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|. Introduction
The time-honored 2 parameter Beta distribution

F'(a+0)

= vl (1) a x
Fo T =) ek > 0 € 0,1) 1)

which is the main subject matter of this volume, iswell known in Bayesian methodology as a
prior distribution on the success probability p of abinomial distribution (see, e.g. Carlin & Louis
(2000)). Many authors (see, e.g. Gavaskar (1988)) have quoted the suitability of a Beta random
variable X in different applications due to its flexibility. The transformation Y = — Ln(X)
transforms the [0, 1] support of X into the support [0, o) of Y, while still inheriting the
flexibility of X. Hence, the use of the Beta distribution as a prior distribution is by no means
restricted to a bounded domain. For example, Van Dorp (1998) utilizes the above transformation

to specify aprior distribution on the positive shape parameter of a Weibull distribution.
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PARAMETER SPECIFICATION AND DIRICHLET EXTENSIONS 2

Amongst m-variate extensions of the Beta distribution (i.e. m - dimensional joint
distributions with Beta marginals) the Dirichlet distribution (see, e.g., Kotz et a. (2000)),
m+1
r( 3 ei)

e (N2 :

wherez; >0,i=1,...,m, > z; <1,0;, >0,i=1,...,m + 1 hasenjoyed wide popularity in
i=1

Bayesian methodology (see, e.g., Cowell (1996), Johnson & Kokalis (1994) and Dennis (1998)).
Application areas include Reliability Analysis (see, e.g., Kumar & Tiwari (1989), Coolen (1997)
and Neath & Samaniego (1996)), Econometrics (See, e.g. Lancaster (1997), and Forensics (see,
e.g., Lang (1995)). The use of the m-variate Ordered Dirichlet distribution (see, e.g., Wilks
(1962))
m+1
F( ; 91) m+1
o @)™ (3)
[Ire) =
1=1

wherexg=1—2, 1 =0,0<z; 1 <z; < lL,i=1,....m+1,0; >0,i=1,...,m+1,in
Bayesian applications is less prevalent and the distribution is generally less well known. To the
best of our knowledge, applications of (3) have been limited so far to reliability analysis
problems (see, e.g., Van Dorp et a. (1996), Van Dorp et al. (1997), Erkanli et al. (1998), Van
Dorp and Mazzuchi (2003)). A fundamental difference between the Dirichlet distribution
(defined on a simplex) and the Ordered Dirichlet distribution (defined on the upper pyramidal
cross section of the unit hyper cube) is their support. Figure 1 below illustrates this difference for
the bivariate case. Both the Dirichlet and Ordered Dirichlet random vector X = (X, ..., X,,)
inherit the flexibility of its Betamarginas X;,i = 1,..., m. Transforming these m-variate
extensions by means of the transformation Y; = — Ln(X;),i = 1,...,m alow for flexible prior

distributions not restricted to the unit hyper cube. Van Dorp and Mazzuchi (2003) used a similar
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PARAMETER SPECIFICATION AND DIRICHLET EXTENSIONS 3

transformation to define a prior distribution on a set of ordered failure rates on [0, o)™ viaan

ordered Dirichlet distribution.

0<x+ %<1

_

Figure 1. A: Support of a Bivariate Dirichlet Distribution

B: Support of a Bivariate Ordered Dirichlet Distribution

Practical implementation of subjective Bayesian methods involving the Beta distribution and
its Dirichlet extensions evidently require the specification of their parameters. To avoid being
incoherent in these Bayesian analyses, the specification of these prior parameters preferably
should not rely on classical estimation techniques which use data, such as maximum likelihood
estimation or the method of moments. The specification of the prior parameters ought to be based
on expert judgment elicitation. To define the prior parameters, expert judgment about quantities
of interest are elicited and equated to their theoretical expression for central tendency such as
mean, median, or mode (see e.g. Chaloner and Duncan (1983)). In addition, some quantification
of the quality of the expert judgment is often given by specifying a variance or a probability
interval for the prior quantity. Solving these equations generally would lead to the required

parameter estimates.
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Methods for eliciting the parameters of a Beta distributions have focused on eliciting: (a) a
measure of central tendency such as the mean and a measure of dispersion such as the variance
(see, e.g., Press (1989)), (b) the mean and a quantile (see, e.g. Martz and Waller (1982)) or (c)
equivalent observations (e.g. Cooke, 1991). Elicitation of the mean (and certainly the variance),
however, requires alevel of cognitive processing that elicitation procedures which demand it,
may well produce little more than random noise (see, Chaloner and Duncan (1983)). Hence, it is
desirable, for designing of a meaningful elicitation procedure for engineers, that elicited
information can be easily related (i.e. involving little cognitive processing) to observables (see,
e.g., Chaloner and Duncan (1983)). While Chaloner and Duncan (1983), (1987) elicit Beta prior
parameters and Dirichlet prior parameters by relating these parameters to the modes of
observable random variables and non-uniformity around their modes, they also advocate the use
of quantiles, such as the median and alower quantile, for the elicitation of prior parameters. An
additional advantage of eliciting quantilesisthat it allows for the use of betting strategiesin an
indirect elicitation procedure (see e.g. Cooke (1991)).

This chapter addresses the problem of specification of prior parameters of a Beta distribution
and its Dirichlet extensions above via quantile estimates. It is envisioned that these quantile
estimates are elicited utilizing expert judgment techniques thereby allowing coherent and
practical application of the Beta distribution and its Dirichlet extensions in Bayesian Analyses.
Solving for the parameters of these prior parameters via quantile estimates involves using the
incomplete Beta function B(z|a, b) given by

I'(a+0)

W /Oxpal(l — p)’dp, (4)

wherea > 0, b > 0. Theincomplete Beta function B(z| a, b) has no closed-form (analytic)
expression. Hence, Weller (1965) resorted to solving graphically for the two parameters of the
Beta distribution given the g-th and (1 — ¢)-th quantile. This graphical approach, however, is
limited to the number of graphs plotted. For intermediate solutions interpolation methods must

be used, which are often subject to an interpolation error.
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The adaptability of the Beta distribution will be reconfirmed in Section Il by proving that a
solution exists for the parameters of a Beta distribution for any combination of alower quantile
and upper quantile constraint. A numerical procedure will be described which solves for
parameters a and b of a Beta distribution (cf. (1)) given these constraints. The contents of
Section Il is based on Van Dorp and Mazzuchi (2000). The numerical procedure derived in
Section |1 can be easily adapted to the Weller's (1965) methodology and improves on his
graphical method. In addition, the numerical procedure can be adapted to the case where the
median and an another quantile are specified as measures of central tendency and dispersion. In
Sections Il and 1V the methods of Section Il will be utilized to specify the parameters of the
Dirichlet and Ordered Dirichlet distributions, respectively. In addition, some properties of the
Dirichlet and Ordered Dirichlet distribution will be listedin Sections 111 and IV.

