Session 1: Exploratory Data Analysis, Probability Calculus, Random Variables

Lecture Notes by: J. René van Dorp

www.seas.gwu.edu/~dorpjr

1 Department of Engineering Management and Systems Engineering, School of Engineering and Applied Science, The George Washington University, 1776 G Street, N.W., Suite 110, Washington D.C. 20052. E-mail: dorpjr@gwu.edu.
Example 1:
The tragedy that befell the space shuttle *Challenger* and its astronauts in 1986 led to a number of studies to investigate the reasons for mission failure. Attention quickly focused on the behavior of the rocket engine's O-rings. Here is the data consisting of observations on $x = \text{O-rign temperature (°F)}$ for each test firing or actual launch of the shuttle rocket engine (Presidential Commission on the Space Shuttle Challenger Accident, Vol. 1, 1986: 129-131).

\[
\begin{array}{cccccccccccc}
84 & 49 & 61 & 40 & 83 & 67 & 45 & 66 & 70 & 69 & 80 & 58 \\
68 & 60 & 67 & 72 & 73 & 70 & 57 & 63 & 70 & 78 & 52 & 67 \\
53 & 67 & 75 & 61 & 70 & 81 & 76 & 79 & 75 & 76 & 58 & 31 \\
\end{array}
\]

Without any organization, it is difficult to get a sense of what a typical or representative temperature might be, whether values are highly concentrated about a typical value or quite spread out, whether there are any gaps in the data, what percentages of the values are in the 60's and so on.
Exploratory Data Analysis

A MINITAB stem-and-leaf display

- Gives a feel of the distribution shape without loss of data
- Reasonable breakpoints in units of tens, some modifications are possible
A MINITAB Histogram with 10 cells of equal width

- Data are put into cells and the frequency of each cell is displayed graphically as a rectangle about the midpoint of the cell.

- Cell definitions and their number are at the discretion of the modeler with the rule of thumb that number of cells $\approx \sqrt{\text{number of observations}}$
STATISTICAL REVIEW

Exploratory Data Analysis

- Width of cells need not be of the same size (but usually are, since it is the best procedure for distribution representation).

- Cell definitions may change histogram shape.

A MINITAB Histogram with 8 cells of equal width
With enough data, a histogram approximates distributional forms.

A MINITAB Histogram with Normal Distribution fit
Empirical Cumulative Distribution Function (CDF):

\[F_n(x) = \Pr\{X \leq x\} = \begin{cases} 0 & \text{for } x < x^{(1)} \\ \frac{i}{n} & \text{for } x^{(i)} \leq x < x^{(i+1)} \end{cases} \]

where \(x^{(i)} \) = \(i \)-th smallest observation and \(n \) = sample size

Example 2:
Power companies need information about customer usage to obtain accurate forecast of demands. Investigators from Wisconsin Power and Light determined energy consumption (BTUs) during a particular period for a sample of 90 gas-heated homes. An adjusted consumption value was calculated as follows:

\[\text{adjusted consumption} = \frac{\text{consumption}}{(\text{weather, in degree days})(\text{house area})} \]

This resulted in the following data, which are ordered from smallest to largest.
Exploratory Data Analysis

<table>
<thead>
<tr>
<th>Percent</th>
<th>2015</th>
<th>10 5</th>
<th>10 0</th>
</tr>
</thead>
</table>

Empirical CDF of Adjusted Power Consumption

![Empirical CDF of Adjusted Power Consumption](image)

A MINITAB Empirical CDF of Adjusted Power Consumption

<table>
<thead>
<tr>
<th>Adjusted Consumption</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>40</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>20</td>
<td>80</td>
</tr>
</tbody>
</table>

\[\approx 12.62 \]
• **Comparative Box plots:**

 Compares typically the median values, first and third quartile and extreme values across different treatment groups.

