

What do Coin Tosses and Decision Making under Uncertainty, have in common?

WASHINGTON, DC

J. Rene van Dorp (GW) Presentation EMSE 1001 November 12, 2021 Presented by: J. Rene van Dorp

About J. René van Dorp

EMSE Engineering Management and Systems Engineering	Dr. Johan René van Dorp Professor WASHINGTON DC				me Pages m my culty Page.			
background research	areas projects	publications students courses		s				
Interests: <u>Probabilistic Risk</u> <u>Assessment</u> <u>Reliability Analysis</u>	EMSE Engineering Management and Systems Engineering	Dr. Johan René van Dorp Professor			E GEORGE SHINGTON IIVERSITY			
<u>Monte Carlo</u> Analysis	background research areas projects publications stud			students	courses			
Distribution Theory	Faculty Profile: Introduction: Education I received degrees from the Delft University of Technology (The Netherlands) The George Washington University (GWU), Thomas A. Mazzuchi acted as my							
<u>Financial</u> Engineering	Experience Honors & Awards	dissertation advisor at GWU. My education focused on several disciplines of operations research such as probabilistic risk analysis, reliability analysis, computer science and mathematical control and policy modeling.						
	<u>Resume</u>	I joined GWU's the Engineering Management faculty as a visiting assistant professor from September 1997 to August 1999. In September 1999, I started a tenure track position as an Assistant Professor in the Engineering Management						
	<< Home Page	and Systems Engineering 2004 I was promoted to A promoted to Professor. I to been awarded a courtesy the GWU School of Busin	Associate Professor teach on average two appointment in the ness since November	at GWU. Effective September 2015 and effective September 2015 and effective September 2010.	tive September otember 2008 I was mester. I have es department of			

Undergraduate Courses taught by J. René van Dorp

EMSE Engineering Management and Systems Engineering	Dr. Johan René van Dorp Professor				THE GEORGE WASHINGTON UNIVERSITY				
background research	h areas	projects	publications	stude	ents	courses			
Teaching:	Undergraduate-level:								
Undergraduate	I serve as lead professor of the Introductory Course on Probability and Statistics (ApSc 3115) and am teaching in two subject matters (EMSE 3760 and EMSE								
<u>Graduate</u>	4765) at the undergraduate level. I have taught the EMSE 4755 course and occassionally provide guest lectures in EMSE1001. Below you can link to short course descriptions. <u>ApSc 3115</u> - Engineering Analysis III (Introductory Course on Probability and Statistics)								
<< Courses Intro									
<< Home Page									
	EMSE 1001 - Guest Lectures on Simulation and Decision Analysis								
	EMSE 3760 - Discrete System Simulation								
	EMSE 4755 - Quality Control and Acceptance Sampling								
	EMSE 4765 - Data Analysis for Engineers and Scientists								

http://www2.seas.gwu.edu/~dorpjr/index.html

OUTLINE

- 1. Coin Tosses
- 2. Decision Making under Uncertainty
- 3. Decision Trees
- 4. Elements of Decision Analysis

- 1. Imagine we have a coin and we flip it repeatedly
- 2. When heads turns up you "win" when tails turns up you "lose"

Suppose we flip the coin four times, how many times do you expect to win? 2 times

Suppose we flip the coin ten times, how many times do you expect to win? 5 times

WHAT ASSUMPTION(S) DID YOU MAKE?

Conclusion: you made **reasonable assumptions** –

- 1. The coin has two different sides
- 2. When flipping it, each side turns up 50% of the time "on average".

Would it have made sense to assume the coin had only one face **NO** i.e. both sides show heads (or tails)?

Assuming both sides show heads or tails is equivalent to making a **worst case** or **best case** assumption.

Suppose you actually flip the "fair" coin ten times How many times will "heads" actually turn up?

Answer could vary from 0 to 10 times, for example,

First ten times: 3 times heads turns upSecond ten times: 7 times heads turns upThird ten times: 6 times heads turns upFourth ten times: 4 times heads turns up

etc.

We say "on average" 5 out of ten times heads turns up

Conclusion: While we expect 5 times heads to turn up, the actual number is uncertain!

Decision Analysis Software: Precision Tree

Probability Node

Risk Profile (RP) – Probability Mass Function (PMF)

Cumulative Risk Profile (CRP) – Cumulative Distribution Function (CDF)

OUTLINE

- 1. Coin Tosses
- 2. Decision Making under Uncertainty
- 3. Decision Trees or Influence Diagrams?
- 4. Elements of Decision Analysis

 Imagine we have two coins: Coin 1 shows heads 50% of the time Coin 2 shows heads 75% of the time Coin 1

2. When heads turns up, you win **a pot of money**. When tails turns up, you do not get anything.

You have to choose between Coin 1 and Coin 2 Which one would you choose? Coin 2

WHAT ASSUMPTION DID YOU MAKE? You assumed that the pot of money you win is the same regardless of the coin you chose!

 Imagine we have two coins: Coin 1 shows heads 50% of the time Coin 2 shows heads 75% of the time

 Each time heads turns up, you win the same pot of money. When tails turns up you do not get anything, regardless of the coin you throw.

> You have to choose between two alternatives Alternative 1: Throwing **ten times** with Coin 1 Alternative 2: Throwing **five times** with Coin 2

Which alternative would you choose?

Alternative 1 you expect to win 5 times and Alternative 2 you expect to win 3.75 times

CHOOSE ALTERNATIVE 1

A DECISION TREE: The Basic Risky Decision

Our objective is to **maximize pay-off.** So **faced with uncertainty** of **pay-off outcomes** we choose the alternative with largest average pay-off.