II. Specification of Prior Beta Parameters
For reasons to become evident from the discussion below, we will reparameterize the Beta

density given by (1) by setting 3 = a + band a = _%; Thisyields the following expression for

the probability density function of a Betarandom variable X

L'(B)

lﬁ'&’*l — B-(1—a)—1 o
T(8-)L(5- (1 - a)) (1-2) Jzeo,1], (5)

where0 < o < 1, > 0. The reparameterization is a one-to-one transformation from (1) to (5)
and vice versa. Note that the condition « € [0, 1] isidentical to the condition on the original
random variable X. For the purpose of this chapter, arandom variable X distributed following
(5) will be denoted as X ~ Beta(«,/3). The latter notation is somewhat unconventional as
Beta(a,b) usually refersto the structural form of the pdf provided by (1). Perhaps the consistent
use of Greek notation « and 3 rather than Latin notation a and b may help alleviate this source of

confusion.
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PARAMETER SPECIFICATION AND DIRICHLET EXTENSIONS 6

A. Basic Properties of the Beta Distribution

It easily follows from (5) that

E[X]a, p] = o (6)
Var(X|a, f] = % (7)

Hence, the reparameterization provided in (6) allows one to interpret « as alocation parameter
and 3 as a shape parameter that determines the uncertainty in X. The n-th moment of X around

zerointerms of « and 3 can be expressed utilizing (5) as

n n—1
[[(B-a+n—1i) [[(B-a+n—1i)
E[X"|a, 8] = &L =a n=123,... (8)
1B +n=1) [[(B+n—1)
i= i=1

0
with the usual conventionthat [[{ - } = 1. Using the structure of (5), (6), (7) and (8) we can
i=1

readily draw conclusions regarding the limiting distributions of a Beta random variable by letting
B — ooand g | 0 (for any fixed value of «). Consider the two different classes of degenerate
distributions presented in Figure 2. It follows from (6) and (7) that the degenerate distribution in
Class 1 of Figure 2 isthe limiting distribution obtained by letting 3 — oo. From (8) it follows
that the moments of the limiting distribution when letting 5 | 0 coincide with the moments of the
degenerate distribution in Class 2 of Figure 2 (i.e. of a Bernoulli variable with a point mass of «
a 1). Asboth the limiting distribution of X by letting 5 | 0 and the degenerate distribution of
Class 2 have a bounded support, it follows from the agreement of their moments that the
degenerate distribution in Class 2 is the limiting distribution by letting 5 | 0 (see e.g. Harris
(1966), p. 103). The limiting distributions of Class 1 and Class 2 (and how they arise from the
limiting behavior of the parameter /) play acentral role in deriving the theoretical result in the

next section.
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CLASS 1 CLASS 2

O<ax<l1 --+- O<ax<1

!
v

<
¢--—-—-—--

0 a 1 0 1

Figure 2. Two classes of degenerate Beta distributions.

An additional property of the Beta distribution utilized in this derivation isthat for 6 > 0 (using
the notation of (1))

0<a <ay= B(x|ay,b) > B(x|ay,b), VX € (0,1), (9)

andfora > 0

b >b2>0:>B(9:|a,b1) >B(:r|a,b2),VX€ (0, 1), (10)

(see e.g. Proschan and Singpurwalla(1979)). From (9) and (10) it follows (using the notation of
(5)) that
ay>a;>0,>0 = Pr(X <z|lag,f) < Pr(X < z|ay, f). (11)

Finally, the quantile constraint concept defined in Definition 1 below will be used as well.

Definition 1: Let0 < z, < 1, 0 < ¢ < 1. Arandom variable X with support [0, 1] satisfies

quantile constraint (z,, ¢) if and only if Pr{X < z,} = q.
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PARAMETER SPECIFICATION AND DIRICHLET EXTENSIONS 8

B. Solving for the Prior Beta Parameters
To specify the prior Beta parameters based on quantile estimates we need to solve problem P,
below. Solving problem P; involves the use of the incomplete Beta function given by (4) and
therefore has no closed form (analytic) solution. Also, the quantile constraints in problem P; can
be considered a set of two nonlinear constraints in two unknowns, i.e. o and /3, and may not
necessarily have afeasible solution. To construct a numerical procedure with solves problem P,
in afinite number of iterations, it is necessary to verify that problem 7P; has a solution for any
combination of the two quantile constraints. This assertion will be proved in Theorem 1 by

means of limiting arguments.

Problem P; : Solve « and 5 for X ~ Beta(a, () (cf. (5) ) under the two quantile constraints

(qu, QL) and (qu) qU)) WhereQL < qu.

Theorem 1: There existsa solution (a*, 5*) of problem P;.
Proof : The proof involves four steps. In the first step it will be proved, using the notation in (5),
thet for agiven # > 0 and aquantile constraint (z,, ¢), aunique a® exists such that
X ~ Beta(a?, 8) (cf. (5)) satisfies this quantile constraint. In the second step it will be shown
that for 3 | 0 the parameter o° — (1 — ¢). The third step validates that for 5 — oo the parameter
a® — z,. Finaly, in the fourth step, the statement of this theorem will be verified.

Step 1: Let aquantile constraint (z,, ¢) be specified for X. Assumethat 5 > 0 isgiven and
introduce the function &(«, ) such that

(o, B) = Pr{X < z4lo,f} —¢, 0 << 1,3 > 0. (12)

From the structure of (5) it followsthat £(«, ) isacontinuous differentiable function for
0<a<l p>0.Consderé(a, ) whena | 0and s > Ofixed. From (6) and (7) it follows,

respectively, that
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Lim FE[X|a,p] =0,
al0
Loz'riz OVar[X\a,ﬁ] =0,

respectively, for any fixed g > 0. Hence, when « | 0O, the distribution of X convergesto a
degenerate distribution with a single point mass concentrated at 0. With0 < z, <1, 0 < g < 1

it thus follows from (12) that

Lim Sl p)=1-9¢>0, (13)

for any fixed > 0. Similarly, using (6), (7) and using the fact that the distribution of X
converges to a degenerate distribution with a single point mass concentrated at 1asa T 1, we
obtain

Lof”f SleB) = —qg<0 (14)

for any fixed 5 > 0. From (13), (14) with £(«, ) being a continuous function, it follows that
Ja® € (0,1):&(a°,6) =0,¥Y 5> 0. (15)

Utilizing expression (11), it followsthat £(«, 3) isastrictly decreasing function in « for any
fixed 8 > 0. Thus, given fixed 5 > 0, a° isthe unique solution to £(«, ) = 0 and
X ~ Beta(a®, ) (cf. (5) ) satisfies the quantile constraint (z,, ¢) given fixed 3 > 0.

