�-�EFB()� 	 �� �

have spurted an emergence of numerous Bayesian applications (see, e.g. Gilks et al. (1995)) as

these methods allow for  sampling from a posterior distribution by successively sampling from

posterior full conditional distributions, without having a closed form of the posterior distribution.

B. Solving for the Dirichlet Prior Parameters

In order to solve for the common shape parameter  and location parameter of� � �� � � 	 � 	 �" 7

an  dimensional random vector  distribution using quantile estimates, it� ' D�-�EFB()� 	 �� � �

is required to solve problem �# .below

Problem �# � Solve  and  for , under the two� �� �� �' D�-�EFB()� 	 � � �� 	 � 	 � �" 7

quantile constraints �� 	 # � �� 	 # � � 	 # � # 	 � � �3 3 3 3 3 3
; ;P Y P Y3P Y

and  for where  and  single quantile

constraints  for  �� 	 # � � 	 O � �	 � 	 �	 O P �&4 4
; 4
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Note that the quantile levels  and (or may differ amongst , . Since# � O � �	 � 	 �4
4# #3 3

Y P  ) 

� ' �()�� 	 �3 3� � , it follows immediately from Theorem 1 that a solution to problem  exists.�#

When multiple solutions are available to problem , the numerical algorithms in the Appendix�#

are designed such that the selected solution coincides with the solution with the lowest value for

�, and thus the highest level of uncertainty. The latter solution would be a preferred solution

given that the quantile constraints in  ought to be �# elicited through expert judgment in Bayesian

Analysis. The algorithm to solve Pseudo Pascal using the bisection�# is provided below in 

methods described in the Appendix.

=?*7 � ; �<=*>?�� 	 O � � ;� �3� � � 	 # 	 #3 3 3 3
; ; P YP Y

	 �:

=?*7 � ; <Q O P � )F(� 	 �<=*>?� � 	 	 # �R(�4
4 4
; �

=?*7 � ; <Q O � � )F(� O ; � O � �R SG)G =?*7 �R *BT( =)G�R  

Table 2 below describes two instances of problem  and their solutions using the algorithm�#

above for , where  and  Note that, � �� �� 	 � � ' D�-�EFB()� 	 � � � 	 �&" # " #� �� � � �� 	 # �" "
; PP

and in Table 2 coincide with the third row of Table 1. Hence,  and  also coincide in�� 	 # �" "
; Y "Y

 � �

Tables 1 and 2 resulting in a J-shaped marginal form for the pdf of given in �" Figure 6A.  The

resulting marginal form in Example (2) of Table 2 for  is J-shaped (uni-modal). Figure 7� �#

displays the resulting Dirichlet densities for the examples in Table 2. Note that, the marginal

density of  in both Figures 7A and 7B is identical and J-Shaped, whereas the marginal form of�"

�# in Figure 7B is uni-modal. As a result, the joint pdf in Figure 7B has a single mode at

�� 	 � � � ��	 ��" # . Figure 7A displays three modes at each corner of the unit simplex.
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Table 2. Calculation Examples

� �

�#	 � � �#	 � �

*����B( � � ��&��	 �&��� ��&��	 �&��� �&�"�. �&�"�. �&+��/
C ��&%�	 �&���

*����B( � � ��&��	 �&��� ��&"�	 �&%�� �&�"�. �&

" #

; ; #

       
� � �1

%++% �&+��/
C ��&%�	 �&���

A B

1

0
0

1

1

01

0

x1

x2

x1

x2

Figure 7. A: Dirichlet PDF of Example  in Table 2,�

B: Dirichlet PDF of Example 2 in Table 2.

IV.  Specification of Ordered Dirichlet Parameters

Analogously to  and  we reparameterize the Ordered Dirichlet distribution given by  by�%� ��.� ���

introducing   and ,  yielding the probability density� � �� � � � �	 � 	 �	�
3æ"

7þ"

3 3
)
"
3
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� �

� � � � � �

� �

� $ � $ �� � �

L

� �� � � � �� � � �

� �� �� �
� ��

3æ" 3æ"

7 7

3 3

"
÷ �"

3æ#

7

3 3�" 7
÷ �"

÷µ"� ¶�"
" ! " !