Cumulative Risk Profiles of both Alternatives

11/12/2021

 Imagine we have two coins: Coin 1 shows heads 50% of the time Coin 2 shows heads 75% of the time

 Each time heads turns up with Coin 1 you win \$2. Each time heads turns up with Coin 2 you win \$4. When tails turns up you do not get anything.

> You have to choose between two ALTERNATIVES Alternative 1: Throwing **ten times** with Coin 1 Alternative 2: Throwing **five times** with Coin 2

Which alternative would you choose?

Alternative 1 you average5 * \$2 = \$10**CHOOSE**Alternative 2 you average 3.75 * \$4 = \$15**ALTERNATIVE 2**

Our objective is to **maximize pay-off.** So **faced with uncertainty** of **pay-off outcomes** we choose the alternative with largest average pay-off.

Please Note Optimal Choice and Stochastic Dominance "Switched"

THE GEORGE WASHINGTON

UNIVERSITY WASHINGTON, DC

CRP' S of both Alternatives

Observe from CRP's on the Right

- 1. Deterministic Dominance
- 2. Stochastic Dominance 🔶
- 3. Make Decision Based on Averages

Chances of an "Unlucky" Outcome Increase going from 1, 2 to 3

11/12/2021

Conclusion?

When choosing between **two alternatives** entailing a series of coin toss trials, the following comes into play:

- 1. The number of trials **N** in each alternative
- 2. The probability of success **P** per trial
- 3. The pay-off amount *W* per trial

AVERAGE PAY-OFF = N × P × W Is it required to know the absolute value of N, P and W to choose between these two alternatives?

- Imagine we have two coins: Coin 2 shows heads 1.5 times more than Coin 1
- 2. When heads turns up with Coin 2 **you win 2 times the amount** when heads turns up with Coin 1.

You have to choose between **Two Alternatives** Alternative 1: Throwing **2*N times** with Coin 1 Alternative 2: Throwing **N times** with Coin 2

> P = % Heads turns up with Coin 1, W = \$ amount you win with Coin 1.

Average Pay - Off Alternative 2 : $\mathbb{N} \times 1.5 \times \mathbb{P} \times \mathbb{Z} \times \mathbb{W}$ Average Pay - Off Alternative 1 : $\mathbb{Z} \times \mathbb{N}$ $\times \mathbb{P}$ $\times \mathbb{P}$ $\times \mathbb{W}$

Average Pay-Off Alt. 2/Average Pay-Off Alt. 1 = 1.5

Conclusion?

When choosing between two alternatives
entailing a series of trials, we can even make
a choice if just we know the multiplier
between the average pay-offs. That is, even
when the absolute pay-off values over the
two alternatives are unknown/uncertain

Conclusion?

When choosing between **two alternatives** entailing a series of trials, we can make a choice if we know **the sign of the difference between the average pay-offs**, even when **only ranges** are available for the pay-off probability factors using **a strategy region diagram**.

What if your Value for Money depends on the amount you win per Coin Toss?

Winning \$2 with "Heads" Coin 1

Winning \$20,000 with "Heads" Coin 1

What if your Value for Money Changes depends on your wealth?

- Linear Utility Function implies the Decision Maker (DM) is Risk Neutral. A DM is Risk Neutral if he/she is indifferent between a bet with an expected pay-off and a sure amount equal to the expected pay-off.
- Concave Utility Function implies a Decision Maker (DM) is Risk Averse. A DM is Risk Averse if he/she is willing to accept less money for a bet with a certain expected pay-off than the expected pay-off for sure.
- Convex Utility Function implies a Decision Maker (DM) is Risk Seeking. A DM is Risk Seeking if he/she is willing to pay more money for a bet with a certain expected pay-off than the expected pay-off for sure.

OUTLINE

- 1. Coin Tosses
- 2. Decision Making under Uncertainty
- 3. Decision Trees or Influence Diagrams?
- 4. Elements of Decision Analysis

Decision Trees or Influence Diagrams?

Lot of Detail, but becomes unwieldy

and makes Dependence explicit

Some Basic Influence Diagram Examples

Source: Clemen and Reilly (2014), Making Hard Decisions, Cengage Learning

Some Basic Influence Diagram Examples

Imperfect Information

Source: Clemen and Reilly (2014), Making Hard Decisions, Cengage Learning

OUTLINE

- 1. Coin Tosses
- 2. Decision Making under Uncertainty
- 3. Decision Trees or Influence Diagrams?
- 4. Elements of Decision Analysis

Elements of Decision Analysis (DA)

- **Multiple Decisions:** The immediate one and possibly more. Decisions are sequential in time. The DP is called dynamic.
- **Multiple Uncertainties:** Each uncertainty node requires a probability model. Multiple uncertainty nodes may be statistically dependent.
- **Multiple or Single Objectives:** In case of multiple conflicting objective the trade-off between objectives needs to be modelled.
- **Multiple values:** Evaluation of achievements of each individual objective requires description of a utility function for each one (linear, concave, convex?)

DA's are Complex!

Skill Set/Techniques for Decision Analysis (DA)

- **Decision Tree/Influence Diagrams:** To structure and visualize DP's, identify its elements and prescribe the method towards evaluation.
- **Expert Judgement (EJ) Elicitation:** To describe/specify probability models of "one-off" uncertainty nodes and to combine expert judgements.
- **Statistical Inference:** In DA the inference is typically Bayesian in nature. Is used when uncertainties reveal themselves over time to refine/update probability models or combine available data with Expert Judgement.
- **Utility Theory:** To describe "The Decision Maker's" risk attitude/ appetite for the evaluation of a single objective and to formalize trade-off between multiple objectives.

Thus, a DA is Normative in Nature !