Example 3:
Specimens of three different types of rope wire were selected, and the fatigue limit (MPa) was determined for each specimen, resulting in the accompanying data:

<table>
<thead>
<tr>
<th>Type 1:</th>
<th>350</th>
<th>350</th>
<th>350</th>
<th>358</th>
<th>370</th>
<th>370</th>
<th>370</th>
<th>371</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>371</td>
<td>372</td>
<td>372</td>
<td>384</td>
<td>391</td>
<td>391</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>Type 2:</td>
<td>350</td>
<td>354</td>
<td>359</td>
<td>363</td>
<td>365</td>
<td>368</td>
<td>369</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>373</td>
<td>374</td>
<td>376</td>
<td>380</td>
<td>383</td>
<td>388</td>
<td>392</td>
<td></td>
</tr>
<tr>
<td>Type 3:</td>
<td>350</td>
<td>361</td>
<td>362</td>
<td>364</td>
<td>364</td>
<td>365</td>
<td>366</td>
<td>371</td>
</tr>
<tr>
<td></td>
<td>377</td>
<td>377</td>
<td>377</td>
<td>379</td>
<td>380</td>
<td>380</td>
<td>392</td>
<td></td>
</tr>
</tbody>
</table>
A MINITAB comparative box plot with observations

Boxplot of Type 1:, Type 2:, Type 3:
• **Individual value plots:** A comparative plot of the individual observations.

A MINITAB individual value plot with 95% confidence interval for the mean
Time Series Plot: Sequential plot of data vs time or sample number. Helpful in visualizing variability, trends, cycles, or dependence

A MINITAB times series plot of 30-year Mortgage Interest Rates
STATISTICAL REVIEW

Probability Calculus

- For all events $A \subseteq \Omega$: $0 \leq Pr(A) \leq 1$

- Compliment Rule: $Pr(\overline{A}) = 1 - Pr(A)$

- Additive Law: $Pr(A \cup B) = Pr(A) + Pr(B) - Pr(A \cap B)$
• Inclusion-Exclusion Principle:

\[
Pr(\bigcup_{i=1}^{n} A_i) = Pr(A_1 \cup \cdots \cup A_n) = \sum_{i=1}^{n} Pr(A_i) - \sum_{i=1}^{n} \sum_{j>i} Pr(A_i \cap A_j) + \sum_{i=1}^{n} \sum_{j>i} \sum_{k>j} Pr(A_i \cap A_j \cap A_k) - \cdots + (-1)^{n-1} Pr(\bigcap_{i=1}^{n} A_i)
\]

Example n=3:

\[
Pr(A_1 \cup A_2 \cup A_3) = Pr(A_1) + Pr(A_2) + Pr(A_3) - Pr(A_1 \cap A_2) - Pr(A_1 \cap A_3) - Pr(A_2 \cap A_3) + Pr(A_1 \cap A_2 \cap A_3)
\]
• **Multiplicative Law:** \(Pr(A \cap B) = Pr(A|B)Pr(B) = Pr(B|A)Pr(A) \)

General form of Multiplicative Law:

\[
Pr(\bigcap_{i=1}^{n} A_i) = Pr(A_1 \cap \cdots \cap A_n) = \\
Pr(A_1) \times Pr(A_2|A_1) \times Pr(A_3|A_1 \cap A_2) \times \cdots \\
Pr(A_{n-1}|\bigcap_{i=1}^{n-2} A_i) \times Pr(A_n|\bigcap_{i=1}^{n-1} A_i)
\]

• **Conditional Probability:**

\[
Pr(A|B) = \frac{Pr(A \cap B)}{Pr(B)} = \frac{Pr(B|A)Pr(A)}{Pr(B)}
\]
New Total Event based on the condition that we know that the Dow Jones went up

\[\Pr(Stock \uparrow | Dow \uparrow) = \frac{\Pr(Stock \uparrow \cap Dow \uparrow)}{\Pr(Dow \uparrow)} \]
Informally: Conditioning on an event coincides with reducing the total event to the conditioning event.