" !
3 3 3æ"

7

3
!

����

where   and The distribution given by� � � � � � �	 � �	 � � �	 � 	 �	 � � 
 �&3�" 3 3 3
3æ"

7

� � ��
���� UD�will be denoted by � �	 � � 	 � 	 �� � �), where ." 7

A. Some Properties of the Ordered Dirichlet Distribution

Let a random vector � � �� 	 � 	 � � ' UD�" 7 �	�). It easily follows from that marginals����

distribution of  are given by�3

� ' �()�� 	 �	 � ��"�3 5
þ þ
3 3

5æ"

3

� � � � �
(in parameterization ) . T�%� 	 � � �	 � 	 � he moments  follow by substituting  for*�  �3

8 �	� �þ
3

� � in . Analogously, t  for  in �/� �+�he mean and the variance of  follow by substituting �3
þ
3�

and , respectively. As above, the parameter  of the may be interpreted as the�.� UD�� �	�)  

common scale parameter amongst � � �� 	 � 	 � �" 7 , whereas the vector �þ þþ
" 7� � 	 � 	 �� �

may be interpreted as a location parameter of .� Similarly to the analysis in Section 3.1 it

follows that that the degenerate distribution with a point mass concentrated at parameter  cf.�þ �

��"� U 2 � 3 �) is the degenerate distribution of an . D��	�) distribution by letting Letting � �

we deduce that the UD��	 ��) distribution converges to an ordered -variate Bernoulli

distribution cf. ), with marginal parameters . The dependence structure in�þ
3 � ��"� � � �	 � 	 �

the limiting ordered -variate Bernoulli distribution is obtained by studying the limiting�

behavior of the pairwise correlation coefficients in a . UtilizingU 3 �D��	�) distribution as �

the reparameterization in  it����  follows that
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>GH � � � � ��%�
>GH�� 	 � �

, �-�� �, �-�� �

�� � �

�
( , )

1   3 4
3 4 3 4

3 4

þ þ

� � �

�

and with  and  we have��%� �.�

>G- � � � ��+�
�� � �

�� � �
( , ) .

  
3 4

þ þ
3 4

þ þ
3 4

�� �

� �

Utilizing the pdf reparameterization in , it follows from that the correlation structure in���� ��+�

a UD��	� �) does not depend on the common scale parameter  as it is in the case of the

D�-�EFB()��	�) distribution. Note that, unlike the case of D�-�EFB()� 	 � 	� �  distribution  the

correlations are positive. The difference between the signs of the correlations in the UD��	�)

and ) distributions may in part be explained by the differences in their supportD�-�EFB()��	�

(see, Figure 1). )An additional useful property for the  is that for any index set U I JD��	�

0�	 � 	 �1,

�E E' UD� 	 ��.�� 	�)

where �E E E
3 6� 0�  � � I1 � 0  B � �	 � 	 I1,  and� �

�
�

� �6 þ þ
E E

þ

E E

�
B � �

� B � 	 � 	  I � µ6¶

µ6¶ µ6�"¶
2

where, as above,  indicates the number of elements in the index set  and  indicates the - I I I Bµ6¶

th element in , such that 2 . Furthermore,I I 
 I 	 @ � 	 � 	  I µ6¶ µ6�"¶

�� � � � ' �()�� � 	 �4 3 4 3
þ þ� � �

and

�

�
' �()��

3

4

�

�
��3 þ

þ

4
þ 4	 �&

where  and O 
 � �3
þ are defined in . Finally, utilizing  we may derive the conditional��"� ��.�

probability density function of  where  denotes the complement of i.e.�  �	 I I	� �E E --

I � 0�	 � 	 �1 K I I � 0�1 � � 0�	 � 	 �1-  and ,  yielding
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� � � �

� �� � ��

� �� � �

� � � �� �� � � �

�� � � � �� � � �
��/�

3 þ"

3 þ" 3þ" 3�"

3 3�" 3þ" 3
�" �"

µ þ ¶�"

"! "!