Before proceeding to Step 2, note that the solution a® depends on ¢, z, (cf. (12)) and 3 (cf.

(15)) motivating the following notation
a’ = gxq(ﬂ)7 (16)

where G, (-): (0,00) — (0,1),0 <z, < 1,0 < ¢ < 1,suchthat
§(Gz,(8), 8) =0,V 5> 0. (17)
From the structure of (5), (17), and the implicit function theorem, it follows that G () isalso a

continuous function for 5 > 0. Using the definition of £(«, ) given by (12) and (17), it follows
that
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Pr{X < 2,/G.,(8), 8} = ¢,¥8 > 0. (18)

Step 2: Consider X ~ Beta(a®, 3) (cf. (5) ), wherea® = G, (), andlet 3 | 0. From
continuity of Pr{X < z,|G.,(5), 3} in 3 for fixed z, it follows from (18) that
Lim Pr{X < . (B), B} = q. 19
A r{X <z, G.,(0), 8} = q (19)

For the structure of the density (6) it has been shown abovethat as 5 | 0, the distribution of X
converges to a degenerate distribution of Class 2 in Figure 2. The limiting expectation of X as
B | 0 thus becomes the expectation of a Bernoulli random variable and from (19) it follows that

Lim E[X|G, (8),8]=1-q. 20
mo[ |G, (8), 5] q (20)

However, from (6) we have

E[X| G, (8, 8] = G.,(B), (21)

forany # > 0and using (20) and (21) one concludes

Lﬁzrf B =1-q (22)

In other words, the parameter o° — (1 — ¢g) as | 0.

Step 3: Consider X ~ Beta(a®, 3) (cf. (5) ), wherea® = G, (), andlet 3 — oo. From (7)
it followsthat as 5 — oo the distribution of X converges to a degenerate distribution of Class 1
in Figure 2 with a single point mass concentrated at some z* € [0, 1]. From continuity of

Pr{X <z, G, (8), B} inj for fixed z, it follows from (18) that 2* = z,. This meansthat,

Lim B[ X| G, (B),B] = zq.
B — o0

Hence, from (6) we have

Lim G, (B) = z,. (23)

f— o0

In other words, the parameter o° — z, as f — oc.
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Step 4: Let X ~ Beta(a, ) (cf. (6) ). Let (z,,, qr) and (z,,, g ) be two quantile constraints
specified for X, suchthat ¢;, < gy. Consider the associated functions G, (3) andg,, (/3) each
defined implicitly by (12) and (17), respectively. Introducing the function

H(B) = Ga,, (B) — Gu,y ()

it follows from (22) that

LﬂiTOH(ﬁ) =(1-q)—-0—-q)=q—q>0. (24)

Similarly, from (23) it follows that
Lim H(B) =z, — x4 <0. (25)

— OO

From the continuity of G, (5)andg,, (5),(24)and (25) it follows that
6" >0: H(f") =0. (26)

Denoting o* = G, () (cf. (16)), it follows from (26) that
o = G, () = Go, (5Y):

In other words, X ~ Beta(a*, 5*) (cf. (5) ) satisfies both quantile constraints(z,, , ¢z.) and

(x4, qv) and thus (a*,5*) isasolution to problem P;. O

Theorem 1 proves the existence of a solution to problem P;. The uniqueness of the solution
(a*, 5*) to P, would follow by showing that; (i) H () has0 or 1stationary pointsfor 5 > 0; (ii)
if H () hasastationary point for 3 > 0 this stationary point coincides with a globa maximum. It
is conjectured that the above assertions hold. Numerical analyses in the examples below support
this conjecture (see Van Dorp and Mazzuchi (2000)). In case multiple solutions exist to problem
P1, the numerical agorithm below is designed so that the selected solution coincides with the
solution with the lowest value for 5*, and thus the highest level of uncertainty. The latter solution
would be a preferred solution, given that =, and x,, ought to be elicited through expert judgment

in Bayesian Analysis.
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C. Design of a Numerical Procedure

Since problem P; cannot be solved in a closed form, a numerical procedure that determines
a solution to problem P, with aprescribed level of accuracy, in afinite number of iterations, is
desirable. Below, such anumerical procedure will be informally described. The numerical
method uses a procedure for solving for the g-th quantile of a Beta distribution. Such a procedure
is described in the Appendix in Pseudo Pascal (denoted BISECT 1).

From (6) and (7) it follows that « is alocation parameter and 3 is an uncertainty parameter
given the value of « and higher values of /3 coincide with lower uncertainty levels. These
interpretations of the parameters o and /3 are used in the design of the numerical procedure to
obtain asolution to ;. Assume for now that an interval [a,, b,] is obtained containing 5* which
yieldsasolution (a*, 3*) of P, where a* = G, (5*). Let 3, be the midpoint of thisinterval. The
k-th iteration of the numerical procedure will be described below.

To solve (a°);, satisfying the quantile constraint (z,, , ;) of P; given avauefor g,
successive shrinking intervals [d,,, e,,] are calculated containing the solution (a°);. From (5)
followsthat (a°); € [0, 1]. Hence, [dy,e;] = [0,1]. Next, c, isset to the midpoint of [d,,, e,,]
and the probability mass (qi7 ), = Pr{X < x4 |a,, (i} iscdculated. Incase (qr), < qv,the
Betadistribution is skewed excessively towards 1. Therefore, it follows from (6) that the value
of the location parameter o, istoo high. Hence, the nextinterval containing (a.°)y is
[dpi1s€nt1] = [dn, o ]. Onthe other hand, when (g1 ), > qu, the Betadistribution is skewed
excessively towards 0. Thereforeit follows from (6) that the value of the location parameter v,
istoo small. Hence, the next interval containing («°); canbesetto[d, 11, ent1] = [, €n).
Finally, the next estimate «v,,.; is set to be the midpoint of theinterval [d,+1, e,+1]. The above
procedureis repeated until (q7),, iscloseto g with apre-assigned level of accuracy. The
quantile constraint (x,, , g7 ) of P is satisfied once this accuracy has been reached and (a°);; is
set equal to the «,,. The algorithm above isa bisection method (See, for example, Presset a.,
1989) and is provided in the Appendix in Pseudo Pascal (denoted BISECT 2). A specific
example of the algorithm in BISECT 2 is presented in Figure 3, where (z,,, grr) = (0.80, 0.70)
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and 3, = 3. The starting interval for «;equals [d;, e;] = [0, 1], hence a; = 0.5. Thusit follows
that (gi7); > 0.7, hence [dy, e5] = [0.5, 1] and as = 0.75. Now we have (¢q;7)2 < 0.7, hence

