
1

Csci 211 Computer System ArchitectureCsci 211 Computer System Architecture
–– Review on Virtual MemoryReview on Virtual Memory

Xiuzhen Cheng
cheng@gwu.edu

The Five Classic Components of a Computer

The Big Picture: Where are We Now?

Control

Datapath

Memory

Processor

Input

Today’s Topics:
Virtual Memory

TLB

Datapath Output

Another View of the Memory Hierarchy

Upper Level

Faster
Regs

L2 Cache

Instr. Operands
Cache

Blocks
Thus far{

Lower Level
Larger

Memory

Disk

Tape

Blocks

Pages

Files

{
{Next:

Virtual
Memory

Memory Hierarchy Requirements

If Principle of Locality allows caches to offer (close
to) speed of cache memory with size of DRAM
memory,
then recursively why not use at next level to give
speed of DRAM memory, size of Disk memory?

While we’re at it, what other things do we need
from our memory system?

Memory Hierarchy Requirements

Share memory between multiple processes but still
provide protection – don’t let one program
read/write memory from another

Address space – give each program the illusion
that it has its own private memory

Suppose code starts at address 0x00400000. But different pp
processes have different code, both residing at the same
address. So each program has a different view of memory.

Virtual Memory

Called “Virtual Memory”

Also allows OS to share memory, protect programs
from each other

Today, more important for protection vs. just
another level of memory hierarchy

Historically it predates cachesHistorically, it predates caches

2

Virtual memory => treat the main memory as a cache for the
disk

Motivations:

Allow efficient and safe sharing of memory among multiple programs

Compiler assigns virtual address space to each program

Virtual memory maps virtual address spaces to physical spaces such that no
two programs have overlapping physical address space

What is virtual memory?

Remove the programming burdens of a small, limited amount of main
memory

Allow the size of a user program exceed the size of primary memory

Virtual memory automatically manages the two levels of
memory hierarchy represented by the main memory and the
secondary storage

What is the size of information blocks that are transferred from secondary
to main storage (M)? page size

Which region of M is to hold the new page placement policy

How do we find a page when we look for it? page identification

Block of information brought into M, and M is full, then some region of M
must be released to make room for the new block
 replacement policy

Issues in Virtual Memory System Design

 replacement policy

What do we do on a write? write policy

Missing item fetched from secondary memory only on the occurrence of a
fault demand load policy

pages

reg

cache
mem disk

frame

Virtual to Physical Addr. Translation

virtual
address
(inst. fetch
load, store)

Program
operates in
its virtual
address
space

HW
mapping

physical
address
(inst. fetch
load, store)

Physical
memory
(incl. caches)

Each program operates in its own virtual address space;
~only program running

Each is protected from the other

OS can decide where each goes in memory

Hardware (HW) provides virtual physical mapping

Mapping Virtual Memory to Physical Memory

Physical Memory

Virtual Memory

Stack

64 MB

Divide into equal sized
chunks (about 4 KB - 8 KB)
Any chunk of Virtual Memory assigned
to any chuck of Physical Memory
(“page”)

0
Code

Static

Heap
64 MB

0

Paging Organization (assume 1 KB pages)

Addr
Trans

Page is unit
of mapping

page 0 1K
1K

0
1024

Virtual
Address

page 1
1K2048 page 2

page 00
1024

Physical
Address

1K
1Kpage 1

...... ... Trans
MAP

Page also unit of
transfer from disk
to physical memory

1K31744

Virtual
Memory

page 31

...... ...7168

Physical
Memory

1Kpage 7
...... ...

Virtual Memory Mapping Function

Cannot have simple function to predict
arbitrary mapping

Use table lookup of mappings

U t bl l k (“P T bl ”) f i

Page Number Offset

Use table lookup (“Page Table”) for mappings:
Page number is index

Virtual Memory Mapping Function
Physical Offset = Virtual Offset

Physical Page Number
= PageTable[Virtual Page Number]

(P.P.N. also called “Page Frame”)

3

Address Mapping: Page Table
Virtual Address:

page no. offset

Page Table
Base Reg

index +

Page Table

V l Access Physical
V A.R. P. P. A.

...

Page Table located in physical memory

index
into
page
table

+

Physical
Memory
Address

Val
-id

Access
Rights

Physical
Page
Address

. ...

Page Table

A page table is an operating
system structure which
contains the mapping of virtual
addresses to physical locations

There are several different ways, all
up to the operating system, to keep
this data around

Physical
Address Space

Virtual
Address Space

Each process running in the
operating system has its own
page table

“State” of process is PC, all registers,
plus page table

OS changes page tables by changing
contents of Page Table Base
Register

Disk address space

Requirements revisited

Remember the motivation for VM:

Sharing memory with protection
Different physical pages can be allocated to different
processes (sharing)

A process can only touch pages in its own page table
(protection)

Separate address spacesSeparate address spaces
Since programs work only with virtual addresses, different
programs can have different data/code at the same address!

Page Table Entry (PTE) Format

Contains either Physical Page Number or indication
not in Main Memory

OS maps to disk if Not Valid (V = 0)

...
Page Table

Val Access Physical
V A.R. P. P.N.

