

## Making Hard Decisions

## Chapter 4 Making Choices

R. T. Clemen, T. Reilly

## Texaco Versus Pennzoil

In early 1984, Pennzoil and Getty Oil agreed to the terms of a merger. But before any formal documents could be signed, Texaco offered Getty a substantially better price, and Gordon Getty, who controlled mos of the Getty Stock, reneged on the Pennzoil deal and sold to Texaco. Naturally, Pennzoil felt as if it had been dealt with unfairly and immediately files a lawsuit against Texaco alleging that Texaco had interfered illegally in the Pennzoil-Getty negotiations. Pennzoil won the case: in late 1985, it was awarded $\$ 11.1$ billion, the largest judgment ever in the United States. A Texas appeal court reduced the judgement to $\$ 2$ billion, but interest and penalties drove the total back up to $\$ 10.3$ billion. James Kinnear, Texaco's Chief executive officer, had said that Texaco would file for bankruptcy if Pennzoil obtained court permission to secure the judgment by filing liens against Texaco's assets.

## Texaco Versus Pennzoil - Continued

Furthermore, Kinnear had promised to fight the case all the way to the U.S. Supreme Court if necessary, arguing in part that Pennzoil had not followed Security and
Exchange Commission regulations in its negotiations with Getty. In April 1987, just before Pennzoil began to file liens, Texaco offered to Penzoil $\$ 2$ billion dollars to settle the entire case. Hugh Liedtke, chairman of Pennzoil, indicated that his advisors were telling him that a settlement between $\$ 3$ billion and $\$ 5$ billion would be fair.

> What should Hugh Liedtke do?
> 1. Accept $\$ 2$ Billion
> 2. Refuse $\$ 2$ Billion and counter offer \$5 Billion

## Texaco Versus Pennzoil - Decision Tree



## Texaco Versus Pennzoil - Continued

- Given tough negotiation positions of the two executives, their could be an even chance (50\%) that Texaco will refuse to negotiate further.
- Liedtke and advisor figure that it is twice as likely that Texaco would counter offer $\$ 3$ billion than accepting the $\$ 5$ billion. Hence, because there is a $50 \%$ of refusal, there must be a $33 \%$ chance of a Texaco counter offer and a $17 \%$ chance of Texaco accepting $\$ 5$ billion.
- What are the probabilities of the final court decision?
- Liedtke admitted that Pennzoil could lose the case. Thus there is a significant possibility the outcome would be zero. It's probability is assessed at $30 \%$.
- Given the strength of the Pennzoil case it is also possible that the court will upheld the judgment as it stands. It's probability is assessed at 20\%.
- Finally, the possibility exists that the judgment could be reduced somewhat to $\$ 5$ billion. Thus there must be a chance of $50 \%$ of this happening.


## Texaco Versus Pennzoil - Continued

- Given tough negotiation positions of the two executives, it could be an even chance (50\%) that Texaco will refuse to negotiate further.
- Liedtke and advisor figures that it is twice as likely that Texaco would counter offer $\$ 3$ billion than accepting the $\$ 5$ billion. Hence, because there is a $50 \%$ of refusal, there must be a $33 \%$ chance of a Texaco counter offer and a $17 \%$ chance of Texaco accepting $\$ 5$ billion.
- What are the probabilities of the final court decision?
- Liedtke admitted that Pennzoil could lose the case. Thus there is a significant possibility the outcome would be zero. It's probability is assessed at $30 \%$.
- Given the strength of the Pennzoil case it is also possible that the court will upheld the judgment as it stands. It's probability is assessed at 20\%.
- Finally, the possibility exists that the judgment could be reduced somewhat to $\$ 5$ billion. Thus there must be a chance of $50 \%$ of this happening.


