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Abstract. In this paper, we propose SeGrid, a secure grid infrastructure
for large scale sensor networks. The basic idea relies on the availability
of a low-cost public cryptsystem (e.g. Blom’s key management scheme
[4]) that can be used for shared key computation between the source and
the destination, as long as the public shares are known to each other. In
SeGrid, each sensor resides in a grid computed from its physical location.
Within a grid, one or a few number of sensors, with one of them the grid
head, are active at any instant of time and all other sensors fall asleep
for energy conservation. We intend to compute a shared key for two grids
instead of two nodes, such that the grid heads can securely communicate
with each other. The public shares of a grid are stored at designated
locations based on our public share management protocol such that the
closer two grids, the shorter distance to obtain each other’s public shares.
We instantiate SeGrid based on Blom’s key management scheme [4] to
illustrate the computation of a grid key. To our best knowledge, this is
the first work that simultaneously considers both key management and
network lifetime extension, which explores along the dimension of net-
work density.
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1 Introduction

Security provisioning is a critical service for many sensor network applications.
However, the severely-constrained resources (memory, processor, battery, etc.)
within a sensor render many of the very popular security primitives inapplicable.
Therefore, much research effort [1, 5, 9, 10, 12, 14, 16] has been placed on how to
establish a shared key between two sensors such that their communications can
be secured with low-cost symmetric encryption techniques.

Most existing schemes [9, 10, 12, 16] for distributed key agreement in sensor
networks intend to design light weight (in computational complexity) algorithms
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to compute pairwise keys for communicating nodes. The induced key graph con-
taining only edges incident at two sensors sharing common keys should be glob-
ally connected in order for the network to function well. Another constraint con-
sidered by these techniques is the memory budget allocated for pre-deployment
key information storage. The tradeoff between memory cost and security has
been well-studied in most of these works.

As understood by the research society, the utmost problem in a sensor network
is its operation time elongation. Even though the above-mentioned works do
take resource (especially energy) consumption into consideration, none of them
explores the density dimension for further energy conservation. In this paper,
we propose an idea of establishing a secure grid infrastructure (termed SeGrid)
for sensor networks. We envision that all sensors within a grid are equivalent
in routing and thus a secret key is needed between two grids (instead of two
nodes) that demand communication. In this secure grid infrastructure, only one
or a few number of sensors (for fault-tolerance) within a grid are active at any
instant of time and all other sensors fall asleep to conserve energy. This design
explores the fact that sensors are low-cost and are densely deployed in a typical
network. When a new sensor becomes active, or an active sensor dies due to
energy depletion, the shared grid keys should be recomputed. We instantiate
this idea by applying Blom’s key management scheme [4] to demonstrate the
grid key computation. Note that putting redundant sensors to sleep for energy
conservation is a popular method in all layers of the protocol [19, 20, 17] design
for sensor networks. However, to the best of our knowledge, this work is the first
to combine it with key management.

The basic idea of SeGrid is outlined in the following. We assume that there
exists a public cryptosystem with low computation overhead (e.g. Blom’s key
management scheme [4]) such that each sensor can be preloaded with a crypto
pair containing a public share and a private share before deployment. In SeGrid,
sensors compute the grids they are residing in and choose to sleep or wake-
up based on some schedule (e.g. the wake-up schedule proposed in [20]). Each
grid has a grid head, an active node for message transmission. The grid head
stores the public shares of all active nodes within its grid at designated lo-
cations and queries the nearest grid that stores the public shares of another
grid based on our public share management protocol. After obtaining the pub-
lic shares of the destination grid, source grid computes a key ks that will be
used to secure all transmissions between these two grids. The destination grid
can follow the same procedure to compute the grid key ks. The public share
management protocol ensures that the closer two grids, the shorter the query
distance to obtain each other’s public shares. This protocol involves only simple
algebraic (shift and addition) operations, thus has very low computation over-
head. We finally instantiate SeGrid based on Blom’s key management scheme [4]
to demonstrate how the grid key can be computed based on the underlying public
cryptosystem.