[ds, e3] =[0.5,0.75] and a3 = 0.625. Consequently we have (¢i7); ~ 0.7 = qy, (o°); isset to
as = 0.625, the algorithm terminates and X ~ Beta((a°)1, 1) (cf. (5) ) satisfies the quantile

constraint (z,,, g,) = (0.80,0.70).

Probability Density Function A Cumulative Distribution Function B
4 1
[dpe] =[05,1] i =05 '
35 1 a,=0.75 09 G =5 —-(ay)1
0.8 A1 |
3 ) —~
0T === - —|—|~(ay)s=qu
2.5 - [ds,e5] =[0.5, 0.75] i 0;= 0,625 I
[dee] =01 o =0.625 06 |
_ 3
2 - a,=05 0.5 - —— ()2
15 - 0.4 1 |
I
0.3 1
g 0.2 \ I
05 - : a,=l0.75
' 0.1 4 I
O T T T T T T T T T O - T T T T =
0 010203040506 070809 1 0 01020304 0506 070809 1

|
%ay
Figure 3. An example of bisection method BISECT 2. A: Beta PDF’s and shrinking

bisection intervals [d,, e,], B: Beta CDF’s and sequence of (qy),, n =1,...,3

After solving for (a°); (utilizing BIS EC'T?2) the procedure cal cul ates the g, -th quantile
(zg,)x (utilizing BISECT1) of Beta((a®), Br). When (x4, )i, < x4, theuncertainty in
Beta((a®)r, Br) (cf. (5) ) istoo high. Therefore, the current estimate of the uncertainty
parameter ;. should be too low. Hence, the next interval which contains 5* can be set to
[ak+1,b8+1) = B, bi]. Onthe other hand, if (z,, ), > z,, theuncertainty in Beta((a®), fi)is
too low. Therefore, the current estimate of the uncertainty parameter ;. is too high. Hence, the
next interval which contains * can be set to (a1, br+1] = [ag, Bx]. Finally, the next estimate
Br+1 istaken to be the midpoint of the interval [aj1, bx+1]. The above procedure is then repeated

until the current estimate (z,, ). iscloseto z,, with the pre-assigned desired level of accuracy.
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The quantile constraint (z,, , gz,) of P, ismet once this accuracy has been reached. The

14

parameters (o, 3*) that solve P; are set equal to the pair ((a°)x, Ox). The algorithm aboveisa

bisection method and is provided in the Appendix in Pseudo Pascal (denoted BISECT 3). A

specific example of the algorithm BIS ECT 3 is presented in Figure 4, where

(z4,,q1) = (0.20,0.10), (z4,,qv) = (0.80,0.70), B, = 3 and (a°); = 0.625.

(XqL)slz Xq.
|

Cumulative Distribution Function

1
0.9 1
0.8 1
0.7 1
0.6 1
0.5 1
0.4 1
0.3 1
0.2 1

| (@),=0625 /|

I
| (a),= 0.600 :
I
I
I

(@°),= 0.554

— Qu

Probability Density Function
4
3.5 4
3 -
[ay,by] =10, €]
2.5 1 B,=3
5 [azbs] =[0, 3]
B,=15
1.5 l
1 -
05 A B,=2.25
[as,bs] =[1.5, 3]
O L} L} L} L} L} L) L) L) L)
0 010203040506 07 0809 1

0.1 1+ —

F——-—

|
0 T T

0 01 02 p3 04 05 06 0.7 0!8 09 1
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Figure 4. An example of bisection method BISECT 3. A: Beta PDF’s and shrinking

bisection intervals [a;, b;], B: Beta CDF’s and a sequence of (z,, )r, k=1,...,3

The starting interval for 5, equals [a;, b;] = [0, 6]. It followsthat (z,,); < 0.2, hence

[as, by] = [0,3] and By = 1.5, (a®)3 = 0.554 (determined using BI.S ECT?2). It follows that

(x4,)1 > 0.2, hence [as, bs] = [1.5, 3] and 3 = 2.25, (o), = 0.600 (determined using

BISECT?2). It now follows that (z,, )1 ~ 0.2 = ¢z, the agorithm terminates, 5* is set

fBs = 2.25, a* issetto (a°); = 0.600 andwe have X ~ Beta(a*, 5*) which satisfies the

quantile constraints (x,, , ¢z,) = (0.20,0.10), (z4,,qv) = (0.80,0.70).
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To determine a starting interval [aq, b;] containing 3* the following steps could be adopted
in the procedure. Set the lower bound a; = 0. To obtain the upper bound b,, set 3, = 1, where
k =1, and solvefor (a°) ; ;, satisfying the quantile constraint x,, of problem P, utilizing
BISECT?2. Next, solvefor the gz -th quantile (z,, ) 1 of Beta((a®)1x, f1,x) (Utilizing
BISECT1I). Incase(zy,)1: < x4, theuncertainty in Beta((a®) 1, f1,;) 1Stoo high. Therefore,
O < 0%, Inthat case, set 51 41 = 201 and repesat the above procedure. Conversely, in the
case (x4, )11 > x4 theuncertainty in Beta((a®) 11, 1) iStoo low. Therefore, 5,5 > 5*. In
that case, setb; = [ and the starting interval [aq, b;] has been determined. Note that if multiple
solutions exist to problem P, the starting interval is chosen in such a manner that the selected
solution for P, by means of the algorithm coincides with the solution with the lowest value for
(%, and consequently the highest level of uncertainty.

The three different bisection methods BISECT 1, BISECT2 and BISECT 3 were
implemented in a PC-based program BETA-CALCULATOR. Figure 5 displays a screen capture
of BETA-CALCULATOR.

