
R. T. Clemen, T. Reilly

Chapter 7

 Probability Basics
Introduction

Let A be an event with possible outcomes: A_{1}, \cdots, A_{n}

$$
A=\text { "Flipping a coin" }
$$

$$
A_{1}=\{\text { Heads }\} \quad A_{2}=\{\text { Tails }\}
$$

The total event Ω (or sample space) of event A is the collection of all possible outcomes of A

$$
\Omega=\{\text { Heads, Tails }\}
$$

Formally:

$$
\Omega=A_{1} \cup A_{2} \cup \cdots \cup A_{n-1} \cup A_{n}=\bigcup_{i=1}^{n} A_{i}
$$

Probability Calculus

Probability rules may be derived using VENN DIAGRAMS

1. Probabilities must be between 0 and 1 for all possible outcomes in the sample space Ω :

$0 \leq \operatorname{Pr}\left(A_{i}\right) \leq 1$, for all outcomes A_{i} that are in Ω
Ratio of the area of the oval and the area of the total rectangle can be interpreted as the probability of the event

Probability Calculus

2. Probabilities must add up if both events cannot occur at the same time:

$$
A_{1} \cap A_{2}=\phi \Rightarrow \operatorname{Pr}\left(A_{1} \cup A_{2}\right)=\operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)
$$

Probability Calculus

3. If A_{1}, \cdots, A_{n} are all the possible outcomes and not two of these can occur at the same time, their Total Probability must sum up to 1 :

A_{1}, \cdots, A_{n} are said to be collectively exhaustive and mutually exclusive

Probability Calculus

4. The probability of the complement of A_{1} equals 1 minus the probability of A_{1}

$$
\operatorname{Pr}\left(\bar{A}_{1}\right)=1-\operatorname{Pr}\left(A_{1}\right)
$$

Probability Calculus

5. If two events can occur at the same time the probability of either of them happening or both equals the sum of their individual probability minus the probability of them both happening at the same time.

$$
\operatorname{Pr}\left(A_{1} \cup A_{2}\right)=\operatorname{Pr}\left(A_{1}\right)+\operatorname{Pr}\left(A_{2}\right)-\operatorname{Pr}\left(A_{1} \cap A_{2}\right)
$$

Probability Calculus

6. Conditional probability:

Probability Calculus: Conditional Probability

$$
\operatorname{Pr}(\text { Stock } \uparrow \mid \text { Dow } \uparrow)=\frac{\operatorname{Pr}(\text { Stock } \uparrow \cap D o w \uparrow)}{\operatorname{Pr}(\text { Dow } \uparrow)}
$$

Intuition: If I know that the market as a whole will go up, the chances of the stock of an individual company going up will increase.

$$
\operatorname{Pr}(A \mid B)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(B)}
$$

Informally: Conditioning on an event coincides with reducing the total event to the conditioning event

Probability Calculus: Conditional Probability

Example: The probability of drawing an ace of spades in a deck of 52 cards equals $1 / 52$. However, if I tell you that I have an ace in my hands, the probability of it being the ace of spades equals $1 / 4$.

$$
\operatorname{Pr}(\text { Spades } \mid \text { Ace })=\frac{\operatorname{Pr}(\text { Ace } \cap \text { Space })}{\operatorname{Pr}(\text { Ace })}=\frac{1 / 52}{4 / 52}=\frac{1}{4}
$$

Note also that:

$$
\operatorname{Pr}(B \mid A)=\frac{\operatorname{Pr}(A \cap B)}{\operatorname{Pr}(A)}
$$

Probability Calculus

7. Multiplicative Rule: Calculating the probability of two events happening at the same time.

$$
\begin{aligned}
\operatorname{Pr}\left(A_{i} \cap B\right) & =\operatorname{Pr}(B \mid A) * \operatorname{Pr}(A) \\
& =\operatorname{Pr}(A \mid B) * \operatorname{Pr}(B)
\end{aligned}
$$

8. Independence between two events: Informally, two events are independent if information about one does not provide you any information about the other and vice versa. Consider:

Event A with possible outcomes A_{1}, \cdots, A_{n}
Event B with possible outcomes B_{1}, \cdots, B_{m}

Probability Calculus: Independence

Example: A is the event of flipping a coin and B is the event of throwing a dice. If you know the outcome of flipping the coin you do not learn anything about the outcome of throwing the dice (regardless of the outcome of flipping the coin). Hence, these two events are independent.