## Texaco Versus Pennzoil - Decision Tree



Making Hard Decisions
R. T. Clemen, T. Reilly

Chapter 4 - Making Choices
Lecture Notes by: J.R. van Dorp and T.A. Mazzuchi

## Decision Tree and Expected Monetary Value (EMV)

## When objective is measured in dollars

## First Suggestion:

Solve decision problem by choosing that alternative that maximizes the EMV

Expected value of discrete random variable Y :

$$
E_{Y}[Y]=\sum_{i=1}^{n} y_{i} * \operatorname{Pr}\left(Y=y_{i}\right)=\sum_{i=1}^{n} y_{i} * p_{i}
$$

## A double-risk dillema



## Interpretation EMV: Playing the same lottery a lot of times will result over time in an average pay-off equal to the EMV

## Texaco Versus Pennzoil - Decision Tree



## Solve tree using EMV by folding back the tree

## Decision Tree and Expected Monetary Value (EMV)

## Step 1: Calculate EMV of court decision uncertainty node



## Decision Tree and Expected Monetary Value (EMV)

## Step 2: Evaluate decision regarding Texaco's counter offer



## Decision Tree and Expected Monetary Value (EMV)

## Step 3: Calculate EMV Texaco's reaction uncertainty node



## Decision Tree and Expected Monetary Value (EMV)

## Step 4: Evaluate the immediate decision



Optimal decision: Counteroffer \$5 Billion

> Optimal decision strategy: Counteroffer $\$ 5$ Billion and if Texaco counteroffers $\$ 3$ Billion, then refuse this counteroffer.

## Folding back the Decision Tree from right to left using EMV



## Definitions Decision Path and Strategy

Definition decision path:
A path starting at the left most node up to the values at the end of a branch by selecting one alternative from decision nodes or by following one outcome from uncertainty nodes. Represents a possible future scenario.

Definition decision strategy:
The collection of decision paths connected to one branch of the immediate decision by selecting one alternative from each decision node along these paths. Represents specifying at every decision in the decision problem what we would do, if we get to that decision (we may not get there due to outcome of previous uncertainty nodes).

## Optimal decision strategy:

That decision strategy which results in the highest EMV if we maximize profit and the lowest EMV if we minimize cost.

## Counting Strategies

How many decision strategies in Example 1?


How many decision strategies in Example 2?


## Counting Strategies

## How many decision strategies in Example 3?



## Counting Strategies

How many decision strategies in Example 1?


How many decision strategies in Example 2?


Strategy 1
Strategy 2 (11)
Strategy 3 (00)
Strategy 4 (10)
Strategy 5 (01)

## Counting Strategies

How many decision strategies in Example 3?


## Strategy 1

Strategy 2 (111)
Strategy 3 (001)
Strategy 4 (101)
Strategy 5 (011)
Strategy 6 (110)
Strategy 7 (000)
Strategy 8 (100)
Strategy 9 (010)

## Decision Strategies Texaco-Pennzoil Case

## How many decision strategies do we have in the Texaco - Penzoil decision tree?

## First strategy: "Accept $\$ 2$ billion"



## Decision Strategies Texaco-Pennzoil Case

## Second strategy: "Counter $\$ 5$ billion and if Texaco counter offers $\$ 3$ billion refuse this counteroffer of $\$ 3$ Billion"



## Decision Strategies Texaco-Pennzoil Case

## Third strategy: "Counter $\$ 5$ billion and if Texaco counter offers $\$ 3$ billion accept this counteroffer of $\$ 3$ Billion"



## Risk Profiles and Cumulative Risk Profiles

RISK PROFILES = Graph that shows probabilities for each of the possible outcomes given a particular decision strategy.

Note: Risk Profile is a probability mass function for the discrete random variable Y representing the outcomes for the given decision strategy.

CUMMULATIVE RISK PROFILES = Graphs that shows cumulative probabilities associated with a risk profile

Note: Cumulative risk profile is a cumulative distribution function for the discrete random variable Y representing the outcomes for the given decision strategy.