Example: The probability of drawing an ace of spades in a deck of 52 cards equals $1/52$. However, if I tell you that I have an ace in my hands, the probability of it being the ace of spades equals $1/4$.

$$Pr(Spades|Ace) = \frac{Pr(Spades \cap Ace)}{Pr(Ace)}$$

$$= \frac{1/52}{4/52} = 1/4$$

Note also that:

$$Pr(B|A) = \frac{Pr(A \cap B)}{Pr(A)} = \frac{Pr(A|B)Pr(B)}{Pr(A)}$$
Law of Total Probability: Let A_1, \ldots, A_n be collectively exhaustive and mutually exclusive events, i.e.;

$$A_i \cap A_j = \emptyset \text{ for all possible combinations } i, j$$

$$Pr\left(\bigcup_{i=1}^{n} A_i \right) = Pr(A_1 \cup \cdots \cup A_n) = \Omega$$

$$Pr(B) = \sum_{i=1}^{n} Pr(B \cap A_i) = \sum_{i=1}^{n} Pr(B | A_i) Pr(A_i)$$
Bayes Law: Let A_1, \ldots, A_n be collectively exhaustive and mutually exclusive events, i.e.;

$$A_i \cap A_j = \emptyset \text{ for all possible combinations } i, j$$

$$Pr\left(\bigcup_{i=1}^{n} A_i \right) = Pr(A_1 \cup \cdots \cup A_n) = \Omega$$

$$Pr(A_j|B) = \frac{Pr(B|A_j)Pr(A_j)}{\sum_{i=1}^{n} Pr(B|A_i)Pr(A_i)}$$

Proof: From the rule for conditional probabilities we have

$$Pr(A_j|B) = \frac{Pr(B|A_j)Pr(A_j)}{Pr(B)}$$

and with the LOTP it follows here that: $Pr(B) = \sum_{i=1}^{n} Pr(B|A_i)Pr(A_i)$. □
Example 4: Given a batch of 100 items, 10 being defectives

- What is the probability of selecting a non defective item?

 \[D \equiv \text{A randomly selected item is defective, } Pr(D) = \frac{10}{100} = 0.1 \]

 Apply the complement rule:
 \[Pr(\overline{D}) = 1 - Pr(D) = 1 - 0.1 = 0.9 \]

- What is the probability of selecting a defective on the first three draws?

 \[D_i \equiv \text{The } i\text{-th item selected is defective} \]

 Apply the multiplicative law:
 \[
 Pr(D_1 \cap D_2 \cap D_3) = Pr(D_1)Pr(D_2|D_1)Pr(D_3|D_1 \cap D_2) = \\
 = \left(\frac{10}{100} \right) \left(\frac{9}{99} \right) \left(\frac{8}{98} \right) \approx .0007
 \]

- What is the probability of selecting a defective on the first or second draws?

 Apply the additive law and the law of total probability:
\[Pr(D_1 \cup D_2) = Pr(D_1) + Pr(D_2) - Pr(D_1 \cap D_2) = \\
Pr(D_1) + Pr(D_2|D_1)Pr(D_1) + \\
Pr(D_2|\overline{D_1})Pr(\overline{D_1}) - Pr(D_2|D_1)Pr(D_1) = \\
Pr(D_1) + Pr(D_2|\overline{D_1})Pr(\overline{D_1}) = \\
\frac{10}{100} + \left(\frac{10}{99}\right)\left(\frac{90}{100}\right) = .1091 \]

- What is the probability that a defect was drawn on the first draw given two defects were drawn by the third draw?

\[ND_{i,j} = \text{Total of } i \text{ defects drawn in } j \text{ draws} \]