ﬁ-’ BETA - CALCULATOR
AINPUT <
g q
Lower Quantile |5 il 0.15
Upper Quantile |15 ii 0.75
~Output
Alpha | 0.88611364 Beta |0.53955078
Brackl Iterations Brack?2 Iterations Brack3 Iterations
23 25 12
| Calculate Parameters i x Cloze Calculator |

Figure 5. Screen Capture of BETA-CALCULATOR with

calculation results for the first row in Table 1.
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The accuracy for é in the bisection methods BISECT1and BISECT?2was set to be 102,
The accuracy in the bisection method BI S ECT'3 was set to be 10~*. Table 1 contains solutions
to problem P for 4 different combinations of alower quantile and upper quantile constraint
calculated using BETA-CALCULATOR. In addition, Table 1 provides the maximum number of
iterations in each bisection method to yield the solutions with the above settings of error-
tolerances. Figure 5 contains the results for Example 1in Table 1. Example 4 in Table 1
coincides with the setup of the Weiler’s (1965) graphical method. Finally, Figure 6 depicts the
probability density functions and cumulative distribution functions associated with the examples
in Table 1. Note that the U-Shaped, J-Shaped and Unimodal forms of the Beta distribution are
represented in Figure 6.

Table 1. Some Calculation Examples of Beta Parameters

given an upper and a lower quantile constraints

q zg o 5 #1 #2 #3
FExamplel L 0.05 0.15 0.8861 0.5396 23 25 12
U 0.15 0.75
FExample2 L 0.49 0.25 0.2672 11.3906 71 24 11
U 0.99 0.60
FExample3 L 0.20 0.10 0.3437 2.6328 26 26 10
U 0.50 0.30
FExample4 L 0.05 0.45 0.6330 19.5625 44 25 10
U 0.95 0.80
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Probability Density Function A Cumulative Distribution Function B

0 0.2 0.4 0.6 0.8 1

—o— Example 1 —- Example 2 —A— Example 3 —-@—Example 4

Figure 6. A: Beta Probability Density Functions for the Examples in Table 1,

B: Beta Cumulative Distribution Functions for the Examples in Table 1.

[11. Specification of Prior Dirichlet Parameters
Anaogoudly to (5) and for a straightforward application of the numerical procedures derived in

Section 2 (and provided in the Appendix), we reparameterize the Dirichlet distribution given by
m+1

(2) by introducing the new parameters 5 = > 6, and o; = % i
i=1

1,...,m, yielding the

probability density

(P) e n, | AU-Ee)
(el a gy U120

=1

m m
wherex; >0, > z; <1, ; >0,i=1,....,m, > . a; < 1land > 0. A random vector
i=1 i=1

X = (Xy,...,X,,) distributed according to the reparameterized Dirichlet distribution (27) will
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be denoted by Dirichlet(a, (3). Note that, asin the case of (5), the condition on the parameters

a=(aq,...,q,) isidentical to the conditions on the variables X;,i = 1,...,m.

A. Basic Properties of the Dirichlet Distribution
Let arandom vector X = (X1, ..., X;,) ~ Dirichlet(a, /3). It may be derived from (27) that
marginals distribution of X; are given by X; ~ Beta(«;, ) (in parameterization of (5)),
i=1,...,m. Themoments F[X|«, ] follow by substituting «; for o in (8). Analogously, the
mean and the variance of X; follow by substituting «; for «in (6) and (7), respectively. Hence,
the parameter 3 of the Dirichlet(a, /) distribution may be interpreted as the common shape
parameter amongst X = (Xi,..., X,,), whereasthe vector & = (ay, ..., ay,) Mmay beinterpreted
as alocation parameter of X. Such an interpretation was not valid for the original
parameterization given by (2) involving the parameters¢;, i = 1,...,m + 1. Similar to the
analysisin Section 2.1 it follows that we may draw conclusions regarding the limiting
distributions of the Dirichlet(a, (3) based solely on the limiting behavior of the parameter f.
Letting 5 — oo we observe that a Dirichlet(a, () distribution converges to a degenerate
distribution with a single point mass concentrated at «. Letting 5 | 0, we deduce that the
Dirichlet(a, (3) distribution converges to an m-variate Bernoulli distribution with marginal
parameters «; in Class 2 of Figure 2,7 = 1, ..., m. The dependence structure in the limiting m-
variate Bernoulli distribution is obtained by studying the limiting behavior of the pairwise
correlation coefficientsin a Dirichlet(a, (3) distribution as g | 0. Utilizing the

reparameterization in (27) it follows that

67187

COU(Xi,Xj) = - 5 1 (28)
and with (28) and (7)
Cov(X;, X; i
C’OT(XZ.1Xj) _ OU( ]) _ (071e% ) (29)
\/Var(Xi)Var(Xj) (1—a;)(1— )
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Apparently, the correlation structure in a Dirichlet(«, (3) distribution does not depend on the
common scale parameter /3, and (29) describes the dependence structure of the limiting m-
variate Bernoulli distribution when 3 | 0. Relation (29) is consistent with the well-known result
(see Kotz et a. 2000) that the correlationsin a*classical” Dirichlet distribution are negative.

We now present several basic properties of the Dirichlet(a, () distribution below utilizing
reparameterization (27). It would appear (similar to theresult in (29)) that some further
transparency may be achieved by expressing these propertiesin terms of (a, 3). Firstly, for any
index set A C {1,...,m},

X* ~ Dirichlet(a”, ), (30)

where X4 = {X;|i € A} and o* = {a;]i € A}. Next,

ZXi ~ Beta(Zai, B)

1€A €A

and

Xj Q
~ Beta(— ,BE ;).
> Xi i A
€A €A

Finally, utilizing (30) we may derive the conditional probability density function of (X4|X4%),
where A¢ denotes the complement of A, i.e. A° = {1,...,m} \ A, yielding

B—=1
1 r
{Ireafr(s-a-an)
i€A €A
Ghar-1 ﬂ'-(lfz%a;)fl
(o ez}

i€A i€A
where
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(0%
1-Na, F=5-01-%a), ai= 2 32

The distribution in (31) may be recognized as that of an | A|- dimensional vector Y, where|A|
indicates the cardinality of the index set A, and
Y =¢Z, Z ~ Dirichlet(a’, ),

wherea’ = {«}|i € A} and o} and 5 are given by (32). Setting A = {i} in (31) and (32) yields
what is called the full conditional distribution of X; asatransformed Beta(«;, 5°) with the

support

0,1-)" x.