If valid, also check if have permission to use page:
Access Rights (A.R.) may be Read Only,
Read/Write, Executable

Val
-id

Access
Rights

Physical
Page
Number

V A.R. P. P. N.
...

P.T.E.

Paging/Virtual Memory Multiple
Processes

User B:
Virtual Memory

StackStack

User A:
Virtual Memory
 Physical

Memory

64 MB

Code

Static

Heap

0
Code

Static

Heap

A
Page
Table

B
Page
Table0

0

Comparing the 2 levels of hierarchy

Cache Version Virtual Memory vers.

Block or Line Page

Miss Page Fault

Block Size: 32-64B Page Size: 4K-8KB

Placement: Fully Associative
Direct MappedDirect Mapped,
N-way Set Associative

Replacement: Least Recently Used
LRU or Random (LRU)

Write Thru or Back Write Back

4

Notes on Page Table

Solves Fragmentation problem: all chunks same size, and aligned,
so all holes can be used

OS must reserve “Swap Space” on disk for each process

To grow a process, ask Operating System
If unused pages, OS uses them first

If not, OS swaps some old pages to disk

(Least Recently Used to pick pages to swap)(Least Recently Used to pick pages to swap)

Each process has own Page Table

Will add details, but Page Table is essence of Virtual Memory

Page Table Summary

Map virtual page number to physical page number
Full table indexed by virtual page number

Minimize page fault
Fully associative placement of pages in main memory

Reside in main memory

Page fault can be handled in software why?Page fault can be handled in software, why?

Page size is larger than cache block size, why?

Each process has its own page table

Page table base register:
The page table starting address of the active process will be
loaded to the page table register

Virtual Memory Problem

Virtual memory seems to be really slow:

CPU
Trans-
lation

Cache Main
Memory

VA PA miss

hit
data

Virtual memory seems to be really slow:
we have to access memory on every access – even cache hits!
Worse, if translation not completely in memory, may need to go
to disk before hitting in cache!

Solution: Caching! (surprise!) – cache the
translation

Keep track of most common translations and place them in a
“Translation Lookaside Buffer” (TLB)

Translation Look-Aside Buffers (TLBs)

•TLBs usually small, typically 128 - 256 entries

• Like any other cache, the TLB can be direct
mapped, set associative, or fully associative

TLB Main
VA PA misshit

Processor
TLB

Lookup
Cache

Main
Memory

hit

data

Trans-
lation

miss

On TLB miss, get page table entry from main memory

Typical TLB Format

Virtual Physical Dirty Ref Valid Access
Address Address Rights

TLB just a cache on the page table mappings• TLB just a cache on the page table mappings

• TLB access time comparable to cache
(much less than main memory access time)

• Dirty: since use write back, need to know whether
or not to write page to disk when replaced
•Ref: Used to help calculate LRU on replacement

• Cleared by OS periodically, then checked to
see if page was referenced

What if not in TLB?

Option 1: Hardware checks page table and loads
new Page Table Entry into TLB

Option 2: Hardware traps to OS, up to OS to decide
what to do

MIPS follows Option 2: Hardware knows nothing about page
table

5

Page Fault: What happens when you miss?

Page fault means that page is not resident in
memory

Hardware must detect situation

Hardware cannot remedy the situation

Therefore, hardware must trap to the operating
t th t it d th it tisystem so that it can remedy the situation

pick a page to discard (possibly writing it to disk)

start loading the page in from disk

schedule some other process to run

Later (when page has come back from disk):
update the page table

resume to program so HW will retry and succeed!

What if the data is on disk?

We load the page off the disk into a free block of
memory, using a DMA (Direct Memory Access –
very fast!) transfer

Meantime we switch to some other process waiting to be run

When the DMA is complete, we get an interrupt and
update the process's page tablep p p g

So when we switch back to the task, the desired data will be
in memory

What if we don’t have enough memory?

We chose some other page belonging to a program
and transfer it onto the disk if it is dirty

If clean (disk copy is up-to-date),
just overwrite that data in memory

We chose the page to evict based on replacement policy
(e.g., LRU)

A d d t th t ' t bl t fl t thAnd update that program's page table to reflect the
fact that its memory moved somewhere else

If continuously swap between disk and memory,
called Thrashing

And in conclusion…

Manage memory to disk? Treat as cache
Included protection as bonus, now critical

Use Page Table of mappings for each user
vs. tag/data in cache

TLB is cache of VirtualPhysical addr trans

Virtual Memory allows protected sharing of memory
b tbetween processes

Spatial Locality means Working Set of Pages is all that
must be in memory for process to run fairly well

Address Translation & 3 Concept tests

TLB TAG Offset

Virtual Address

INDEX

TLB

Physical
P. P. N.

...
T. T
TLB

VPN

PPN Offset

Physical Address

Physical
Page
Number
P. P. N.