Apply Bayes law:

\[Pr(D_1|ND_{2,3}) = \frac{Pr(ND_{2,3}|D_1)Pr(D_1)}{Pr(ND_{2,3}|D_1)Pr(D_1) + Pr(ND_{2,3}|\overline{D_1})Pr(\overline{D_1})} = \\
\frac{Pr(ND_{2,3} \cap D_1)}{Pr(ND_{2,3} \cap D_1) + Pr(ND_{2,3} \cap \overline{D_1})} \]
\[
\frac{Pr(D_1 \cap \overline{D}_2 \cap D_3) + Pr(D_1 \cap D_2 \cap \overline{D}_3)}{Pr(D_1 \cap \overline{D}_2 \cap D_3) + Pr(D_1 \cap D_2 \cap \overline{D}_3) + Pr(\overline{D}_1 \cap D_2 \cap D_3)} = \frac{(\frac{10}{100})(\frac{90}{99})(\frac{9}{98}) + (\frac{10}{100})(\frac{9}{99})(\frac{90}{98})}{(\frac{10}{100})(\frac{90}{99})(\frac{9}{98}) + (\frac{10}{100})(\frac{9}{99})(\frac{90}{98}) + (\frac{90}{100})(\frac{10}{99})(\frac{9}{98})} = \frac{2}{3}
\]

- **Probability Calculation Table for Bayes calculations:**

 Given \(A_1, \ldots, A_n \) are ME and CE and \(B_1, \ldots, B_m \) are ME

<table>
<thead>
<tr>
<th></th>
<th>TABLE 1</th>
<th></th>
<th>TABLE 2</th>
<th></th>
<th>TABLE 3</th>
<th></th>
<th>TABLE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Pr(A_1))</td>
<td>(\ldots)</td>
<td>(Pr(A_n))</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(A_1)</td>
<td>(\ldots)</td>
<td>(A_n)</td>
<td>(A_1)</td>
<td>(\ldots)</td>
<td>(A_n)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B_1)</td>
<td>(Pr(B_1</td>
<td>A_1))</td>
<td>(\ldots)</td>
<td>(Pr(B_1</td>
<td>A_n))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(B_2)</td>
<td>(Pr(B_2</td>
<td>A_1))</td>
<td>(\ldots)</td>
<td>(Pr(B_2</td>
<td>A_n))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
</tr>
<tr>
<td>(B_m)</td>
<td>(Pr(B_m</td>
<td>A_1))</td>
<td>(\ldots)</td>
<td>(Pr(B_m</td>
<td>A_n))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Column 1 of Table 2 (the shaded portion of Table 2) is given by:

\[(\text{Column 1 of Table 1}) \times \text{(the probability at the top of Column 1 of Table 1)}\]

\[
\begin{bmatrix}
Pr(B_1|A_1) \\
Pr(B_2|A_1) \\
\vdots \\
Pr(B_m|A_1)
\end{bmatrix} \times Pr(A_1)
\]

• In general, Column \(i\) of Table 2 is given by:

\[(\text{Column } i \text{ of Table 1}) \times \text{(the probability at the top of column } i \text{ of Table 1)}\]

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>TABLE 2</th>
<th>TABLE 3</th>
<th>TABLE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pr(A_1))</td>
<td>(Pr(A_n))</td>
<td>(Pr(B_1</td>
<td>A_1))</td>
</tr>
<tr>
<td>(A_1)</td>
<td>(A_n)</td>
<td>(A_1)</td>
<td>(A_n)</td>
</tr>
<tr>
<td>(B_1)</td>
<td>(Pr(B_1</td>
<td>A_1))</td>
<td>(Pr(B_1</td>
</tr>
<tr>
<td>(B_2)</td>
<td>(Pr(B_2</td>
<td>A_1))</td>
<td>(Pr(B_2</td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>(B_m)</td>
<td>(Pr(B_m</td>
<td>A_1))</td>
<td>(Pr(B_m</td>
</tr>
</tbody>
</table>

| \(Pr(B_m|A_1)\) | \(Pr(B_m|A_n)\) | \(Pr(B_m \cap A_1)\) | \(Pr(B_m \cap A_n)\) | \(A_1\) | \(A_n\) | \(A_1\) | \(A_n\) |
• Row 1 of Table 3 (the shaded portion of Table 3) is given by the sum of elements of Row 1 of Table 2

\[Pr(B_1 \cap A_1) + Pr(B_1 \cap A_2) + \cdots + Pr(B_1 \cap A_n) \]