This paper is organized as follows. We elaborate the network model and the
underlying assumptions in Section 2, then propose our secure grid infrastructure
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for sensor networks (SeGrid) in Section 3. An example instantiation of SeGrid
is outlined in Section 4. We conclude this paper with a discussion in Section 5.

2 Network Model and Assumptions

We are considering a large-scale sensor network deployed in outdoor environments.
Each sensor is able to position itself through any of the techniques proposed in lit-
erature (eg. [6, 15, 18]). A virtual grid will be computed based on position infor-
mation and each sensor resides in one grid. The id of a grid is denoted by (X, Y ).
At any instant of time, one or t number of sensors, where t is a small integer, are
active and all other sensors fall asleep for energy conservation. A sleeping sensor
wakes up periodically in order to replace a sensor with depleted energy. An active
sensor is in full operation and all active sensors collaborate together to guarantee
the functioning of the network. Sensors within neighboring grids can communicate
directly. The wakeup/sleep schedule, the active/inactive status transition, and the
underlying routing protocol for message dissemination, are out of the scope of this
paper. We just simply assume that they are available for us to employ. Existing
works related to these topics can be found in [3, 20].

We will explore a public cryptosystem that contains public and private crypto
pairs. The public share can be disseminated as plain text while its correspond-
ing private share must be kept secret. By exchanging their public shares, two
nodes can compute a shared secret key based on their private shares and the
exchanged public share. Example cryptosystems satisfying these conditions in-
clude the Diffie-Hellman key exchange protocol [11] and Blom’s key management
scheme [4]. In Section 4, we are going to instantiate a secure grid sensor network
infrastructure based on Blom’s method.

We assume each sensor is preloaded with a crypto pair before deployment.
The operation of the sensor network is unattended after the initial bootstrap
procedure for sensor localization and key management is done. Each grid may
have more than one public shares, if it has more than one active sensors. An
update message will be directed to all locations storing the public shares of the
grid such that the public shares of newly introduced active (old inactive) sensors
can be inserted (removed). A grid demanding the public shares of another grid
can just query the nearest grid storing the corresponding information. We will
propose a simple protocol for public share management in Subsection 3.2.

We envision that in a sensor network all nodes within a grid are equivalent.
Therefore we only consider the secure communication between two grids. The
computation of the shared key ks between the two grids depends on the underly-
ing public cryptosystem. We will show how to compute ks based on Blom’s key
management scheme in Section 4. Note that intra-grid secure communication
may be needed when more than one sensors are active simultaneously within a
grid. The shared keys between these active nodes can be computed based on the
underlying public cryptosystem too.

Note that even though t > 1 number of sensors may be active at any instant of
time, we assume that only one sensor within a grid is in charge of transmission.
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This sensor is the grid head. All active nodes other than the grid head listen to
the messages directed from neighboring grids. This assumption is realistic since
in a sensor network, a measurement from one sensor may not be attractive due
to dynamics. Usually sensor readings in close neighborhood need to be combined
for fault-tolerance [7] and an aggregated summary will be reported to the base
stations [7, 8].

3 SeGrid: The Secure Grid Infrastructure

In this section, we propose the basic idea of our secure grid infrastructure for
outdoor sensor networks. Note that this elaboration does not depend on any
public cryptosystem. We will instantiate this idea in Section 4 based on Blom’s
key management scheme [4].

We will first describe a simple algorithm for each sensor to locally and inde-
pendently compute the id of the grid it resides in. Then we give a novel protocol
for each grid to determine where to store its public shares. In the last, we propose
how to apply the secure grid infrastructure for protecting the unicast communi-
cations between two grids.

3.1 Grid Determination

In GAF [19], the size of a grid is determined based on node equivalence for
routing. In other words, any node within a grid can communicate directly with
any other node in any neighboring grid. This constraint specifies that the size
of a grid, denoted by r, can be at most R√

5
, where R is the nominal transmis-

sion range. In our study, we adopt this idea since we also intend to turn off
most of the sensors within a grid for energy conservation in order to extend
network lifetime. GAF specifies the length of the grid edge but does not spec-
ify how to determine the grid a node resides. In the following, we propose a
very simple algorithm to allow each node independently and locally determine
its grid.

