SOLUTION EXTRA PROBLEM 9: EXPERT JUDGMENT

A manufacturer needs to make an assessment of the size of the potential market for a new product. A market analyst provides the following evaluations for the number of items, N , that can be sold in the first year (in thousands):

$$
\begin{aligned}
& \operatorname{Pr}(N \leq 15)=0.05 \\
& \operatorname{Pr}(N>45)=0.05 \\
& \operatorname{Pr}(N>30)=0.50 \\
& \operatorname{Pr}(N \leq 20)=0.25 \\
& \operatorname{Pr}(N>35)=0.25
\end{aligned}
$$

In addition, the market analyst provided the information that at least 5,000 will be sold, but definitely no more that 50,000 .
A. Draw an approximate continuous cumulative distribution function (CDF) using the straight line approximation for N .

$$
\begin{array}{ll}
\operatorname{Pr}(N \leq 5)=0 ; & \operatorname{Pr}(N \leq 50)=1 \\
\operatorname{Pr}(N \leq 15)=0.05 ; & \operatorname{Pr}(N \leq 20)=0.25
\end{array}
$$

$$
\begin{aligned}
& \operatorname{Pr}(N>30)=0.50 \Leftrightarrow \operatorname{Pr}(N \leq 30)=0.50 \\
& \operatorname{Pr}(N>35)=0.25 \Leftrightarrow \operatorname{Pr}(N \leq 35)=0.75 \\
& \operatorname{Pr}(N>45)=0.05 \Leftrightarrow \operatorname{Pr}(N \leq 45)=0.95
\end{aligned}
$$

B. Construct a three-point approximation to this distribution with the extended Pearson-Tukey method. Estimate the expected demand with this approximation.

\mathbf{N}	$\operatorname{Pr}(\mathbf{N}=\mathbf{n})$	$\mathbf{N}^{*} \operatorname{Pr}(\mathbf{N}=\mathbf{n})$
15	0.185	2.775
30	0.630	18.900
45	0.185	8.325
	$\mathbf{E [N}]$	$\mathbf{3 0}$

C. Construct a five-point approximation with bracket medians. Estimate the expected demand with this approximation.

\mathbf{N}	$\operatorname{Pr}(\mathbf{N}=\mathbf{n})$	$\mathbf{N}^{*} \operatorname{Pr}(\mathbf{N}=\mathbf{n})$
16.25	0.200	3.250
22	0.200	4.400
30	0.200	6.000
34	0.200	6.800
42.5	0.200	8.500
	$\mathbf{E [N}]$	$\mathbf{2 8 . 9 5}$