## Risk Profiles

## First strategy: "Accept \$2 billion"



| Outcome x (\$Billion) | $\operatorname{Pr}($ Outcome\|D) |
| :---: | :---: |
| 2 | 1 |



Chapter 4 - Making Choices
Lecture Notes by: J.R. van Dorp and T.A. Mazzuchi http://www.seas.gwu.edu/~dorpjr/

Slide 25 of 58

## Risk Profiles

## Second strategy: "Counter $\$ 5$ billion and if Texaco counter offers $\$ 3$ billion refuse this counteroffer of $\$ 3$ Billion"



| Calculation | Prob |
| :---: | :---: |
| 0.17 | 0.170 |
|  |  |
| $0.50^{*} 0.20$ | 0.100 |
| $0.50^{*} 0.50$ | 0.250 |
| $0.50^{*} 0.30$ | 0.150 |

## Risk Profiles

## Second strategy: "Counter $\$ 5$ billion and if Texaco counter offers $\$ 3$ billion refuse this counteroffer of $\$ 3$ Billion"

| Outcome $\times($ \$Billion $)$ | Calculation | $\operatorname{Pr}$ (Outcome\| D) |
| :---: | :---: | :---: |
| 0 | $0.150+0.099$ | 0.249 |
| 5 | $0.170+0.250+0.165$ | 0.585 |
| 10.3 | $0.100+0.066$ | 0.166 |
|  |  | 1.000 |



## Risk Profiles

## Third strategy: "Counter \$5 billion and if Texaco counter offers $\$ 3$ billion accept this counteroffer of $\$ 3$ Billion"

| Calculation | Prob |
| :---: | :---: |
| 0.17 | 0.170 |
|  |  |
| $0.50^{*} 0.20$ | 0.100 |
| $0.50 * 0.50$ |  |
| $0.50^{*} 0.30$ |  |

## Risk Profiles

## Third strategy: "Counter \$5 billion and if Texaco counter offers \$3 billion accept this counteroffer of \$3 Billion"

| Outcome $\times$ (\$Billion) | Calculation | $\operatorname{Pr}($ Outcome D$)$ |
| :---: | :---: | :---: |
| 0 | 0.15 | 0.15 |
| 3 | 0.33 | 0.33 |
| 5 | $0.170+0.250$ | 0.42 |
| 10.3 | 0.1 | 0.1 |
|  |  | 1.000 |

## Cumulative Risk Profiles

First strategy: "Accept $\$ 2$ billion"

| Outcome x (\$Billion) | Pr(Outcome\|D) |
| :---: | :---: |
| 2 | 1 |



| Outcome x (\$Billion) | $\operatorname{Pr}($ Outcome $\leq x \mid D)$ |
| :---: | :---: |
| 2 | 1 |

## Cumulative Risk Profiles

Second strategy: "Counter $\$ 5$ billion and if Texaco counter offers $\$ 3$ billion refuse this counteroffer of \$3 Billion"

| Outcome $\times($ \$Billion $)$ | $\operatorname{Pr}($ Outcome\|D) |
| :---: | :---: |
| 0 | 0.249 |
| 5 | 0.585 |
| 10.3 | 0.166 |

Risk Profile D="Counter \$5 Billion, refuse counter offer of $\$ 3$ Billion if given"



## Cumulative Risk Profiles

## Third strategy: "Counter \$5 billion and if Texaco counter offers $\$ 3$ billion accept this counteroffer of \$3 Billion"

| Outcome $\times(\$$ Billion $)$ | $\operatorname{Pr}($ Outcome\|D) |
| :---: | :---: |
| 0 | 0.15 |
| 3 | 0.33 |
| 5 | 0.42 |
| 10.3 | 0.1 |




## Deterministic Dominance

## Original Tree



## Deterministic Dominance

## Modified Tree



Making Hard Decisions
R. T. Clemen, T. Reilly

Chapter 4 - Making Choices
Lecture Notes by: J.R. van Dorp and T.A. Mazzuchi http://www.seas.gwu.edu/~dorpjr/

Slide 34 of 58
COPYRIGHT © 2006 by GWU

## Deterministic Dominance

## Based on EMV analysis we still choose the alternative "Counteroffer \$5 Billion"



## Could we have made a decision here without an EMV analysis?

## Deterministic Dominance

## Formal Definition: Deterministic Dominance:

If the worst outcome of Alternative $B$ is at least as good as that of the best outcome of Alternative A, then Alternative $B$ deterministically dominates Alternative $A$.