" ! !

3 3þ"

3þ" 3

The distribution in  may be recognized as that of a random variable  where��/� �

� � & ��6��� � � �N � � N ' �()�� 	 � � ��
�

3þ" 3�" 3�"
3

þ þ
3þ" 3�"

þ þ
3þ" 3�", 

�

� �
� � �

where is defined by . Hence, the distribution of  (referred to�þ
3þ" ��"� �  � I � 0�1� �E E-

 where 

as the  of ) is a transformed Beta distribution with supportfull conditional distribution �3

�
��

�	 � � � � �
� 	 � � � � �	 � 	 � � �
� 	 �� � � �

3þ"

3�" 3þ"

3�"

As above, the result in  and  is relevant to the application of Markov Chain Monte Carlo��/� ��6�

(MCMC) methods (see, e.g. Casella & George (1992)) utilizing an  distribution.UD� 	 �� �

B. Solving for the Ordered Dirichlet prior parameters

To solve for the common shape parameter  and location parameter of an � � �� � � 	 � 	 � �" 7

dimensional random vector  distribution using quantile estimates, we are required� ' UD� 	 �� �

to solve problem �$ .below

Problem �$ � Solve  and  for O , under the two quantile� �� �� �' D� 	 � � �� 	 � 	 � �" 7

constraints �� 	 # � �� 	 # � � 	 # � # 	 � � �3 3 3 3 3 3
; ;P Y P Y3P Y

and  for where  and  single quantile

constraints  for   such that�� 	 # � � 	 O � �	 � 	 �	 O P �4 4
; 4

� � � � � � � � � � � � � � � � �"��" # 3�" 3 3 3þ" 7
; ; ; ; ; ; ;P Y

Note that the quantile levels  and (or may differ amongst , . Since# � O � �	 � 	 �4
4# #3 3

Y P  ) 

� ' �()�� 	 �3
þ
3� � , it follows immediately from Theorem 1 that a solution to problem  exists.�$

In case multiple solutions exist to problem , the numerical algorithms in the Appendix are�$
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designed in such a manner that the selected solution coincides with the solution with the lowest

value for , and thus the highest level of obtained uncertainty. As mentioned above, the latter�

solution would be a preferred solution  is provided below in . The algorithm for solving Pseudo�$

Pascal using the bisection methods described in the appendix.

=?*7 � ; �<=*>?�� 	 O � �  ;� �þ
3 � 	 	 �� � 	 # 	 #3 3 3 3

; ; P YP Y
:

=?*7 � ; <Q O P � )F(� 	 �<=*>?� � 	 	 # �R(�þ
4

4 4
; �

=?*7 � ; <Q O � � )F(� O ; � O � �R SG)G =?*7 �R *BT( SG)G =?*7 "R  

=?*7 " ; ; � �" �þ
"

=?*7 % ; V G- � ; � � )G � !G ; � � � � �3
þ þ
3 3�"

Note that Steps 1 to 3 are identical to those in the algorithm to solve problem�# associated with

a distribution. As an example of the procedure above, note that the Example 2D�-�EFB()� 	 �� �   

in the second row of Table 2 satisfies the order restriction  since  and�%�� � � �&��	 � � �&��" "
; ;P Y

� � �&%� # � �&��	 # � �&%� # � �&"�2
;

" " #
P Y. Note that the corresponding quantile levels  and 

differ. From Table 2 it follows that

� � �þ þ
" #� �&�"�.R � �&%++%R � �&+��/

Executing Steps 4 and 5 in the algorithm above it follows that for this example

� � � � � �� �&+��/R � � �&�"�.R � � � �&%++% � �&�"�. � �&���/ �"��" #
þ þ þ
" # " .