J=1,j#

The latter result isrelevant to the application of the Markov Chain Monte Carlo (MCMC)
methods utilizing a Dirichlet(«, 3) (see, e.g., Casella & George (1992)). The MCMC methods
have spurted an emergence of numerous Bayesian applications (see, e.g. Gilks et al. (1995)) as
these methods allow for sampling from a posterior distribution by successively sampling from

posterior full conditional distributions, without having a closed form of the posterior distribution.

B. Solving for the Dirichlet Prior Parameters
In order to solve for the common shape parameter 3 and location parameter o = («, ... , ) Of
an m dimensional random vector X ~ Dirichlet(a, ) distribution using quantile estimates, it

isrequired to solve problem P, below.

Problem P, : Solve « and 3 for X ~ Dirichlet(a, 3), X = (X1, ..., X,;) under the two
quantile constraints (z;, , ;) and (x, , ¢;;) for X; ,whereq < g;;,, andm — 1 single quantile

constraints (z7, ¢/) for X;, j=1,...,m,j #i.
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Note that the quantile levels ¢’ and ¢/, (or ¢%) may differ anongst X;, j =1, ..., m.Since

X; ~ Beta(a;, 3), it followsimmediately from Theorem 1 that a solution to problem P, exists.
When multiple solutions are available to problem P,, the numerical algorithmsin the Appendix
are designed such that the selected solution coincides with the solution with the lowest value for
(3, and thus the highest level of uncertainty. The latter solution would be a preferred solution
given that the quantile constraints in P, ought to be elicited through expert judgment in Bayesian
Anaysis. The algorithm to solve P is provided below in Pseudo Pascal using the bisection
methods described in the Appendix.

STEP1: BISECT3(a,p, a:fIL,a:fIU, ¢t ,qh)j=1;
STEP2: Ifj#ithen BISECT2(ey, x}, 3,¢);
STEP3: Ifj<mthenj: =j+1; Goto STEP 2; FElse Stop;

Table 2 below describes two instances of problem 7P, and their solutions using the algorithm
abovefor X = (X1, X;), where X ~ Dirichlet(a, 8) and o = (a1, ). Notethat, (7 . q;)
and (z} ,qj;) in Table 2 coincide with the third row of Table 1. Hence, o, and 3 also coincidein
Tables 1 and 2 resulting in a J-shaped marginal form for the pdf of X; givenin Figure 6A. The
resulting marginal form in Example 1(2) of Table 2 for X5 is J-shaped (uni-modal). Figure 7
displays the resulting Dirichlet densities for the examplesin Table 2. Note that, the marginal
density of X in both Figures 7A and 7B isidentical and J-Shaped, whereas the marginal form of
X5 inFigure 7B isuni-modal. As aresult, the joint pdf in Figure 7B has a single mode at

(z1,x2) = (0, 1). Figure 7A displays three modes at each corner of the unit simplex.
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Table 2. Calculation Examples

X4 X5
(q,l‘q) (%mq) 0%1 a9 B
Ezamplel L (0.20,0.10) (0.20,0.10) 0.3437 0.3437 2.6328
U (0.50,0.30)
Ezample2 L (0.20,0.10) (0.40,0.50) 0.3437 0.5665 2.6328
U (0.50,0.30)

I
W
o iy
S,

22325 ‘

e 0L, £S5 X 72T
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e ,‘,'},’}[".‘,',‘

Figure 7. A: Dirichlet PDF of Example 1 in Table 2,
B: Dirichlet PDF of Example 2 in Table 2.

V. Specification of Ordered Dirichlet Parameters

Anaogoudly to (5) and (27) we reparameterize the Ordered Dirichlet distribution given by (3) by
m+1

introducing 5 = Z 0, and o; = % i=1,...,m, yieding the probability density

=1

To appear in Handbook of Beta Distributions and Its Applications Publisher, Marcel Dekker, Inc.

Editors Gupta, A.K. and Nadarajah, S.



PARAMETER SPECIFICATION AND DIRICHLET EXTENSIONS 23

r(s)
{ fire-an}r(s- (- £a))

=

g [ B.(1-3 a)-1
z) 1{ [~ xi—l)ﬁ'ai_l}(l —Zm)

1=2

X (33)

where0 < z; 1 <z; <1, ; >0,i=1,...,m, > a; < 1and s > 0. Thedistribution given by
i=1

(33) will be denoted by O D(«, 5), where e = (v, ..., ).

A. Some Properties of the Ordered Dirichlet Distribution
Let arandom vector X = (X1, ..., X)) ~ OD(a, (). It easily follows from (33) that marginals

distribution of X; are given by

X; ~ Beta(o, ), of =) oy (34)

(in parameterization (5)),7 = 1,..., m. The moments E[X?|«, (3] follow by substituting ;" for
« in (8). Anaogously, the mean and the variance of X; follow by substituting o for ain (6)
and (7), respectively. As above, the parameter 5 of the O D(«, 5) may be interpreted as the
common scale parameter amongst X = (X7, ..., X,,), whereasthe vector o™ = (o, ..., a;})
may be interpreted as alocation parameter of X. Similarly to the analysisin Section 3.1 it
follows that that the degenerate distribution with a point mass concentrated at parameter o™ (cf.
(34)) isthe degenerate distribution of an O D(«, 3) distribution by letting 5 — oo. Letting 5 | 0
we deduce that the O D(a, 3) distribution converges to an ordered m-variate Bernoulli
distribution with marginal parameters ;" (cf. (34)), ¢ = 1,..., m. The dependence structure in
the limiting ordered m-variate Bernoulli distribution is obtained by studying the limiting
behavior of the pairwise correlation coefficientsin aO D(a, 3) distribution as 3 | 0. Utilizing

the reparameterization in (33) it follows that
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ey Cov(X;, X;) o (1-aj)
CovlXiX;) = VVar(X;)Var(X)) - B+l (35)

and with (35) and (7) we have

COT(XZ',XJ') =

Utilizing the pdf reparameterization in (33), it follows from (36) that the correlation structure in
a0D(a, 3) does not depend on the common scale parameter 3 asit isin the case of the
Dirichlet(a, (3) distribution. Note that, unlike the case of Dirichlet(a, 3) distribution, the
correlations are positive. The difference between the signs of the correlationsin the O D(«, 3)
and Dirichlet(a, ) distributions may in part be explained by the differences in their support
(see, Figure 1). An additional useful property for the OD(«, f3) isthat for any index set A C
{1,...,m},

