EXTRA PROBLEM 7: SENSITIVITY ANALYSIS

Max Result

Accept $2 Billion

5

Texaco Accepts $5 Billion (0.17)

High (p)

10.3

Medium (q)

5

Low (1-p-q)

0

$5 Billion

Counteroffer

Texaco Refuses (0.50)

Final Court Decision

Refuse

(0.33)

Texaco Counteroffers $3 Billion

Counteroffer

Final Court Decision

Low (1-p-q)

0

Accept $3 Billion

3

Counteroffer

Texaco Refuses (0.50)

Final Court Decision

Accept $3 Billion

3

Counteroffer

Texaco Refuses (0.50)

Final Court Decision

Refuse

(0.33)

Texaco Counteroffers $3 Billion

Counteroffer

Texaco Refuses (0.50)

Final Court Decision

Accept $3 Billion

3

Counteroffer

Texaco Refuses (0.50)

Final Court Decision

Refuse

(0.33)

Texaco Counteroffers $3 Billion

Counteroffer

Texaco Refuses (0.50)

Final Court Decision

Accept $3 Billion

3

Counteroffer

Texaco Refuses (0.50)

Final Court Decision

Refuse

(0.33)

Texaco Counteroffers $3 Billion

Counteroffer

Texaco Refuses (0.50)

Final Court Decision

Accept $3 Billion

3
A. Create a two-way sensitivity graph that shows optimal strategies for Liedtke for all possible values of p and q

Strategy A = Accept $2 billion.
Strategy B = Counteroffer $5 billion, then refuse if Texaco offers $3 billion.
Strategy C = Counteroffer $5 billion, then accept if Texaco offers $3 billion.

EMV(A) = 2

EMV(B) = 0.17 (5) + 0.5 \left[p 10.3 + q 5 + (1-p - q) 0\right] + 0.33 \left[p 10.3 + q 5 + (1-p - q) 0\right]
= 0.85 + 8.549 p + 4.15 q.

EMV(C) = 0.17 (5) + 0.5 \left[p 10.3 + q 5 + (1-p - q) 0\right] + 0.33 (3)
= 1.85 + 5.15 p + 2.5 q.
NOW CONSTRUCT THREE INEQUALITIES:

• \(\text{EMV}(A) > \text{EMV}(B) \iff\)

 \[
 2 > 0.85 + 8.549\ p + 4.15\ q \iff \\
 0.135 - 0.485\ q > p .
 \]
 \(1\)

• \(\text{EMV}(A) > \text{EMV}(C) \iff\)

 \[
 2 > 1.85 + 5.15\ p + 2.5\ q \iff \\
 0.03 - 0.485\ q > p .
 \]
 \(2\)

• \(\text{EMV}(B) > \text{EMV}(C) \iff\)

 \[
 0.85 + 8.549\ p + 4.15\ q > 1.85 + 5.15\ p + 2.5\ q \iff \\
 p > 0.294 - 0.485\ q .
 \]
 \(3\)

Plot these three inequalities as lines on a graph with \(p\) on the vertical axis and \(q\) on the horizontal axis. Note that only the region below the line \(p + q = 1\) is feasible because \(p + q\) must be less than or equal to one.
These three lines divide the graph into four separate regions, labeled I, II, III, and IV.
Inequality (3) divides regions I and II. For points above this line, \(p > 0.294 - 0.485 \, q \), and so \(\text{EMV}(B) > \text{EMV}(C) \).

Inequality (1) divides regions II and III. For points above this line, \(p > 0.135 - 0.485 \, q \), and \(\text{EMV}(B) > \text{EMV}(A) \). As a result of this, we know that B is the preferred choice in region I and that C is the preferred choice in region II [where \(\text{EMV}(C) > \text{EMV}(B) > \text{EMV}(A) \)].

Inequality (2) divides regions III and IV. For points above this line, \(p > 0.03 - 0.485 \, q \), and \(\text{EMV}(C) > \text{EMV}(A) \). Thus, we now know that C is the preferred choice in region III [where \(\text{EMV}(C) > \text{EMV}(A) \) and \(\text{EMV}(C) > \text{EMV}(B) \)], and A is preferred in region IV.

Thus, we can redraw the graph, eliminating the line between regions II and III.

B. If Liedtke thinks that \(p \) must be at least 0.15 and \(q \) must be more than 0.35 can he make the decision without further probability assessment.
The diagram shows a probability space with axes p and q. The region B is shaded, indicating the conditions $p > 0.15$ and $q > 0.35$. Regions A and C are also marked on the graph.
Conclusion:

The shaded area in the figure represents those points for which \(p > 0.15 \) and \(q > 0.35 \). Note that all of these points fall in the “Choose B” region. Thus, Liedtke should adopt strategy B: **Counteroffer $5 billion, then refuse if Texaco offers $3 billion.**