Formal definition of independence between event A and event B :

$$
\operatorname{Pr}\left(A_{i} \mid B_{j}\right)=\operatorname{Pr}\left(A_{i}\right)
$$

For all possible combinations A_{i} and B_{j}

Probability Calculus: Independence

Equivalent definitions of independence between A event and event B :
1.

$$
\operatorname{Pr}\left(B_{j} \mid A_{i}\right)=\operatorname{Pr}\left(B_{j}\right)
$$

$$
\text { For all possible combinations } A_{i} \text { and } B_{j}
$$

2.

$$
\operatorname{Pr}\left(A_{i} \cap B_{j}\right)=\operatorname{Pr}\left(A_{i}\right) \times \operatorname{Pr}\left(B_{j}\right)
$$

For all possible combinations A_{i} and B_{j}
Independence/dependence in influence diagrams:

- No arrow between two chance nodes implies independence between the uncertain events
- An arrow from a chance event A to a chance event B does not mean that "A causes B ". It indicates that information about A helps in determining the likelihood of outcomes of B.

Probability Calculus: Conditional Independence

Example: The performance of a person on any IQ test is uncertain and may range anywhere from 0% to 100%. However, if you to know that the person in question is highly intelligent it is expected hisher score will be high, e.g. ranging anywhere from 90% to 100%.

On the other hand, the person's IQ does not explain this remaining uncertainty, and it may be considered measurement error affected by other conditions. For example, having a good night sleep during the previous night. On any two IQ tests, these measurement errors may be reasonably modeled as independent, if we know the IQ of the person.

Probability Calculus: Conditional Independence

Event A with possible outcomes A_{1}, \cdots, A_{n}
Event B with possible outcomes B_{1}, \cdots, B_{m}
Event C with possible outcomes C_{1}, \cdots, C_{p}
Formal definition: Event A and event B are conditionally independent given event C if and only if

$$
\begin{aligned}
& \qquad \operatorname{Pr}\left(A_{i} \mid B_{j}, C_{k}\right)=\operatorname{Pr}\left(A_{i} \mid C_{k}\right) \\
& \text { For all possible combinations } A_{i}, B_{j} \text { and } C_{k}
\end{aligned}
$$

Informally: If I already know C, any information or knowledge about B does not tell me anything more about A

Probability Calculus: Conditional Independence

Equivalent definitions: Event A and event B are conditionally independent given event C if and only if
1.

$$
\operatorname{Pr}\left(B_{j} \mid A_{i}, C_{k}\right)=\operatorname{Pr}\left(B_{j} \mid C_{k}\right)
$$

For all possible combinations A_{i}, B_{j} and C_{k}
2. $\operatorname{Pr}\left(A_{i} \cap B_{j} \mid C_{k}\right)=\operatorname{Pr}\left(A_{i} \mid C_{k}\right) \times \operatorname{Pr}\left(B_{j} \mid C_{k}\right)$

For all possible combinations A_{i}, B_{j} and C_{k}

Probability Calculus: Conditional Independence

Equivalent definitions: Event A and event B are conditionally independent given event C if and only if
1.

$$
\operatorname{Pr}\left(B_{j} \mid A_{i}, C_{k}\right)=\operatorname{Pr}\left(B_{j} \mid C_{k}\right)
$$

For all possible combinations A_{i}, B_{j} and C_{k}
2. $\operatorname{Pr}\left(A_{i} \cap B_{j} \mid C_{k}\right)=\operatorname{Pr}\left(A_{i} \mid C_{k}\right) \times \operatorname{Pr}\left(B_{j} \mid C_{k}\right)$

For all possible combinations A_{i}, B_{j} and C_{k}

Probability Calculus: Conditional Independence

Conditional independence in influence diagrams:

Probability Calculus: Law of Total Probability

- Let B_{1}, \cdots, B_{3} be mutually exclusive, collectively exhaustive:

$$
\begin{gathered}
\operatorname{Pr}(A)=\operatorname{Pr}\left(A \cap B_{1}\right)+\operatorname{Pr}\left(A \cap B_{2}\right)+\operatorname{Pr}\left(A \cap B_{3}\right) \Leftrightarrow \\
\operatorname{Pr}(A)=\operatorname{Pr}\left(A \mid B_{1}\right) \operatorname{Pr}\left(B_{1}\right)+\operatorname{Pr}\left(A \mid B_{2}\right) \operatorname{Pr}\left(B_{2}\right)+\operatorname{Pr}\left(A \mid B_{3}\right) \operatorname{Pr}\left(B_{3}\right)
\end{gathered}
$$

Probability Calculus: Law of Total Probability

Example:

X = System fails
A = Component A fails,
$B=$ Component B fails,

C = Component C fails

SYSTEM: $\mathrm{X}, \mathrm{X}=$ failure,$\overline{\mathrm{X}}=$ No Failure

Assume that components A, B and C operate independently.