Let (x, y) be the location of any sensor residing at grid (X, Y ). Then we have
X = �x ÷ 2�log2r��, Y = �y ÷ 2�log2r��. Note that X and Y can be computed
through shift operations only, as long as 2�log2r� is computed off-line and up-
loaded into each sensor before deployment. This is a reasonable assumption since
r depends only on the nominal transmission range R, which can be made avail-
able before deployment. Therefore we can simply shift the binary representations
of x and y to the right for k positions, where k = �log2r�, to obtain X and Y .

Remark: The procedure of computing the grid id of a sensor based on its
physical location does not require precise location information. We may treat k
as an error bound. In other words, as long as the position error in both x and y
directions are upper-bounded by 2k, we can still determine the grid id. In this
case, the constraint that two nodes within neighboring grids should communicate
directly may be violated.
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3.2 Public Share Management

In this subsection, we propose a simple protocol for storing and querying the
public shares of a grid. We need to answer two questions. First, for any grid
(X0, Y0), where shall we store its public shares? Second, if grid (X1, Y1) would
like to securely communicate with (X0, Y0), where to find out the latter’s public
shares? Our protocol is based on the following assumption: the closer two grids,
the higher the probability they may communicate. Therefore, the public shares of
a grid will be stored at designated locations such that the closer to the grid, the
shorter the query distance involved in public share acquisition. In our protocol,
the density of the grids storing the public shares of a grid drops logarithmically
as the distance to the grid increases. Fig. 1 gives a simple example to illustrate
the storage locations of the public shares for the grid (4, 4).

321 4 x

y

11

10

7

6

5

4

3

0

1

9

8

2

1110987650

Fig. 1. The public shares of the grid (4, 4) are stored at the grids denoted as “.” in the
figure. If the grid (8, 9) needs the public shares of (4, 4), it can query either (7, 7) or
(7, 11) since they are closer.

The answer to the first question is very simple. The public shares of the grid
(X0, Y0) will be stored at (x, y) if x = X0 ± (2i − 1) or x = X0 ± (2i+1 − 1),
and y = Y0 ± (2i − 1) or y = Y0 ± (2i+1 − 1), where i = 0, 1, 2, · · · . To identify
the nearest grid that stores the public shares of (X0, Y0), the grid (X1, Y1) will
compute

∆XL = 2�log2|X1−X0|� − 1 , ∆YL = 2�log2|Y1−Y0|� − 1,

∆XH = 2�log2|X1−X0|� − 1 , ∆YH = 2�log2|Y1−Y0|� − 1,

to figure out the following four grids that contain the public shares of (X0, Y0):
(X1 − ∆XL, Y1 − ∆YL), (X1 − ∆XL, Y1 + ∆YH), (X1 + ∆XH , Y1 − ∆YL), (X1 +
∆XH , Y1 + ∆YH), and then choose the nearest one to query.

Note that if Manhattan distance instead of Euclidean distance is used as a
routing metric for public share queries and updates, the computation overhead
is very low since only simple addition and subtraction operations are involved.
For example in Fig. 1, ∆XL = 1, ∆XH = 3, ∆YL = 2, and ∆YH = 2. The
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Manhattan distance from (8, 9) to (7, 11) is ∆XL + ∆YH = 3. Similarly we can
compute the Manhattan distance to the other three points. We choose either
(7, 7) or (7, 11) to query since they are the closest among the four grids that are
close to (8, 9).

Remarks:
– The computation of the storage locations for a grid contains only shift and

addition operations. However, the identification of the nearest grid for public
share query involves the complicated log functions. Nevertheless, this can be
done easily through a lookup table.

– This protocol guarantees that closer grids obtain the public shares within
shorter distance. Therefore, the farther away a grid, the higher the commu-
nication overhead for public share query. In reality, closer grids intend to
communicate securely with higher probability.

– The update of the public shares for a grid always take the same number of
messages, as long as the routing protocol remains unchanged.

3.3 Secure Grid Communication

Now we are ready to propose our secure grid communication framework. We
assume there exists a routing protocol, either geography-based (e.g. [13]) or
topology-based (e.g. [3]), such that we can employ directly.

