SOLUTION QUESTION 7.20:

A company owns two different computers, which are in separate buildings and operated entirely separately. Based on past history, Computer 1 is **expected to breakdown 5.0 times a year**, with **a variance of 6**, and **costing \$200 per breakdown**. Computer 2 is **expected to breakdown 3.6 times per year**, with **a variance of 7**, and **costing \$165 per breakdown**. What is the company's expected cost for computer breakdowns and the variance of the breakdown cost? What assumption must you make to find the variance? Is this a reasonable assumption?

SOLUTION: Definitions:

X₁ = Annual Number of Breakdowns of Computer 1

 $c_1 = Cost per Breakdown of Computer 1 ($200)$

 X_2 = Annual Number of Breakdowns of Computer 2

 $c_2 = Cost per Breakdown of Computer 2 ($165)$

TC = Annual Total Cost of Computer Breakdowns

Note that, X_1 and X_2 are random variables (i.e. their values are uncertain) and c_1 and c_2 are constant values.

From the text, we conclude:

 $TC = c_1X_1 + c_2X_2 (A LINEAR RELATIONSHIP!)$

Conclusion: TC is a random variable (its value is uncertain).

A. Because of the Linear Relationship we have:

$$E[TC] = E[c_1X_1 + c_2X_2] = c_1E[X_1] + c_2E[X_2]$$

From the text we have: c_1 = \$200, c_2 = 165, $E[X_1]$ = 5 and $E[X_2]$ = 3.6. Hence: E[TC] = \$200 x 5 + \$165 x 3.6 = \$1594

B. With an assumption of independence between X₁ and X₂ are we have: $Var[TC] = Var[c_1X_1 + c_2X_2] = (c_1)^2 Var[X_1] + (c_2)^2 Var[X_2]$

From the text we have: c_1 = \$200, c_2 = 165, $Var[X_1]$ = 6 and $E[X_2]$ = 7. Hence: $Var[TC] = ($200)^2 \times 6 + (165)^2 \times 7 = ($)^2 430575$ Standard Deviation TC: $\sqrt{430575}$ = \$656.18

IS THIS ASSUMPTION OF INDEPENDENCE REASONABLE?