Probability Calculus: Law of Total Probability

Task:

Write the probability of failure $\operatorname{Pr}(\mathrm{X})$ as a function of the component failure probabilities $\operatorname{Pr}(\mathrm{A}), \operatorname{Pr}(\mathrm{B})$ and $\operatorname{Pr}(\mathrm{C})$.

$$
\begin{aligned}
& \text { 1. } \operatorname{Pr}(X)=\operatorname{Pr}(X \mid A) \operatorname{Pr}(A)+\operatorname{Pr}(X \mid \bar{A}) \operatorname{Pr}(\bar{A})= \\
& =1 * \operatorname{Pr}(A)+\operatorname{Pr}(X \mid \bar{A}) \operatorname{Pr}(\bar{A}) \\
& \text { 2. } \operatorname{Pr}(X \mid \bar{A})=\operatorname{Pr}(X \mid B, \bar{A}) \operatorname{Pr}(B \mid \bar{A})+ \\
& \operatorname{Pr}(X \mid \bar{B}, \bar{A}) \operatorname{Pr}(\bar{B} \mid \bar{A}) \\
& =\operatorname{Pr}(X \mid B, \bar{A}) \operatorname{Pr}(B)+0 * \operatorname{Pr}(\bar{B}) \\
& =\operatorname{Pr}(X \mid B, \bar{A}) \operatorname{Pr}(B) \text { Substitute result } 2 \text { into } 3
\end{aligned}
$$

3. $\operatorname{Pr}(X)=\operatorname{Pr}(A)+\operatorname{Pr}(X \mid B, \bar{A}) \operatorname{Pr}(B) \operatorname{Pr}(\bar{A})$

Probability Calculus: Law of Total Probability

Intermediate conclusion: Hence we need to further develop

$$
\operatorname{Pr}(X \mid B, \bar{A})
$$

$$
\text { 4. } \begin{aligned}
\operatorname{Pr}(X \mid B, \bar{A})= & \operatorname{Pr}(X \mid C, B, \bar{A}) \operatorname{Pr}(C \mid B, \bar{A})+ \\
& \operatorname{Pr}(X \mid \bar{C}, B, \bar{A}) \operatorname{Pr}(\bar{C} \mid B, \bar{A}) \\
= & 1 * \operatorname{Pr}(C)+0 * \operatorname{Pr}(\bar{C})=\operatorname{Pr}(C)
\end{aligned}
$$

Substitute result 4 into 3
5. $\operatorname{Pr}(X)=\operatorname{Pr}(A)+\operatorname{Pr}(C) \operatorname{Pr}(B) \operatorname{Pr}(\bar{A})$
6. $\operatorname{Pr}(\bar{A})=1-\operatorname{Pr}(A) \quad$ Substitute result 6 into 5
7. $\operatorname{Pr}(X)=\operatorname{Pr}(A)+\operatorname{Pr}(C) \operatorname{Pr}(B)-\operatorname{Pr}(C) \operatorname{Pr}(B) \operatorname{Pr}(A)$

Probability Calculus: Law of Total Probability

Example: Oil Wildcatter Problem

Payoff at site 1 is uncertain. Dominating factor in eventual payoff at Site 1 is the presence of a dome or not.

Probability Calculus: Law of Total Probability

| | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | $\operatorname{Pr}($ Dome) | $\operatorname{Pr}(\mathbf{N o}$ Dome) | | |
| | | 0.600 | 0.400 | | |
| | | | | | |
| | | | | | |
| Outcome | Pr (Outcome\|Dome) | | | | |
| Dry | 0.600 | | | Outcome | Pr(Outcome\|No Dome) |
| Low | 0.250 | | | Dry | 0.850 |
| High | 0.150 | | | Low | 0.125 |

Probability Calculus: Law of Total Probability

$$
\begin{aligned}
\operatorname{Pr}(\text { Dry })= & \operatorname{Pr}(\text { Dry } \mid \text { Dome }) \operatorname{Pr}(\text { Dome })+ \\
& \operatorname{Pr}(\text { Dry } \mid \text { No Dome }) \operatorname{Pr}(\text { No Dome }) \\
= & 0.600 * 0.600+0.850 * 0.400=0.700 \\
\operatorname{Pr}(\text { Low })= & \operatorname{Pr}(\text { Low } \mid \text { Dome }) \operatorname{Pr}(\text { Dome })+ \\
& \operatorname{Pr}(\text { Low } \mid \text { No Dome }) \operatorname{Pr}(\text { No Dome }) \\
= & 0.250 * 0.600+0.125 * 0.400=0.200 \\
\operatorname{Pr}(\text { High })= & \operatorname{Pr}(\text { High } \mid \text { Dome }) \operatorname{Pr}(\text { Dome })+ \\
& \operatorname{Pr}(\text { High } \mid \text { No Dome }) \operatorname{Pr}(\text { No Dome }) \\
= & 0.150 * 0.600+0.025 * 0.400=0.100
\end{aligned}
$$

