EXTRA PROBLEM 1: MONTHLY LOAN PAYMENT

Suppose you are planning to buy a new car. The car costs $\$ 25000$, you have been approved for financing the loan with a 5 year term through the car dealer and the annual interest rate on the loan is 5% - compounded monthly.
A. Using the following notation
$B=$ Loan Balance (i.e. in description above $B=\$ 25000$)
$R=$ Annual Interest Rate (i.e. in description above $R=0.05$)
MP = Monthly Payment
derive the monthly payment MP as a function of B and R by setting the net present value of the cash-flow of monthly payments of size MP for the term of the loan equal to the loan amount B.

Hint: Use the relationship

$$
\sum_{j=1}^{n} x^{j}=\frac{x^{n+1}-x}{x-1}
$$

ANSWER:

Derive the monthly payment MP as a function of B and R by setting the net present value of the cash-flow of monthly payments of size MP for the term of the loan equal to the loan amount B. Hence,

$$
B=\sum_{j=1}^{n} \frac{M P}{(1+R / 12)^{j}}=M P \cdot \sum_{j=1}^{n}\left(\frac{1}{1+R / 12}\right)^{j}
$$

Next, use hint:

$$
B=M P \cdot \sum_{j=1}^{n}\left(\frac{12}{12+R}\right)^{j}=M P \cdot \frac{\left(\frac{12}{12+R}\right)^{n+1}-\frac{12}{12+R}}{\frac{12}{12+R}-1}
$$

Thus,

$$
M P=B \cdot \frac{\frac{12}{12+R}-1}{\left(\frac{12}{12+R}\right)^{n+1}-\frac{12}{12+R}}=B \cdot \frac{\frac{12}{12+R}-1}{\frac{12}{12+R}\left(\frac{12}{12+R}\right)^{n}-\frac{12}{12+R}}
$$

Finally, simplify by multiplying numerator and denominator by (12+R):

$$
M P=B \cdot \frac{12-12-R}{12\left(\frac{12}{12+R}\right)^{n}-12}=\frac{B}{12} \cdot \frac{R}{1-\left(\frac{12}{12+R}\right)^{n}}
$$

B. Calculate MP for the case study description above using the relationship you derived under A.
$B=\$ 20000$
$\mathrm{R}=0.04$
$\mathrm{n}=48$

$$
M P=\frac{20000}{12} \cdot \frac{0.04}{\left(\frac{12}{12+0.04}\right)^{48}-1}=\$ 451.58
$$

$B=\$ 25000$
$\mathrm{R}=0.05$
$\mathrm{n}=60$

$$
M P=\frac{25000}{12} \cdot \frac{0.05}{\left(\frac{12}{12+0.05}\right)^{60}-1}=\$ 471.78
$$