- Deterministic dominance may also be concluded by drawing cumulative risk profiles and using the definition:

Definition: Range of a Cumulative Risk Profile = [L,U], where L= Smallest 0\% point in Cumulative Risk Profile and U= Largest 100\% point in Cumulative Risk Profile

## Deterministic Dominance

## - Deterministic dominance via cumulative risk profiles:

- Step 1: Draw cumulative risk profiles in one graph
- Step 2: Determine range for each risk profile
- Step 3: If ranges are disjoint or their intersections contain a single point


Range 1: $\{2\}$
Range 2: [2.5,10.3]
Ranges 1 and 2 are disjoint. The Objective is Max Result, hence Green CRP deterministically dominates the Red one.

## Stochastic Dominance: Example 1

## Firm A: Original Tree



## Stochastic Dominance: Example 1

## Firm B: Modified Tree



Making Hard Decisions
R. T. Clemen, T. Reilly

Chapter 4 - Making Choices
Lecture Notes by: J.R. van Dorp and T.A. Mazzuchi http://www.seas.gwu.edu/~dorpjr/

Slide 39 of 58
COPYRIGHT © 2006 by GWU

## Stochastic Dominance: Example 1

## Based on EMV analysis we still choose the alternative "Firm B"



Could we have made a decision here without an EMV analysis ?

## Stochastic Dominance: Example 1

Optimal Cumulative risk profiles in "Firm A" Tree and "Firm B" Tree


## Stochastic Dominance: Example 1

## Note that for all possible values of $x$ : $\operatorname{Pr}($ Outcome $\leq x \mid$ Firm B) $\leq$ $\operatorname{Pr}($ Outcome $\leq x \mid$ Firm A) <br> or equivalently: <br> $\operatorname{Pr}($ Outcome $\geq x \mid$ Firm B $) \geq$ <br> $\operatorname{Pr}($ Outcome $\geq x \mid$ Firm A)

Hence the chances of winning with Firm B are always better than that of Firm A.

## Conclusion: Firm B stochastically dominates Firm A

## Stochastic Dominance: Example 2

## Firm A: Original Tree



## Stochastic Dominance: Example 2

## Firm C: Modified Tree



## Stochastic Dominance: Example 2

## Based on EMV analysis we still choose the alternative "Firm C"



Could we have made a decision here without an EMV analysis ?

## Stochastic Dominance: Example 2

Optimal Cumulative risk profiles in "Firm A" Tree and "Firm C" Tree


## Stochastic Dominance: Example 2

Note that for all possible values of $x$ : $\operatorname{Pr}($ Outcome $\leq x \mid$ Firm C $) \leq$ $\operatorname{Pr}($ Outcome $\leq x \mid$ Firm A)<br>or equivalently:<br>$\operatorname{Pr}($ Outcome $\geq x \mid$ Firm C $) \geq$<br>$\operatorname{Pr}($ Outcome $\geq x \mid$ Firm A)

Hence the chances of winning with Firm C are always better than that of Firm A.

## Conclusion: Firm C stochastically dominates Firm A

## Stochastic Dominance: Examples 1 \& 2

## Commonality CRP plots:

- Cumulative risk profiles in both plots do not cross
- The CRP that is toward the "right and below" stochastically dominates
- The objective in both plots is to Maximize the Result




## Making Decisions with Multiple Objectives

## -Two Objectives:

Making Money
(Measured in \$)
Having Fun (Measured on Constructed attribute scale, see page 138): Best(5), Good(4), Middle(3), Bad(2), Worst (1)


## Making Decisions with Multiple Objectives



## Analysis Salary Objective

| Forest Job |  |  | In-Town Job |  |  |
| :---: | :---: | :---: | :---: | ---: | :---: |
| Salary | Prob | Salary*Prob | Prob | Salary*Prob |  |
| $\$ 2,047.50$ |  |  | 0.15 | $\$ 307.13$ |  |
| $\$ 2,320.50$ |  |  | 0.50 | $\$ 1,160.25$ |  |
| $\$ 2,600.00$ | 1.00 | $\$ 2,600.00$ |  |  |  |
| $\$ 2,730.00$ |  |  | 0.35 | $\$ 955.50$ |  |

## Conclusion:

- Forest Job preferred Over In-Town job
- CRP's cross. Hence, No Stochastic Dominance