Probability Calculus: Law of Total Probability

Informally: when we apply LOTP we are collapsing a probability tree

Probability Calculus: Bayes Theorem

- Let B_{1}, \cdots, B_{3} be mutually exclusive, collectively exhaustive:

1. From the multiplicative rule it follows that:

$$
\operatorname{Pr}\left(A \cap B_{j}\right)=\operatorname{Pr}\left(B_{j} \mid A\right) \operatorname{Pr}(A)=\operatorname{Pr}\left(A \mid B_{j}\right) \operatorname{Pr}\left(B_{j}\right)
$$

Probability Calculus: Bayes Theorem

2. Dividing the LHS and RHS of 1. by $\operatorname{Pr}(\mathrm{A})$ yields:

$$
\operatorname{Pr}\left(B_{j} \mid A\right)=\frac{\operatorname{Pr}\left(A \mid B_{j}\right) \operatorname{Pr}\left(B_{j}\right)}{\operatorname{Pr}(A)}
$$

3. We may rewrite $\operatorname{Pr}(\mathrm{A})$ using the Law of Total Probability, yielding

$$
\operatorname{Pr}(A)=\operatorname{Pr}\left(A \mid B_{1}\right) \operatorname{Pr}\left(B_{1}\right)+\operatorname{Pr}\left(A \mid B_{2}\right) \operatorname{Pr}\left(B_{2}\right)+\operatorname{Pr}\left(A \mid B_{3}\right) \operatorname{Pr}\left(B_{3}\right)
$$

4. Substituting the result of 3 . into 2 . gives perhaps the most well known theorem in probability theory:

Bayes Theorem.

Probability Calculus: Bayes Theorem

$$
\operatorname{Pr}\left(B_{j} \mid A\right)=\frac{\operatorname{Pr}\left(A \mid B_{j}\right) \operatorname{Pr}\left(B_{j}\right)}{\operatorname{Pr}\left(A \mid B_{1}\right) \operatorname{Pr}\left(B_{1}\right)+\operatorname{Pr}\left(A \mid B_{2}\right) \operatorname{Pr}\left(B_{2}\right)+\operatorname{Pr}\left(A \mid B_{3}\right) \operatorname{Pr}\left(B_{3}\right)}
$$

Thomas Bayes (1702 to 1761): Bayes' theory of probability was published in 1764. His conclusions were accepted by Laplace in 1781, rediscovered by Condorcet, and remained unchallenged until Boole questioned them. Since then Bayes' techniques have been subject to controversy.

Source: http://www-gap.dcs.st-and.ac.uk/~history/Mathematicians/Bayes.html

Probability Calculus: Bayes Theorem

Oil Wildcatter Problem Example Continued:

- We drilled at site 1 and the well is a high producer. Given this new information what are the chances that a dome exists? (Perhaps that information is important when attracting additional investors.)

1. From the rule for conditional probability it follows that:

$$
\operatorname{Pr}(\text { Dome } \mid \text { High })=\frac{\operatorname{Pr}(\text { High } \mid \text { Dome }) \operatorname{Pr}(\text { Dome })}{\operatorname{Pr}(\text { High })}
$$

2. From the LOTP it follows that:

$$
\begin{aligned}
\operatorname{Pr}(\text { High })= & \operatorname{Pr}(\text { High } \mid \text { Dome }) \operatorname{Pr}(\text { Dome })+ \\
& \operatorname{Pr}(\text { High } \mid \text { No Dome }) \operatorname{Pr}(\text { No Dome })
\end{aligned}
$$

Probability Calculus: Bayes Theorem

Oil Wildcatter Problem Example Continued:

3. Substitution of 2 in 1 yields:

$$
\operatorname{Pr}(\text { Dome } \mid \text { High })=
$$

$\frac{\operatorname{Pr}(\text { High } \mid \text { Dome }) \operatorname{Pr}(\text { Dome })}{\operatorname{Pr}(\text { High } \mid \text { Dome }) \operatorname{Pr}(\text { Dome })+\operatorname{Pr}(\text { High } \mid \text { No Dome }) \operatorname{Pr}(\text { No Dome })}=$

$$
\frac{0.150 * 0.600}{0.150 * 0.600+0.0250 * 0.400}=0.90
$$

Pr(Dome) - The Prior Probability
Pr(Dome|Data) - The Posterior Probability
Data = "The well is a high produces"

Probability Calculus: Bayes Theorem

Oil Wildcatter Problem Example Continued:

- Notice that $\operatorname{Pr}($ Dry $), \operatorname{Pr}($ Low $)$ and $\operatorname{Pr}($ High $)$ have been inserted in the tree.These were calculated using LOTP.
- Notice that Pr (Dome|High) has been inserted as well This one was calculated using Bayes Theorem.
- We need to fill out the Remainder of the question Marks.