The probability density function of the Ordered Dirichlet distribution associated with  is�"��

presented in Figure 8.
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1

0

1

0

x1 x2

Figure 8. Ordered Dirichlet PDF associated with .�"��

C. Transforming the Ordered Dirichlet Distribution and Numerical Stability

The use of an -variate Ordered Dirichlet distribution to specify a prior distribution may be�

extended to the unbounded domain  by transforming to  or ,� � � � � ���� � � � (	þ 7 �]
3 3 3

3

where , Although the quantile levels � �� UD� 	 � � �� 	 � 	 � �& # 	� � " 7
4 and (or# #3 3

Y P  )

O � �	 � 	 �	 may differ in the specification of problem  and in its solution, it is perhaps more�$

practical from an expert judgment elicitation point of view to set e.g. # �4 # � �&%�3
P  and

# � �&6%3
Y  . (which are quantile levels widely used in practice) Hence, measures of location for

every  are established by eliciting their median values and one could utilize the median ( %� %�3

quantile) of  and the % quantile for  to determine the common shape parameter . Table 1� 6% �3 3 �  

below contains such median estimates for failure rates of an exponential life timeM!Ã&!"

distribution in different stress environments (see, Van Dorp and Mazzuchi (2003)). In addition,

the 95% quantile M!Ã*&"  of the failure rate at Environment 1 (which is typically the use-stress

environment in an accelerated life testing set-up)  is provided as well.
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Table 3. Environments, Prior Failure Rates

and Transformations

*�H�-G��(�) ?(�� , GB) 7 -�G- M 7 -�G- � 7 -�G- �

V , D>� �FGW-T� E � E � /"�&+�

� ��� ��&� %&��+ $ �� �&6666% �&6% %

� ��% ��&� �&��� $ ��

3 3 3
!Ã&! !Ã&! !Ã&!

û �"

�&

( ) ( 1

8

�%

�%

�$

�$

!Ã*&
"

�&6666/ �&6��+

� �+� �%&� %&.�� $ �� �&666"� �&+�.�

" ��� �.&� �&"�6 $ �� �&66/%. �&���"

% �%� �6&� �&./� $ �� �&66+�� �&�"�%

M �) WT( T)-(TT �&��% $ �� �&66/+6 �&���+�$

Note that the median failure rates , , are very small (common to the acceleratedM � � �	 � 	 %3
!Ã&!

life testing area) and increase rapidly when the stress in an environment increases (see, e.g., Van

Dorp and Mazzuchi (2003)). The resulting transformed medians  follow utilizing the�!Ã&!
3

transformation  and are provided in fourth column in Table 3. Note that these� � (!Ã&! �C
3

!Ã&!
3

values for ,  are very close to .� � � �	 � 	 % �!Ã&!
3

Instead of the transformation  we may utilize a more general transformation� � � ���� �3 3

� � X � � ( �"��
� ���� �

E
3 3

3 �-]3

to define a prior distribution on the domain  via the Ordered Dirichlet distribution, where�	 ��7

E is a preset transformation factor. As an example, the fifth column in Table 3 contains the

transformed median values  where . Note that, these� � ( � � �	 � 	 %	 E � /"�&+�!Ã&! �-C
3

!Ã&!
3

median values are now spread over the entire support  rather than being in the vicinity at 1.�	 ��  

The motivation for utilizing  follows from (i) the value of the medians , (ii) the Beta�"�� M3
!Ã&!

marginal distributions of  and (iii) the fact that no closed-form expression is available for the�3

incomplete Beta function given  | given by ��� �	 �� �"�&
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Several numerical algorithms exist to approximate the incomplete Beta function given by �"�

(see, e.g., Press et al. (1989)) These approximations are well-behaved for parameter values&

� � � 	 � � � � � � � � �. However, in case , the Beta density at , resulting inexplodes 

numerical instability for the approximation of  for the values close to Vice��W  �	 �� W � �&

versa, in case the Beta density  at , resulting in numerical instability of� � �	 � � �explodes 

��W  �	 �� W � � E for values in the vicinity of . Figure 9A depicts the situation in Table 1 with 