Let (XA, YA) and (XB, YB) be the two grids that require a secure communi-
cation. The following procedure will be conducted at both ends:

1. Query the nearest grid that contains the public shares of the other party
based on the procedure proposed in Subsection 3.2 to obtain the public
shares.

2. Compute a secret key Ks shared by these two grids and secure the future
communication with this key.

Note that Step 2 depends on the underlying public cryptosystems. In the
following section, we will show how to apply Blom’s key management scheme [4]
to compute the shared key between two grids.

4 A Simple Realization

In this section, we implement a secure grid infrastructure for sensor networks
based on Blom’s key management scheme [4]. For completeness, we give a brief
overview on Blom’s scheme first. Then we describe how to compute a grid key
based on Blom’s scheme.

4.1 Preliminary: Blom’s Key Management Scheme

Blom’s λ-secure key management scheme [4] has been well-tailored for light-
weight sensor networks by [9]. In the following, we will give an overview on
Blom’s scheme based on [9].
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Let G be a (λ + 1) × M matrix over a finite field GF (q), where q is a large
prime. The connotation of M will become clear latter. G is public, with each
column called a public share. Let D be any random (λ + 1)× (λ + 1) symmetric
matrix. D must be kept private, which is known to the network service provider
only. The transpose of D · G is denoted by A. That is, A = (D · G)T . A is
private too, with each row called a private share. Since D is symmetric, A · G is
symmetric too. If we let K = (kij) = A · G, we have kij = kji, where kij is the
element at the ith row and the jth column of matrix K, i, j = 1, 2, · · · , M .

The basic idea of Blom’s scheme is to use kij as the secret key shared by node
i and node j. D and G jointly define a key space (D, G). Any public share in G
has a unique private share in A, which form a so-called crypto pair. For example,
the ith column of G, and the ith row of A form a crypto pair and the unique
private share of the ith column of G, a public share, is the ith row of A. Two
sensors whose crypto pairs are obtained from the same key space can compute
a shared key after exchanging their public shares. From this analysis, it is clear
that M is the number of sensors that can compute their pairwise keys based on
the same key space.

In summary, Blom’s scheme states the following protocol for nodes i and j to
compute kij and kji, based on the same key space:

– Each node stores a unique crypto pair. Without loss of generality, we assume
node i gets the ith column of G and the ith row of A, denoted by gki and aik,
where k = 1, 2, · · · , λ+1, respectively. Similarly, node j gets the jth column
of G and the jth row of A, denoted by gkj and ajk, where k = 1, 2, · · · , λ+1,
respectively.

– Node i and node j exchange their stored public shairs drawn from their
crypto pairs as plain texts.

– Node i computes kij as follows: kij =
∑λ+1

k=1 aik · gkj ; Similarly, node j com-
putes kji by kji =

∑λ+1
k=1 ajk · gki.

Blom’s key management scheme ensures the so-called λ-secure property, which
means the network should be perfectly secure as long as no more than λ nodes
are compromised. This requires that any λ + 1 columns of G must be linearly
independent. An interesting method of computing G is proposed by Du et. al
in [9]. This idea is sketched as following. Let len be the number of bits in the
symmetric key to be computed. Choose q as the smallest prime that is larger
than 2len. Let s be a primitive element of GF (q) and M < q. Then

G =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

1 1 1 · · · 1
s s2 s3 · · · sM

s2 (s2)2 (s3)2 · · · (sM )2
...

sλ (s2)λ (s3)λ · · · (sM )λ

⎤

⎥
⎥
⎥
⎥
⎥
⎦

Note that G is a Vandermonde matrix. Each column of G represents the pub-
lic share of some sensor node storing that column. In Blom’s key management
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scheme, public shares need to be exchanged between sensors that require se-
cure peer-to-peer communication. Based on the structure of G, we observe that
only the second element of each column, the seed of the column, needs to be
stored and exchanged. Thus both storage and communication overheads can be
greatly decreased.