4~ 0D(a*, B), (37)

where X4 = {X;]i € A}, 0 = {aftll=1,..., A} and
+ _
0424 _ {aﬁ(” ) =1
ay, — A 1=2,...,]|A]

where, as above, | A| indicates the number of elementsin theindex set A and A, indicates the -
thelementin A, suchthat Ay > Ay_1y, k= 2,...,|A|. Furthermore,
(X; — Xi) ~ Beta(aj —af,p)

and

Xi Oé;r

E ~ Beta(a;r,ﬂa;“).

where j > i and o] are defined in (34). Finally, utilizing (37) we may derive the conditional

probability density function of (X4|X4"), where A° denotes the complement of A, i.e.
={1,....m}\Aand A = {i},i e {1,...,m} yielding
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, 38
I(Bai)I(Baiq)) (i1 — @y )P te =l (38)
Thedistribution in (38) may be recognized as that of arandom variable Y where
Qi + +
Y =(ziy1 —2i-1)Z + xim1, Z ~ Beta(ﬁa Blagiy — aily)). (39)
i+1 i—1

where o, is defined by (34). Hence, the distribution of (X*|X*") where A = {i} (referred to

asthe full conditional distribution of X;) isatransformed Beta distribution with support

[07 xi+1] =1
[T, 2] i=1,...,m—1
[.1'1;1, 1] t=m

As above, theresult in (38) and (39) isrelevant to the application of Markov Chain Monte Carlo
(MCMC) methods (see, e.g. Casella& George (1992)) utilizinganOD(«, /) distribution.

B. Solving for the Ordered Dirichlet prior parameters
To solve for the common shape parameter 3 and location parameter a = («q, ..., a,) Of @anm
dimensional random vector X ~ OD(«, /3) distribution using quantile estimates, we are required

to solve problem P5 below.

Problem P53 : Solve« and 3 for X ~ OD(«, ), X = (X1, ..., X,,) under the two quantile
constraints(z; , ¢ ) and (z , q;;) for X; ,whereq] < ¢j;, and m — 1 single quantile
constraints (z7, ¢/) for X;, j =1,...,m, j # i such that

1_ 2 -1 _ i i i+1 m
T, <Tg.. <zp <zpH <TH <T, <. <7TY (40)

Note that the quantile levels ¢’ and ¢f; (or ¢}) may differ anongst X;, j =1, ..., m. Since
X; ~ Beta(a;, B), it followsimmediately from Theorem 1 that a solution to problem P; exists.

In case multiple solutions exist to problem Ps, the numerical algorithmsin the Appendix are
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designed in such amanner that the selected solution coincides with the solution with the lowest
value for 3, and thus the highest level of obtained uncertainty. As mentioned above, the latter
solution would be a preferred solution. The algorithm for solving P5 is provided below in Pseudo

Pascal using the bisection methods described in the appendix.

STEP1: BISECT3(of, B, .z} ,x} ,q;.q;):5=1;

STEP2: Ifj#ithen BISECT2(af,x}, 3,q);

STEP3: Ifj<mthenj: =j+1; Goto STEP 2; FElse Goto STEP 4;
STEP4: «ay: =aof

STEP5: Fori: =2tomdoa;: =af —af |

Note that Steps 1 to 3 areidentical to those in the algorithm to solve problem P, associated with
a Dirichlet(a, ) distribution. As an example of the procedure above, note that the Example 2
in the second row of Table 2 satisfies the order restriction (52) since z; = 0.10, =} = 0.30 and
z = 0.50. Note that the corresponding quantile levels ¢; = 0.20, ¢}, = 0.50 and ¢* = 0.40
differ. From Table 2 it follows that

ot =0.3437; af = 0.5665; 5 = 2.6328

Executing Steps 4 and 5 in the algorithm above it follows that for this example

B =2.6328 a; = af =0.3437; o, = af — af = 0.5665 — 0.3437 = 0.2228.  (41)

The probability density function of the Ordered Dirichlet distribution associated with (41) is

presented in Figure 8.
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Figure 8. Ordered Dirichlet PDF associated with (41).

C. Transforming the Ordered Dirichlet Distribution and Numerical Stability
The use of an m-variate Ordered Dirichlet distribution to specify a prior distribution may be
extended to the unbounded domain (R*)™ by transformingto Y; = — Ln(X;) or X; = eV,
where X = OD(a, 3), X = (X1, ..., X,). Although the quantile levels ¢ and g}, (or ¢t),
j=1,...,m, may differ in the specification of problem P; and in its solution, it is perhaps more
practical from an expert judgment elicitation point of view to set e.g. ¢/ = ¢% = 0.50 and
i, = 0.95 (which are quantile levels widely used in practice). Hence, measures of location for
every Y; are established by eliciting their median values and one could utilize the median (50%
quantile) of Y; and the 95% quantile for Y; to determine the common shape parameter 5. Table 1
below contains such median estimates y{-*°for failure rates of an exponential lifetime
distribution in different stress environments (see, Van Dorp and Mazzuchi (2003)). In addition,
the 95% quantile 4% of the failure rate at Environment 1 (which istypically the use-stress

environment in an accelerated life testing set-up) is provided aswell.
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Table 3. Environments, Prior Failure Rates

and Transformations

Environment | Temp Volt Priory?% | Prior 293  Prior 29

(°F) (VDC) (hours)™ c=1 c = 841.61
1 100 10.0 5.036-107° 0.99995 0.9585
2 125 13.0 1.100 - 107* 0.99998 0.9116
3 160 15.0 5.732-107* 0.99943 0.6173
4 200 17.0 1.429 - 1073 0.99857 0.3004
5 250 19.0 3.781-1073 0.99623 0.0415
Y% at use stress 1.315-103 0.99869 0.3306

Note that the median failurerates y?°",i = 1,..., 5, are very small (common to the accelerated
life testing area) and increase rapidly when the stress in an environment increases (see, e.g., Van
Dorp and Mazzuchi (2003)). The resulting transformed medians=?-5° follow utilizing the
transformation 0% = ¢~ %" and are provided in fourth column in Table 3. Note that these
vauesfor 2% i = 1,...,5 arevery closeto 1.