� � � � � ��  and medians  close to . As the probability mass in the interval ,  has to account3 3
!Ã&! !Ã&!

for % of the total probability mass, the associated Beta marginal densities will have an infinite%�

mode at resulting in numerically unstable behavior of evaluation of   |  (cf. ) when�	 ��� �	 �� �"�

setting  into . The closer these median values  are to the boundaries  (or , theE � � �"�� � � ��3
!Ã&!

larger will the numerical instability be in evaluating  | (cf. ).��� �	 �� �"�

To reduce instability in numerical evaluation of  | (cf. ) one may select a preset��� �	 �� �"�

transformation factor  in  such that distance between median estimates E �"�� � 	 � � �	 � 	 %	3
!Ã&!

and  the boundaries of the support be as large as possible. Figure 9B depicts the motivation�	 ��

behind using  with a value of   The idea in Figure 9B is to choose a preset�"�� E 
 �&

transformation parameter  such that the incomplete Beta function  | corresponding toE ��� �	 ��

� � � ��� �	 ��&
!Ã&! (the median at the highest stress level) is as well-behaved at 0 as |

corresponding to  (the median at the lowest stress level) at . The suggestion in Figure� � � �1
!Ã&!

7B  is to select such that  orE � � � � � 	&
!Ã&! !Ã&!

1

( � � � ( �"���-÷C �-÷C!Ã&! !Ã&!
& " .

Unfortunately, cannot be solved in closed form. General root finding algorithms may be�"��

used to solve for the transformation constant  numerically up to a pre-assigned level ofE

accuracy. The resulting value for the transformation factor utilizing  and in Table 3E M M!Ã&! !Ã&!
" &

and  equals  as indicated in Table 3   Note that, indeed in the fifth column in Table 3,�"�� /"�&+� &

� � � � � �& 3
!Ã&! !Ã&! !Ã&!

1 . Utilizing the median  in the fifth column of Table 3 the parameters of the

UD� 	 �� �  may be solved by means of the algorithm described in the previous section.
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Figure 9. Transformation to medians  with Transformation Factor � � � �	 � 	 % E!Ã&!
3

The resulting parameter values are:

� � �� �&++%+R � �&�%��R � �&�"/� �""�" # ; 

� � �$ % &� �&��6/R � �&��+/R � �&���6R

It follows from  and  that��"� �""�

� � � � � �&�%%� � ��
3æ"

&

3 "& "
þ þ� � � �1

indicating an identical numerical behavior when evaluating the cdf of  and .� �& "

It should be noted that  may be useful to increase numerical stability when transforming a�"��

D�-�EFB()� 	 � � % �%+�� �  distribution. In the latter case, the indices  and  in  would have to be

replaced by those indices representing the largest and smallest median values in the

D�-�EFB()� 	 �� �  distribution.
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V. Conclusions

Algorithms have been developed for solving the prior parameters of the Beta, Dirichlet and

Ordered Dirichlet distributions based on quantile constraints. The development of these

algorithms involved a reparameterization which allows interpretation of these prior parameters in

terms of a location parameter and a shape parameter . Limiting distributions of the Beta,� 
 �

Dirichlet and Ordered Dirichlet distributions follow in a transparent manner from the limiting

behavior of the common shape parameter . Existence of parameter solutions for the Beta,�

Dirichlet and Ordered Dirichlet distributions was proved utilizing their limiting distributions. We

note in passing that the reparameterization advocated in this paper may be related to the

orthoganality of parameters. We have not checked as yet whether indeed the condition for

orthoganality as described for example in Cox and Reid (1987), is valid in our case.

Appendix

Let  using the reparameterization given by .� ' �()�� 	 � �%�� � The bisection methods below

use the numerical algorithm given in Press et al. (1989) to evaluate the incomplete Beta function

�� $  �	 � �%� �<=*>?� 	 	 #� # � �) given by . ( ,  solves for the -th quantile of . Output�; � �  ;

parameters are indicated in bold. (  solves for the parameter  satisfying�<=*>?� � 	 	 #��û	 ; �  �û
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