TLB
TAG

T.T

TAG OffsetINDEX

Data Cache

Tag Data

Tag Data

4 Qs for any Memory Hierarchy

Q1: Where can a block be placed?
One place (direct mapped)
A few places (set associative)
Any place (fully associative)

Q2: How is a block found?
Indexing (as in a direct-mapped cache)
Limited search (as in a set-associative cache)
Full search (as in a fully associative cache)
Separate lookup table (as in a page table)

Q3: Which block is replaced on a miss? p
Least recently used (LRU)
Random

Q4: How are writes handled?
Write through (Level never inconsistent w/lower)
Write back (Could be “dirty”, must have dirty bit)

6

Block 12 placed in 8 block cache:
Fully associative, direct mapped, 2-way set associative
S.A. Mapping = Block Number Modulo Number Sets

0 1 2 3 4 5 6 7Block
no.

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

0 1 2 3 4 5 6 7Block
no.

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

Q1: Where block placed in upper level

Set
0

Set
1

Set
2

Set
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

Block-frame address

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Block
offset

Block Address
Tag Index

Q2: How is a block found in upper level?

Set Select

Data Select

Direct indexing (using index and block offset), tag
compares, or combination

Increasing associativity shrinks index, expands tag

Data Select

Easy for Direct Mapped

Set Associative or Fully Associative:
Random

LRU (Least Recently Used)

Miss Rates
Associativity: 2-way 4-way 8-way

Q3: Which block replaced on a miss?

Associativity: 2-way 4-way 8-way

Size LRU Ran LRU Ran LRU Ran
16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%

64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Q4: What to do on a write hit?

Write-through
update the word in cache block and corresponding word in memory

Write-back
update word in cache block
allow memory word to be “stale”

=> add ‘dirty’ bit to each line indicating that memory be updated
when block is replacedwhen block is replaced

Performance trade-offs?
WT: read misses cannot result in writes

WB: no writes of repeated writes

Three Advantages of Virtual Memory

1) Translation:
Program can be given consistent view of memory, even though
physical memory is scrambled
Makes multiple processes reasonable
Only the most important part of program (“Working Set”) must be in
physical memory
Contiguous structures (like stacks) use only as much physical
memory as necessary yet still grow later

Three Advantages of Virtual Memory

2) Protection:
Different processes protected from each other
Different pages can be given special behavior

(Read Only, Invisible to user programs, etc).

Kernel data protected from User programs
Very important for protection from malicious programs Far more
“viruses” under Microsoft Windowsviruses under Microsoft Windows
Special Mode in processor (“Kernel more”) allows processor to
change page table/TLB

3) Sharing:
Can map same physical page to multiple users
(“Shared memory”)

7

Why Translation Lookaside Buffer (TLB)?

Paging is most popular implementation of virtual
memory

Every paged virtual memory access must be
checked against
Entry of Page Table in memory to provide
protectionp

Cache of Page Table Entries (TLB) makes address
translation possible without memory access in
common case to make fast

Bonus slide: Virtual Memory Overview (1/4)

User program view of memory:
Contiguous

Start from some set address

Infinitely large

Is the only running program

Reality:
Non-contiguous

Start wherever available memory is

Finite size

Many programs running at a time

Bonus slide: Virtual Memory Overview (2/4)

Virtual memory provides:
illusion of contiguous memory

all programs starting at same set address

illusion of ~ infinite memory
(232 or 264 bytes)

protection

Bonus slide: Virtual Memory Overview (3/4)

Implementation:
Divide memory into “chunks” (pages)

Operating system controls page table that maps virtual
addresses into physical addresses

Think of memory as a cache for disk

TLB is a cache for the page table

Bonus slide: Virtual Memory Overview (4/4)

Let’s say we’re fetching some data:
Check TLB (input: VPN, output: PPN)

hit: fetch translation

miss: check page table (in memory)

– Page table hit: fetch translation

– Page table miss: page fault, fetch page from disk to
memory, return translation to TLB

Check cache (input: PPN, output: data)
hit: return value

miss: fetch value from memory

The MIPS R2000 TLB

8

Implementing Protection with VM

Multiple processes share a single main memory!
How to prevent one process from reading/writing over another’s
data?

Write access bit in page table

Non-overlapping page tables

OS controls the page table mappings

Page tables reside in OS’s address spacePage tables reside in OS s address space

How to share information?
Controlled by OS

Multi virtual addresses map to the same page table

Handling Page Fault and TLB Miss

TLB Miss

Page Fault
By exception handling mechanism

Page fault happens during the clock cycle used to access memory

EPC is used to store the address of the instruction that causes the
exception

How to find the virtual address of the memory unit that holds the data
when data page fault happens?

Prevent the completion of the faulting instruction – no writing!!

Cause register provide page fault reasons

OS does the following
Find the location of the referenced page on disk

Choose a physical page to replace. What about dirty pages?

Read the referenced page from disk

And in Conclusion…

Virtual memory to Physical Memory Translation too
slow?

Add a cache of Virtual to Physical Address Translations, called a
TLB

Spatial Locality means Working Set of Pages is all
that must be in memory for process to run fairly well

Virtual Memory allows protected sharing of memory
between processes with less swapping to disk

Questions?