Probability Calculus: Bayes Theorem

Oil Wildcatter Problem Example Continued:

When we reverse the order of the chance nodes in a decision tree we need to apply Bayes Theorem

Next, we allocate the probabilities from the table at their appropriate locations in the tree

Probability Calculus: Bayes Theorem

Oil Wildcatter Problem Example Continued:

AFTER BAYES THEOREM

Probability Calculus: Bayes Theorem

The Game Show Example:

Suppose we have a game show host and you. There are three doors and one of them contains a prize. The game show host knows the door containing the prize but of course does not convey this information to you. He asks you to pick a door. You picked Door 1 and are walking up to door 1 to open it when the game show host screams: STOP!.

You stop and the game show host shows Door 3 which appears to be empty. Next, the game show asks:
"DO YOU WANT TO SWITCH TO DOOR 2?"
WHAT SHOULD YOU DO?

Probability Calculus: Bayes Theorem

The Game Show Example:

Assumption 1: The game show host will never show the door with the prize.

Assumption 2: The game show will never show the door that you picked.

$$
\begin{gathered}
\text { Define: } \\
D_{i}=\{\text { Prize is behind door } i\}, i=1, \ldots, 3 \\
\mathrm{H}_{\mathrm{i}}=\left\{\begin{array}{l}
\{\text { Host shows Door } \mathrm{i} \text { containing no prize } \\
\\
\text { after you selected Door } 1\}, \mathrm{i}=1, \ldots, 3
\end{array}\right.
\end{gathered}
$$

1. It seems reasonable to set prior probabilities: $\operatorname{Pr}\left(D_{i}\right)=\frac{1}{3}$

Probability Calculus: Bayes Theorem

2. Apply LOTP to calculate $\operatorname{Pr}\left(\mathrm{H}_{3}\right)$:

$$
\begin{aligned}
\operatorname{Pr}\left(\boldsymbol{H}_{3}\right) & =\sum_{i=1}^{3} \operatorname{Pr}\left(\boldsymbol{H}_{3} \mid \boldsymbol{D}_{i}\right) \operatorname{Pr}\left(\boldsymbol{D}_{\boldsymbol{i}}\right)= \\
& =\frac{1}{2} * \frac{1}{3}+1 * \frac{1}{3}+0 * \frac{1}{3}=\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. Calculate } \operatorname{Pr}\left(\mathrm{D}_{1} \mid \mathrm{H}_{3}\right) \text { : } \\
& \qquad \operatorname{Pr}\left(D_{1} \mid H_{3}\right)=\frac{\operatorname{Pr}\left(H_{3} \mid D_{1}\right) \operatorname{Pr}\left(D_{1}\right)}{\operatorname{Pr}\left(H_{3}\right)}=\frac{\frac{1}{2} * \frac{1}{3}}{\frac{1}{2}}=\frac{1}{3}
\end{aligned}
$$

4. Apply the complement rule:

$$
\operatorname{Pr}\left(D_{2} \mid H_{3}\right)=1-\operatorname{Pr}\left(D_{1} \mid H_{3}\right)=1-\frac{1}{3}=\frac{2}{3}
$$

So YES, you should SWITCH since you would increase your chances of winning!

Probability Calculus: Uncertain Quantities

Example: When a student attempts to log on to a computer time-sharing system, either all ports are busy (B) in which case the student will fail to obtain access, or else there is at least one port free (F), in which case the student will be successful in accessing the system.

$$
\text { Total Event: } \Omega=\{\boldsymbol{B}, \boldsymbol{F}\}
$$

Definition: For a given total event Ω, a random variable (rv) is any rule that associates a number with each Ω outcome in.

In mathematical language, a random variable is a function whose domain is the total event and whose range is the real numbers.

