What do Coin Tosses and Decision Making under Uncertainty, have in common?

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC
J. Rene van Dorp (GW)

Presentation EMSE 1001 November 12, 2021
Presented by: J. Rene van Dorp

About J. René van Dorp

Undergraduate Courses taught by J. René van Dorp

http://www2.seas.gwu.edu/~dorpir/index.html

AN INTRO TO DECISION ANALYSIS

 WASHINGTON
OUTLINE

1. Coin Tosses
2. Decision Making under Uncertainty 3. Decision Trees
3. Elements of Decision Analysis
4. Imagine we have a coin and we flip it repeatedly
5. When heads turns up you "win" when tails turns up you "lose"

Suppose we flip the coin four times, how many times do you expect to win? 2 times

Suppose we flip the coin ten times, how many times do you expect to win? 5 times WHAT ASSUMPTION(S) DID YOU MAKE?

Conclusion: you made reasonable assumptions -

1. The coin has two different sides
2. When flipping it, each side turns up 50% of the time "on average".

Would it have made sense to assume the coin had only one face i.e. both sides show heads (or tails)?

Assuming both sides show heads or tails is equivalent to making a worst case or best case assumption.

Suppose you actually flip the "fair" coin ten times
How many times will "heads" actually turn up?

Answer could vary from $\mathbf{0}$ to $\mathbf{1 0}$ times, for example,

First ten times : 3 times heads turns up Second ten times : 7 times heads turns up Third ten times : 6 times heads turns up Fourth ten times : 4 times heads turns up
etc.

We say "on average" 5 out of ten times heads turns up

AN INTRO TO DECISION ANALYSIS

Conclusion: While we expect 5 times heads to turn up, the actual number is uncertain!

AN INTRO TO DECISION ANALYSIS

Decision Analysis Software: Precision Tree
Probability Node

Risk Profile (RP) - Probability Mass Function (PMF)

Cumulative Risk Profile (CRP) -
Cumulative Distribution Function (CDF)

OUTLINE

1. Coin Tosses
2. Decision Making under Uncertainty 3. Decision Trees or Influence Diagrams?
3. Elements of Decision Analysis
4. Imagine we have two coins:

Coin 1 shows heads 50% of the time
Coin 2 shows heads 75\% of the time
2. When heads turns up, you win a pot of money. When tails turns up, you do not get anything.

You have to choose between Coin 1 and Coin 2 Which one would you choose? Coin 2

WHAT ASSUMPTION DID YOU MAKE?
You assumed that the pot of money you win is the same regardless of the coin you chose!

1. Imagine we have two coins:

Coin 1 shows heads 50% of the time Coin 2 shows heads 75% of the time

2. Each time heads turns up, you win the same pot of money. When tails turns up you do not get anything, regardless of the coin you throw.

You have to choose between two alternatives
Alternative 1: Throwing ten times with Coin 1 Alternative 2: Throwing five times with Coin 2
Which alternative would you choose?
Alternative 1 you expect to win 5 times and choose Alternative 2 you expect to win 3.75 times ALTERNATIVE 1

AN INTRO TO DECISION ANALYSIS

A DECISION TREE: The Basic Risky Decision

Our objective is to maximize pay-off. So faced with uncertainty of pay-off outcomes we choose the alternative with largest average pay-off..

AN INTRO TO DECISION ANALYSIS

Cumulative Risk Profiles of both Alternatives

Observe from CRP's on the Right

$$
\operatorname{Pr}(X \leq x \mid \operatorname{Coin} 1) \underset{\mathbb{d}}{\leq} \operatorname{Pr}(X \leq x \mid \text { Coin } 2)
$$

$$
\operatorname{Pr}(X>x \mid \operatorname{Coin} 1) \geq \operatorname{Pr}(X>x \mid \text { Coin } 2)
$$

1. Deterministic Dominance
2. Stochastic Dominance
3. Make Decision Based on Averages

Chances of an "Unlucky"
Outcome Increase going from 1, 2 to 3

1. Imagine we have two coins:

Coin 1 shows heads $\mathbf{5 0 \%}$ of the time Coin 2 shows heads 75% of the time

2. Each time heads turns up with Coin 1 you win $\$ 2$. Each time heads turns up with Coin 2 you win $\$ 4$. When tails turns up you do not get anything.

You have to choose between two ALTERNATIVES
Alternative 1: Throwing ten times with Coin 1 Alternative 2: Throwing five times with Coin 2
Which alternative would you choose?
Alternative 1 you average $5 * \$ 2=\$ 10$
Alternative 2 you average 3.75 * $\$ 4=\$ 15$

AN INTRO TO DECISION ANALYSIS

Our objective is to maximize pay-off. So faced with uncertainty of pay-off outcomes we choose the alternative with largest average pay-off.

AN INTRO TO DECISION ANALYSIS

Please Note Optimal Choice and Stochastic Dominance "Switched"

CRP' S of both Alternatives

Observe from CRP's on the Right

$$
\begin{aligned}
& \operatorname{Pr}(X \leq x \mid \text { Coin } 2) \underset{\pi}{\leq} \operatorname{Pr}(X \leq x \mid \text { Coin } 1) \\
& \operatorname{Pr}(X>x \mid \text { Coin } 2) \stackrel{\operatorname{Pr}}{\geq} \operatorname{Pr}(X>x \mid \text { Coin } 1)
\end{aligned}
$$

1. Deterministic Dominance
2. Stochastic Dominance
3. Make Decision Based on Averages

Chances of an "Unlucky"
Outcome Increase going from 1, 2 to 3

Conclusion?