• In general, Row \(i\) of Table 3 is given by the sum of elements of Row \(i\) of Table 2

<table>
<thead>
<tr>
<th>TABLE 1</th>
<th>TABLE 2</th>
<th>TABLE 3</th>
<th>TABLE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pr(A_1))</td>
<td>(\cdots)</td>
<td>(A_1)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(A_1)</td>
<td>(\cdots)</td>
<td>(A_1)</td>
<td>(\cdots)</td>
</tr>
<tr>
<td>(B_1)</td>
<td>(Pr(B_1</td>
<td>A_1))</td>
<td>(Pr(B_1</td>
</tr>
<tr>
<td>(B_2)</td>
<td>(Pr(B_2</td>
<td>A_1))</td>
<td>(Pr(B_2</td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
</tr>
<tr>
<td>(B_m)</td>
<td>(Pr(B_m</td>
<td>A_1))</td>
<td>(Pr(B_m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TABLE 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Pr(B_1))</td>
</tr>
</tbody>
</table>

• Row 1 of Table 4 (the shaded portion of Table 4) is given by:

\[
\frac{\text{(Row 1 of Table 2)}}{\text{(Row 1 of Table 3)}} \times \frac{1}{Pr(B_1)}
\]

\[
= [Pr(B_1 \cap A_1) \cdots Pr(B_1 \cap A_n)] \times \frac{1}{Pr(B_1)}
\]
In general, Row j of Table 4 is given by

$$(\text{Row } j \text{ of Table 2})/(\text{Row } j \text{ of Table 3})$$

- **Final Table**

TABLE 1		TABLE 2		TABLE 3		TABLE 4								
$Pr(A_1)$	\ldots	$Pr(A_n)$												
A_1	\ldots	A_n	A_1	\ldots	A_n									
B_1	$Pr(B_1	A_1)$	\ldots	$Pr(B_1	A_n)$	$Pr(B_1 \cap A_1)$	\ldots	$Pr(B_1 \cap A_n)$	$Pr(B_1)$	$Pr(A_1	B_1)$	\ldots	$Pr(A_n	B_1)$
B_2	$Pr(B_2	A_1)$	\ldots	$Pr(B_2	A_n)$	$Pr(B_2 \cap A_1)$	\ldots	$Pr(B_2 \cap A_n)$	$Pr(B_2)$	\ldots				
\vdots														
B_m	$Pr(B_m	A_1)$	\ldots	$Pr(B_m	A_n)$	$Pr(B_m \cap A_1)$	\ldots	$Pr(B_m \cap A_n)$	$Pr(B_m)$	\ldots				
***	***	$Pr(A_1)$	$Pr(A_1)$	***	???	???								

*** This value will be 1 if B_1, \ldots, B_m are also collectively exhaustive and < 1 otherwise.

?? Can be any value > 0
• The column and row sums can be used to check your results.

• In calculating Table 2 the multiplicative law of probability is applied.

• In calculating Table 3 the law of total probability is applied.

• In calculating Table 4 Bayes law is applied.

Example:

\[Pr(A_1|B_1) = \frac{Pr(B_1 \cap A_1)}{Pr(B_1)} \]

\[= \frac{Pr(B_1 \cap A_1)}{Pr(B_1 \cap A_1) + \ldots + Pr(B_1 \cap A_n)} \]

\[= \frac{Pr(B_1|A_1)Pr(A_1)}{Pr(B_1|A_1)Pr(A_1) + \ldots + Pr(B_1|A_n)Pr(A_n)} \]
Example 5 - Quality Control Problem:
Let the probability of an item being defective, p, be 0.01, 0.05 or 0.10 with probability 0.6, 0.3, 0.1 respectively. If two samples are selected and tested what is the probability that p is 0.01, 0.05, and 0.10 given 0, 1, or 2 defects are found.