Probability Calculus: Uncertain Quantities

Example: Consider the experiment in which batteries are examined until a good (G) is obtained. Let B denote a bad Battery.

$$
\text { Total Event: } \Omega=\{\boldsymbol{G}, \boldsymbol{B} \boldsymbol{G}, \boldsymbol{B} \boldsymbol{B} \boldsymbol{G}, \boldsymbol{B} \boldsymbol{B} \boldsymbol{B} \boldsymbol{G}, \ldots .\}
$$

Probability Calculus: Uncertain Quantities

Define a rv X as follows:

$\mathrm{X}=$ The number of batteries examined before the experiment terminates.
Then:

$$
\boldsymbol{X}(\boldsymbol{G})=1, \boldsymbol{X}(\boldsymbol{B} \boldsymbol{G})=2, \boldsymbol{X}(\boldsymbol{B B G})=3, \boldsymbol{e t c}
$$

The argument of the random variable function is typically omitted. Hence, one writes

$$
\operatorname{Pr}(\boldsymbol{X}=2)=\operatorname{Pr}(\text { Second Battery Works) }
$$

Note that the above statement only has meaning with the above definition of the random variable. It is good practice to always include the definition of a random variable in words.

Probability Calculus: Uncertain Quantities

The nature of random variables can be discrete and continuous.

Definition:

A discrete random variable is an rv whose possible values either constitute a finite set or else can be listed in an infinite sequence in which there is a first element, a second element, and so on. (Think of the previous batter example).

A random variable is continuous if its set of possible values consists of an entire interval on the number line. (For example, the failure time of a component).

Discrete Probability Distributions

The nature of random variables can be discrete and continuous.

Definition:

A discrete random variable is an rv whose possible values either constitute a finite set or else can be listed in an infinite sequence in which there is a first element, a second element, and so on. (Think of the previous batter example).

A random variable is continuous if its set of possible values consists of an entire interval on the number line. (For example, the failure time of a component).

Discrete Probability Distributions

Example:

$\mathrm{Y}=$ Number of Raisins in an Oatmeal Cookie Assume possible outcomes: $\mathrm{Y}=1, \ldots, 5$

Definition: The probability mass function (PMF) of Y is the collection of probabilities such that $\operatorname{Pr}(\mathrm{Y}=\mathrm{i})=\mathrm{p}_{\mathrm{i}}$

Y	1	2	3	4	5
$\operatorname{Pr}(\mathrm{Y}=\mathrm{i})$	0.1	0.15	0.3	0.35	0.1

Note that:

$$
\begin{gathered}
\operatorname{Pr}(\boldsymbol{Y}=1)+\operatorname{Pr}(\boldsymbol{Y}=2)+\operatorname{Pr}(\boldsymbol{Y}=3)+\operatorname{Pr}(\boldsymbol{Y}=4)+\operatorname{Pr}(\boldsymbol{Y}=5)= \\
\sum_{i=1}^{5} \operatorname{Pr}(\boldsymbol{Y}=\boldsymbol{i})=1
\end{gathered}
$$

Discrete Probability Distributions

Graphical Depictions of PMF's

A Histogram

An Line Graph
Definition: The cumulative distribution function (CDF) of Y at y is the sum of the probabilities such that $\mathrm{Y} \leq \mathrm{y}$:

$$
\boldsymbol{F}(\boldsymbol{y})=\operatorname{Pr}(\boldsymbol{Y} \leq \boldsymbol{y})=\sum_{i: i \leq \boldsymbol{y}} \operatorname{Pr}(\boldsymbol{Y}=\boldsymbol{i})
$$

Discrete Probability Distributions

Graphical Depictions of CDF:

In Decision Analysis a CDF is referred to as a CUMMULATIVE RISK PROFILE and a PMF is referred to as a RISK PROFILE

Probability Calculus: Expected Value

We know the random variable Y has many possible outcomes. However, if you were forced to give a "BEST GUESS" for Y , what number would you give? (Managers, CEO's, Senators etc. typically like POINT ESTIMATES, unfortunately). Why not use the expected value of Y ?

$$
\boldsymbol{E}[\boldsymbol{Y}]=\sum_{i=1}^{n} \boldsymbol{y}_{i} \times \operatorname{Pr}\left(\boldsymbol{Y}=\boldsymbol{y}_{\boldsymbol{i}}\right)=\sum_{i=1}^{n} \boldsymbol{y}_{i} \times \boldsymbol{p}_{\boldsymbol{i}}
$$

Interpretation: If you were able to observe many outcomes of Y, the calculated average of all the outcomes would be close to $E[Y]$.