Instead of the transformation Y; = — Ln(X;) we may utilize amore general transformation

— Ln(X; _
Y, = # = X; = e Vi (42)
c

to define a prior distribution on the domain [0, co)™ viathe Ordered Dirichlet distribution, where
c isapreset transformation factor. As an example, the fifth column in Table 3 contains the

0.50

transformed median values 2% = =" ¢ = 1,..., 5, where c = 841.61. Note that, these
median values are now spread over the entire support [0, 1] rather than being in the vicinity at 1.
The motivation for utilizing (42) follows from (i) the value of the medians v, (ii) the Beta
marginal distributionsof X; and (iii) the fact that no closed-form expression is available for the

incomplete Beta functiongiven B(z | a, b) given by (4).
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Several numerical algorithms exist to approximate the incomplete Beta function given by (4)
(see, e.g., Press et al. (1989)). These approximations are well-behaved for parameter values
a>1,b>1. However, incasea < 1, the Betadensity explodesat x = 0, resultingin
numerical instability for the approximation of B(u | a, b) for the values closeto u = 0. Vice
versa, incaseb < 1, the Betadensity explodes at = = 1, resulting in numerical instability of
B(u]a,b) for valuesin the vicinity of u = 1. Figure 9A depicts the situation in Table 1 with ¢

= 1 and medians z9*° closeto 1. Asthe probability massin theinterva [z{-*°,1] has to account
for 50% of the total probability mass, theassociated Beta marginal densities will have an infinite
mode at 1, resulting in numerically unstable behavior of evaluation of B(x | a, b) (cf. (4)) when
setting ¢ = 1 into (42). The closer these median values z%5° are to the boundaries1 (or 0), the
larger will the numerical instability be in evaluating B(x | a, b) (cf. (4)).

To reduce instability in numerical evaluation of B(z | a,b) (cf. (4)) one may select a preset
transformation factor c in (42) such that distance between median estimates 2%, i = 1,..., 5,
and the boundaries of the support [0, 1] be as large as possible. Figure 9B depicts the motivation
behind using (42) with avalueof ¢ > 1. Theideain Figure 9B isto choose apreset
transformation parameter ¢ such that the incomplete Beta function B(z | a, b) corresponding to
x50 (the median at the highest stresslevel) is as well-behaved at = = 0 as B(za, b)
corresponding to z4-5° (the median at the lowest stress level) at z = 1. The suggestion in Figure
7B isto select csuchthat z2°° = 1 — 2959, or

.50
e B =1—¢e MU

(43)

Unfortunately, (43) cannot be solved in closed form. General root finding algorithms may be
used to solve for the transformation constant ¢ numerically up to a pre-assigned level of
accuracy. The resulting value for the transformation factor ¢ utilizing y{-°* and y{-*° in Table 3
and (43) equals 841.61 asindicated in Table 3. Note that, indeed in the fifth column in Table 3,
zg®0 =1 — 2§50, Utilizing the median z?° in the fifth column of Table 3 the parameters of the

OD(a, #) may be solved by means of the algorithm described in the previous section.
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Figure 9. Transformation to medians z?*° i = 1,..., 5with Transformation Factor c

The resulting parameter values are:

B = 1.6656; a; = 0.1522; as = 0.0481; (44)
az = 0.2198; oy = 0.2168; a; = 0.2109;

It follows from (34) and (44) that

5
1= a;=1-0f =0.1552 = a1 = af
=1

indicating an identical numerical behavior when evaluating the cdf of X5 and X;.

It should be noted that (42) may be useful to increase numerical stability when transforming a
Dirichlet(a, 8) distribution. In the latter case, theindices 1 and 5 in (56) would have to be
replaced by those indices representing the largest and smallest median valuesin the
Dirichlet(a, (3) distribution.
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V. Conclusions
Algorithms have been developed for solving the prior parameters of the Beta, Dirichlet and
Ordered Dirichlet distributions based on quantile constraints. The development of these
algorithms involved a reparameterization which allows interpretation of these prior parametersin
terms of alocation parameter and a shape parameter 5 > 0. Limiting distributions of the Beta,
Dirichlet and Ordered Dirichlet distributions follow in atransparent manner from the limiting
behavior of the common shape parameter 5. Existence of parameter solutions for the Beta,
Dirichlet and Ordered Dirichlet distributions was proved utilizing their limiting distributions. We
note in passing that the reparameterization advocated in this paper may be related to the
orthoganality of parameters. We have not checked as yet whether indeed the condition for

orthoganality as described for example in Cox and Reid (1987), isvalid in our case.

Appendix
Let X ~ Beta(a, () using the reparameterization given by (5). The bisection methods below
use the numerical algorithm given in Press et al. (1989) to evaluate the incomplete Beta function
B(-|a,b)givenby (5). BISECT 1(zq4, o, 3, q) solvesfor the g-th quantile z,, of X. Output
parameters are indicated in bold. BISECT2(e®, x4, 3, q) SOlvesfor the parameter o° satisfying
the quantile constraint (x,, ¢). BISECT3(a*, B*, x4, , x4, ,q1, qv) SOlvefor the required
solution (o, 4*). A method to determine a starting interval [aq, b1 ] containing 5* isgivenin

STEP 1,STEP2,and STEP 30of BISECT 3.

BISECT1(xg, o, ,q) :

STEP1 m: = 1; Set [dy,e1] =[0,1];

STEP?2 Tgm : = 2 g0 = Blagm| o, B);
STEP3 If gn<gqthendni1: =Tqm;ilmi1: = em;

Else €m+1 ° — Lgm dm+1 L= dm7
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STEP4 If|qm—q| <dthenzy: = x,m; Stop;
Else m: =m+1;Goto STEP 2;

BISECT2(e®, x4, 3,9) :

STEP1 n: =1; Set[d1,e1] =[0,1];

STEP2  anyr: = 25 g0 = B(zg | anp1, B);

STEP3 If g < qtheney 1 : = anii; dy 1 = dy;
Else dpi1 = api1ieni1 s = ep;

STEP 4 If|gn—q| <6 then Stop;
Elsen: =n+1; GotoSTEP 2;

BISECT3(a*, B*, 2y, , Tqy» 4L, qU )

STEP1 k: =1;p1: =1;

STEP 2 (a°)1x: = BISECT2(zy,, Sk, q0);
(g )ik : = BISECT((a®) 1k, Bik, 9L);

STEP3 If(zg)ir <xg then By =2 Pii; Goto STEP 2;
Else [a1,bi] : =0, B1x);

STEP4 k: =1;

STEP5 fi: = %% (%) : = BISECT2(y,, B, qu);
(zg )k 1 = BISECT1((°)r, Br, qr);

STEPG6 If(xg)r <xg thenagiy: = Bi;bppr @ = by;
Else apy1 1 = ap;bpgr @ = Bi;

STEPT If |(zg)r—xq| <Othena*: = (a°);; B*: = fi; Stop;
Flsek: =k+1; Goto STEP 5;
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