Random Variable Definition: X is the number of defects in a sample of 2

$$Pr(X = x | P) = \begin{cases}
(1 - P)^2 & x = 0 \\
2P(1 - P) & x = 1 \\
P^2 & x = 2
\end{cases}$$

$$Pr(P = p) = \begin{cases}
0.6 & p = 0.01 \\
0.3 & p = 0.05 \\
0.1 & p = 0.10
\end{cases}$$

<table>
<thead>
<tr>
<th>p</th>
<th>$X=0$</th>
<th>$X=1$</th>
<th>$X=2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>p=0.01</td>
<td>0.98</td>
<td>0.02</td>
<td>0.00</td>
</tr>
<tr>
<td>p=0.05</td>
<td>0.90</td>
<td>0.09</td>
<td>0.00</td>
</tr>
<tr>
<td>p=0.10</td>
<td>0.81</td>
<td>0.18</td>
<td>0.01</td>
</tr>
</tbody>
</table>

Thus, for example: $Pr(P = 0.05 | X = 1) = 0.488$
Example 6: When a student attempts to log on to a computer time-sharing system, either all ports are busy (F), in which case the student will fail to obtain access, or else there is at least one port free (S), in which case the student will be successful in accessing the system.

Total Event: $\Omega = \{S, F\}$

Definition: For a given total event Ω, a random variable (rv) is any rule that associates a number with each outcome in Ω. In mathematical language, a random variable is a function whose domain is the sample space and whose range is the real numbers.

$$X(S) = 1 \quad X(F) = X(S) = 0$$
Example 7: Consider the experiment in which batteries are examined until a good
\(S\) is obtained.

Total Event: \(\Omega = \{S, FS, FFS, FFFS, \ldots \}\)

Define a rv \(X\) as follows:

\[X = \text{the number of batteries examined before the experiment terminates.} \]

Then:

\[X(S) = 1, \quad X(FS) = 2, \quad X(FFS) = 3, \text{ etc.} \]

The argument of the random variable function is typically omitted. Hence, one writes

\[Pr(X = 2) = Pr(\text{The second battery works}) \]

Note that the above statement only has meaning with the above definition of the
random variable. It is good practice to always include the definition of a random
variable in words.
The nature of random variables can be **discrete** and **continuous**.

Definition: A **discrete** random variable is an rv whose possible values either constitute a finite set or else can be listed in an infinite sequence in which there is a first element, a second element, and so on. A random variable is **continuous** if its set of possible values consists of an entire interval on the number line.

Example 7: Suppose we select married couples at random and do a blood test on each person until we find an husband and wife who both have the same Rh factor.

\[X = \text{the number of blood tests to be performed} \]

Then:

\[X \in \{2, 4, 6, 8, \ldots \} \]

Since the possible values can be listed in a sequence, \(X \) is a discrete rv.
Definition: A random variable is said to be **continuous** if its set of possible values is an entire interval of numbers — that is, for some $A < B$, any number X between A and B is possible.

Example 8: If in the study of ecology of a lake, we make depth measurements at randomly chosen locations, then

$$X = \text{the depth at a randomly chosen location},$$

is a **continuous** rv. Here A is the minimum depth and B is the maximum depth.

Example 9: If a chemical compound is randomly selected and its pH X is determined, then X is a continuous rv because and pH between 0 and 14 is possible. If more is known about the compound selected for analysis, then the set of possible values might be a subinterval of $[0, 14]$, such as $5.5 \leq x \leq 6.5$, but X would still be **continuous**.