4.2 Shared Key Computation

Assume a large key space (D, G) following Blom’s key management scheme has
been computed off-line. Before deployment, each sensor receives a crypto pair
from the key space. Note that the crypto pairs to different sensors may not
be unique, as the key shared by two grids will be computed based on multiple
public shares. But we require that all active sensors within one grid have different
crypto pairs.

Let tA (tB) be the number of active sensors in a grid (XA, YA) ((XB , YB)).
Following the public share management protocol proposed in Subsection 3.2, all
these tA (tB) public shares will be stored at designated grids, and are available to
other grids. If (XA, YA) and (XB , YB) need secure communication, they acquire
the public shares of the other party first in order to compute a shared key.

In Blom’s key management scheme, two sensors can compute a shared key
as long as they know each other’s public share. We can derive a shared key ks

between two grids from the keys shared by all pairs of sensors within the two
gride, as shown in Fig. 2.

2B

1A

3A

1B

2A

Hash to obtain 

Grid (

k12

k11

k21

k22

k31

k32

ks

AXGrid (  , )AY BX BY , )

Fig. 2. The grid (XA, YA)((XB , YB)) contains three (two) active sensors with node 1A

(1B) as the grid head. After obtaining the public shares of (XB , YB), each node iA in
grid (XA, YA) first computes ki1 and ki2, the shared keys with the two nodes in grid
(XB , YB), then transmits securely to node 1A the value kiA = Hash(ki1, ki2). Finally,
node 1A computes ks as ks = Hash(k1A , k2A , k3A). Similarly, node 1B computes ks

based on the public shares of (XA, YA).

Let’s use grid (XA, YA) as an example to demonstrate the procedure of com-
puting a shared key with the grid (XB, YB). After obtaining the public shares of
grid (XB, YB), each node i in (XA, YA) computes a shared key with each node j
in grid (XB , YB). These pairwise keys are denoted by kij , where i = 1, 2, · · · , tA
and j = 1, 2, · · · , tB. Then i computes ki = Hash(ki1, · · · , kitB ). This value will
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be securely transmitted to the grid head h of (XA, YA). After receiving all kt’s,
where t �= i, h derives the grid key ks by computing Hash(k1, k2, · · · , ktA).

Remarks:

– The private shares of each sensor must be kept secret. Therefore if one node
within a grid is compromised, grid keys can still be computed. Further,
the grid key remains secure if an active node other than the grid head is
compromised.

– When the active nodes within a grid changes, the public shares of the grid
can be modified easily since only the public share of the node with role
change needs to be updated.

– The hash function exploited must be linear, and must be able to take any
number of inputs. The XOR function is a simple example.

– Two nodes within a grid can compute a shared key based on Blom’s method
easily after exchanging their public shares as plain texts. This key can be
used to secure the intra-grid communication.

– The security of the grid key computation protocol based on Blom’s key man-
agement scheme [4] is determined by the λ-secure property of the key space
(D, G). Therefore if the crypto pairs of more than λ sensors are exposed to
the adversary, the security of the whole network is compromised. This is the
major drawback of applying Blom’s key management scheme for grid key
computation since the memory budget within a sensor for security informa-
tion storage is limited.

– The space consumed for storing the crypto pairs within a sensor is exclusively
determined by λ. The larger the λ, the higher the security level, and the
larger the storage space.

– The computation overhead of a grid key is determined by λ too. Each shared
key computation between two active nodes takes λ + 1 number of modular
multiplications.

5 Conclusion and Future Research

In this paper, we have proposed SeGrid, a secure grid infrastructure based on
public cryptosystems for large scale sensor networks. We have instantiated SeG-
rid based on Blom’s key management scheme to demonstrate how to compute
a grid key shared by two grids. To our knowledge, SeGrid is the first work that
targets key management in a level that is above the physical sensors. This is a
more practical consideration since sensors may stay in sleep mode most of the
time for network lifetime extension.

As a future work we will explore the applicability of ID-Based Cryptosystems
[2] in SeGrid. In an ID-based encryption system, the public key can be any
string (e.g. an email address), and the private key needs to be computed from
the public key and other system parameters. The idea of using the grid ID as
a public key in SeGrid is very attractive since public key management can be
totally avoided.
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