When choosing between two alternatives entailing a series of coin toss trials, the following comes into play:

1. The number of trials N in each alternative
2. The probability of success \boldsymbol{P} per trial
3. The pay-off amount \boldsymbol{W} per trial

$$
\begin{aligned}
& \text { AVERAGE PAY-OFF }=\mathrm{N} \times \mathrm{P} \times \mathrm{W} \\
& \text { Is it required to know the absolute value } \\
& \text { of } \mathbf{N}, \mathbf{P} \text { and } \mathbf{W} \text { to choose } \\
& \text { between these two alternatives? }
\end{aligned}
$$

1. Imagine we have two coins:

Coin 2 shows heads 1.5 times more than Coin 1
2. When heads turns up with Coin 2 you win 2 times the amount when heads turns up with Coin 1.

You have to choose between Two Alternatives Alternative 1: Throwing 2*N times with Coin 1 Alternative 2: Throwing N times with Coin 2

P = \% Heads turns up with Coin 1,
$\mathrm{W}=\$$ amount you win with Coin 1.
Average Pay - Off Alternative 2: $\mathbb{X} \times 1.5 \times \not \mathbf{P} \times 2 \times W$ Average Pay - Off Alternative 1: $\quad 2 \times \mathbb{X} \times \mathbb{P} \times \mathbb{W}$
Average Pay-Off Alt. 2/Average Pay-Off Alt. $1=1.5$

Conclusion?

When choosing between two alternatives entailing a series of trials, we can even make a choice if just we know the multiplier between the average pay-offs. That is, even when the absolute pay-off values over the two alternatives are unknown/uncertain

AN INTRO TO DECISION ANALYSIS

Conclusion?

When choosing between two alternatives entailing a series of trials, we can make a choice if we know the sign of the difference between the average pay-offs, even when only ranges are available for the pay-off probability factors using a strategy region diagram.

AN INTRO TO DECISION ANALYSIS

What if your Value for Money depends on the amount you win per Coin Toss?

Scenario 1:
Winning $\$ 2$ with "Heads" Coin 1

Scenario 2:
Winning $\$ 20,000$ with "Heads" Coin 1

AN INTRO TO DECISION ANALYSIS

What if your Value for Money Changes depends on your wealth?

- Linear Utility Function implies the Decision Maker (DM) is Risk Neutral. A DM is Risk Neutral if he/she is indifferent between a bet with an expected pay-off and a sure amount equal to the expected pay-off.
- Concave Utility Function implies a Decision Maker (DM) is Risk Averse. A DM is Risk Averse if he/she is willing to accept less money for a bet with a certain expected pay-off than the expected pay-off for sure.
- Convex Utility Function implies a Decision Maker (DM) is Risk Seeking. A DM is Risk Seeking if he/she is willing to pay more money for a bet with a certain expected pay-off than the expected pay-off for sure.

AN INTRO TO DECISION ANALYSIS

AN INTRO TO DECISION ANALYSIS

AN INTRO TO DECISION ANALYSIS

Alternative	Pr (Heads)	N Trial	Pay-Off per "Heads"	Average Pay-Off
Coin 1	0.5	10	\$20,000.00	\$100,000.00
Coin 2	0.75	5	\$40,000.00	\$150,000.00
		Reference	Prob. Factor	1.5
	110	0.71	Pay-Off Factor	2
- Coin Choice	Decision			
	0.877020524			
	25 Times	$\begin{gathered} \text { Reference } \\ 0.88 \end{gathered}$	Now Max. Exp. Utility	

How much money are you willing to give up to not play?
$\$ 150,000-\$ 142,018=$ \$7,982

Called Risk Premium

OUTLINE

1. Coin Tosses
2. Decision Making under Uncertainty
3. Decision Trees or Influence Diagrams?
4. Elements of Decision Analysis

Decision Trees

Lot of Detail, but becomes unwieldy
or Influence Diagrams?

Lack of Detail, Higher level View and makes Dependence explicit

Some Basic Influence Diagram Examples

Some Basic Influence Diagram Examples

 Imperfect Information

OUTLINE

1. Coin Tosses
2. Decision Making under Uncertainty 3. Decision Trees or Influence Diagrams?
3. Elements of Decision Analysis

AN INTRO TO DECISION ANALYSIS

Elements of Decision Analysis (DA)

- Multiple Decisions: The immediate one and possibly more. Decisions are sequential in time. The DP is called dynamic.
- Multiple Uncertainties: Each uncertainty node requires a probability model. Multiple uncertainty nodes may be statistically dependent.
- Multiple or Single Objectives: In case of multiple conflicting objective the trade-off between objectives needs to be modelled.
- Multiple values: Evaluation of achievements of each individual objective requires description of a utility function for each one (linear, concave, convex?)

DA's are Complex!

AN INTRO TO DECISION ANALYSIS

Skill Set/Techniques for Decision Analysis (DA)

- Decision Tree/Influence Diagrams: To structure and visualize DP's, identify its elements and prescribe the method towards evaluation.
- Expert Judgement (EJ) Elicitation: To describe/specify probability models of "one-off" uncertainty nodes and to combine expert judgements.
- Statistical Inference: In DA the inference is typically Bayesian in nature. Is used when uncertainties reveal themselves over time to refine/update probability models or combine available data with Expert Judgement.
- Utility Theory: To describe "The Decision Maker's" risk attitude/ appetite for the evaluation of a single objective and to formalize trade-off between multiple objectives.

Thus, a DA is Normative in Nature !