- If $Z=g(Y)$:

$$
E[\boldsymbol{Z}]=\sum_{i=1}^{n} g\left(\boldsymbol{y}_{i}\right) \times \operatorname{Pr}\left(\boldsymbol{Y}=\boldsymbol{y}_{i}\right)=\sum_{i=1}^{n} g\left(\boldsymbol{y}_{i}\right) \times \boldsymbol{p}_{i}
$$

Probability Calculus: Expected Value

- If $\mathrm{Z}=\mathrm{aY}+\mathrm{b}, \mathrm{a}, \mathrm{b}$ constants, Y a rv: $\boldsymbol{E}[\boldsymbol{Z}]=\boldsymbol{a} \boldsymbol{E}[\boldsymbol{Y}]+\boldsymbol{b}$
- If $Z=\mathrm{aX}+\mathrm{bY}, \mathrm{a}, \mathrm{b}$ const., X, Y a rv: $\boldsymbol{E}[\boldsymbol{Z}]=\boldsymbol{a} \boldsymbol{E}[\boldsymbol{X}]+\boldsymbol{b} \boldsymbol{E}[\boldsymbol{Y}]$

Oatmeal Cookie Example:

$1 \text { Raisin (0.10) }$	1	\#Raisins	\# Raisins* $\operatorname{Pr}(\mathrm{Y}=$ \# Raisins)
2 Raisins (0.15)	2	1	$1 * 0.10=0.10$
3.20)	2	2	$2 * 0.15=0.30$
3 Raisins (0.30)	3	3	$3 * 0.30=0.90$
		4	$4 * 0.35=1.40$
4 Raisins (0.35)	4	5	$5 * 0.10=0.50$
5 Raisins (0.10)	5		3.20

"On average an oatmeal cookie has 3.2 Raisins"

Variance and Standard Deviation

We know the random variable Y has many possible outcomes. If you were forced to give a "BEST GUESS" for the uncertainty in Y , what number would you give?

Some people prefer to give the range of the outcomes of Y, i.e. the MAX VALUE of Y minus the MIN VALUE of Y.

However, this completely ignores that some values of Y may be more likely than others.

SUGGESTION:

Calculate the "BEST GUESS" for the DISTANCE from the MEAN. The standard deviation can be thought of such a guess. The standard deviation of Y is the square root of the variance of Y .

Variance and Standard Deviation

Variance:

$$
\begin{aligned}
& \quad \operatorname{Var}(\boldsymbol{Y})=\sigma_{Y}^{2}=\boldsymbol{E}\left[(\boldsymbol{Y}-\boldsymbol{E}[\boldsymbol{Y}])^{2}\right] \\
& =\boldsymbol{E}\left[\left(\boldsymbol{Y}^{2}-2 \cdot \boldsymbol{Y} \cdot \boldsymbol{E}[\boldsymbol{Y}]+\boldsymbol{E}^{2}[\boldsymbol{Y}]\right)\right] \\
& =\boldsymbol{E}\left[\boldsymbol{Y}^{2}\right]-2 \cdot \boldsymbol{E}[\boldsymbol{Y}] \cdot \boldsymbol{E}[\boldsymbol{Y}]+\boldsymbol{E}^{2}[\boldsymbol{Y}] \\
& =\boldsymbol{E}\left[\boldsymbol{Y}^{2}\right]-\boldsymbol{E}^{2}[\boldsymbol{Y}]
\end{aligned}
$$

Standard Deviation:

$$
\sigma_{\boldsymbol{Y}}=\sqrt{\sigma_{Y}^{2}}=\sqrt{\boldsymbol{E}\left[\boldsymbol{Y}^{2}\right]-\boldsymbol{E}^{2}[\boldsymbol{Y}]}
$$

Variance and Standard Deviation

- If $\mathrm{Z}=\mathrm{a} \mathrm{Y}+\mathrm{b}, \mathrm{a}, \mathrm{b}$ constants, Y a rv:

$$
\operatorname{Var}(Z)=a^{2} \operatorname{Var}(Y)
$$

- If $Z=a X+b Y, a, b$ const., X, Y indepent rv's:

$$
\operatorname{Var}(Z)=a^{2} \operatorname{Var}(X)+b^{2} \operatorname{Var}(Y)
$$

Example:
$\$ 20$ $\$ 35$ $\$ 50$-\$9
\$0

Max Profit
$\operatorname{Pr}($ Profit $\leq 0 \mid \boldsymbol{A})=0 ;$ $\operatorname{Pr}($ Profit $\leq 0 \mid \boldsymbol{B})=0.6$

Variance and Standard Deviation

Alternative A		Profit^2	Prob*Profit	Prob^{*} (Profit^2)	Variance	St. Dev
Prob	Profit					
0.24	20	400	4.80	96.00		
0.47	35	1225	16.45	575.75		
0.29	50	2500	14.50	725.00		
		$E[Y]=$	35.75			
			1278.0625	1396.75	118.69	10.89438
			$=E^{2}[Y]$	= $E\left[Y^{2}\right]$	$=E\left[Y^{2}\right]-E^{2}[Y]$	σ_{γ}
Alternative B						
Prob	Profit	Profit^2	Prob*Profit	Prob* ${ }^{\text {Profit^}}$ 2)	Variance	St. Dev
0.25	-9	81	-2.25	20.25		
0.35	0	0	0.00	0.00		
0.4	95	9025	38.00	3610.00		
			35.75			
			1278.0625	3630.25	2352.19	48.49936