## Fun Level Objective

| Outcome | Fun Level | Prob | Fun Level*Prob | Prob | Fun Level*Prob |
| :--- | :---: | :---: | :---: | :---: | :---: |
| 5-BEST | $100.00 \%$ | 0.10 | $10.0 \%$ |  |  |
| 4-GOOD | $90.00 \%$ | 0.25 | $22.5 \%$ |  | $60.00 \%$ |
| 3- MIDDLE | $60.00 \%$ | 0.40 | $24.0 \%$ | 1.00 |  |
| 2- BAD | $25.00 \%$ | 0.20 | $5.0 \%$ |  |  |
| 1-WORST | $0.00 \%$ | 0.05 | $0.0 \%$ |  | 6 |

## Conclusion:

- Forest Job preferred Over In-Town job
- CRP's cross. Hence, No Stochastic Dominance



## Multiple Objective Analysis

- It is clear from both objective analyses that the Forest-Job is the strongly preferred, although neither Stochastic nor Deterministic Dominance can be observed in them.
- Careful as you are in your decisions you decide to trade-off the salary objective and having fun objective in a multiple objective analysis.
- Before trade-off analysis can be conducted both objectives have to be measured on a "comparable" scale.


## Multiple Objective Analysis: Construct 0-1 Scale

- Having Fun Objective already has a 0-1 scale:

Transformed to $0-1$ scale or $0 \%-100 \%$ scale
Set Best=100\%, Worst=0\%, Determine intermediate values
Having Fun objective:
Best(100\%), Good(90\%), Middle(60\%), Bad(25\%), Worst (0\%)

- Construct 0-1 scale for Salary Objective:
$\$ 2730.00=100 \%, \$ 2047.50=0 \%$

Intermediate dollar amount X :

$$
\frac{X-\$ 2047.50}{\$ 2730-\$ 2047.50} \cdot 100 \%
$$

## Multiple Objective Analysis: Assess Trade-Off

$k_{s}=$ weight for salary
$k_{f}=$ weight for fun

$$
\longrightarrow k_{s}+k_{f}=1
$$

## Using Expert Judgment:

Going from worst to best in salary objective is 1.5 times more important than going from worst to best in having fun objective. Hence: $k_{s}=1.5 \cdot k_{f}$

$$
\left\{\begin{array} { l } 
{ k _ { s } + k _ { f } = 1 } \\
{ k _ { s } = 1 . 5 \cdot k _ { f } }
\end{array} \Leftrightarrow \left\{\begin{array} { c } 
{ 1 . 5 \cdot k _ { f } + k _ { f } = 1 } \\
{ k _ { s } = 1 . 5 \cdot k _ { f } }
\end{array} \Leftrightarrow \left\{\begin{array}{l}
k_{f}=\frac{1}{2.5}=\frac{2}{5} \\
k_{s}=\frac{3}{2} \cdot \frac{3}{5}=\frac{3}{5}
\end{array}\right.\right.\right.
$$

## Multiple Objective Analysis: Convert Scales



## Multiple Objective Analysis: Combine Objectives

Total Score


## Analysis Overall Satisfaction

| Forest Job |  |  |
| :---: | :---: | :---: |
| Overall Satisfaction | Prob | OS*Prob |
| $88.57 \%$ | 0.10 | $8.9 \%$ |
| $84.57 \%$ | 0.25 | $21.1 \%$ |
| $72.57 \%$ | 0.40 | $29.0 \%$ |
| $58.57 \%$ | 0.20 | $11.7 \%$ |
| $48.57 \%$ | 0.05 | $2.4 \%$ |
|  | E[OS] $=$ | $\mathbf{7 3 . 2} \%$ |


| In-Town Job |  |  |
| :---: | :---: | :---: |
| Overall Satisfaction | Prob | OS*Prob |
| $84.00 \%$ | 0.35 | $29.40 \%$ |
| $48.00 \%$ | 0.50 | $24.00 \%$ |
| $24.00 \%$ | 0.15 | $3.60 \%$ |
|  | E[OS]= | $\mathbf{5 7 . 0 0} \%$ |

## Conclusion:

- Forest Job preferred Over In-Town job
- CRP's do not cross. Hence, Stochastic Dominance present.