Expected Value, Variance and Standard Deviation

Drill at Sit						
Prob	Profit	Profit^2	Prob*Profit	Prob*(Profit^2)	Variance	St. Dev
0.7	-100	10000	-70.00	7000.00		
0.2	150	22500	30.00	4500.00		
0.1	500	250000	50.00	25000.00		
			10.00	$\longrightarrow=E[Y]$		
			100	36500.00	36400.00	190.7878
			$\downarrow=E^{2}[Y]$	$\downarrow=E\left[Y^{2}\right]$		$\downarrow \sigma_{Y}$

Expected Value, Variance and Standard Deviation

Drill at Sit						
Prob	Profit	Profit^2	Prob*Profit	Prob*(Profit^2)	Variance	St. Dev
0.2	-200	40000	-40.00	8000.00		
0.8	50	2500	40.00	2000.00		
			0.00	$\longrightarrow=E[Y]$		
			0	110000.00	10000.00	100
			$=E^{2}[Y]$	$=E\left[Y^{2}\right]$	$E\left[Y^{2}\right]-E^{2}$	σ_{Y}

Expected Value, Variance and Standard Deviation

Continuous Probability Distributions

Let: $\quad X=$ The failure time of a component

Definition: Let X be a continuous rv. Then a probability density function (pdf) of X is a function $f(x)$ such that for any two numbers a and b with $a<b$:

$$
\underset{\underbrace{}_{\mathrm{a}}}{\operatorname{Pr}(\boldsymbol{X} \in[\boldsymbol{a}, \boldsymbol{b}])=\int_{a}^{b} f(\boldsymbol{x}) d \boldsymbol{x}} \begin{aligned}
& \text { For } \mathrm{f}(\mathrm{x}) \text { to be a legitamate } \\
& \text { pdf we must have: } \\
& \boldsymbol{f}(\boldsymbol{x}) \geq \boldsymbol{x}, \text { for all } \\
& \text { possible values } \boldsymbol{x}
\end{aligned}
$$

Continuous Probability Distributions

Cumulative distribution function:

The p-th quantile x_{p} :

Continuous Probability Distributions

Let: $\quad \mathrm{X}=$ The failure time of a component

Conclusion:

$$
\operatorname{Pr}(a \leq X \leq b)=\operatorname{Pr}(X \leq b)-\operatorname{Pr}(X \leq a)=F(b)-F(a)
$$

Continuous Probability Distributions

Examples theoretical density functions:

Normal:

$$
\boldsymbol{f}(\boldsymbol{x})=\frac{1}{\sigma \sqrt{2 \pi}} \cdot \exp \left(-\frac{1}{2} \frac{(x-\mu)^{2}}{\sigma^{2}}\right), x \in \mathbb{R}
$$

Exponential:

$$
\boldsymbol{f}(\boldsymbol{x})=\lambda \cdot \exp (-\lambda \cdot \boldsymbol{x}), \boldsymbol{x}>0
$$

Beta:

$$
\boldsymbol{f}(\boldsymbol{x})=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \cdot \Gamma(\beta)} \boldsymbol{x}^{\alpha-1}(1-\boldsymbol{x})^{\beta-1}, \boldsymbol{x} \in[0,1]
$$

More in Chapter 9
Expected Value:

$$
E[X]=\int_{-\infty}^{\infty} x f(x) d x
$$

Variance:

$$
\operatorname{Var}(X)=\int_{-\infty}^{\infty}(x-E[X])^{2} f(x) d x
$$

Formulas carry over from the discrete to the continuous case

Dominance Revisited

DETERMINISTIC DOMINANCE

Assume random Variable X Uniformly Distributed on [A,B]
Assume random Variable Y Uniformly Distributed on [C,D]

Dominance Revisited

STOCHASTIC DOMINANCE

Assume random Variable X Uniformly Distributed on [A,B]
Assume random Variable Y Uniformly Distributed on [C,D]

Dominance Revisited

CHOOSE ALTERNATIVE WITH BEST EMV

Assume random Variable X Uniformly Distributed on [A,B]
Assume random Variable Y Uniformly Distributed on [C,D]

Making Decisions under Uncertainty

Deterministic Dominance Present

Stochastic Dominance Present
Chances of an unlucky outcome increase

Making Decisions based on EMV

