
1

CsciCsci 211 Computer System Architecture 211 Computer System Architecture
–– DatapathDatapath and Control Designand Control Design

–– Appendixes A & BAppendixes A & B

Xiuzhen Cheng
cheng@gwu.edu

Outline

Single Cycle Datapath and Control Design

Pipelined Datapath and Control Design

The Big Picture

The Five Classic Components of a Computer

Control

Datapath

Memory

Processor
Input

Output

Performance of a machine is determined by:
Instruction count; Clock cycle time; Clock cycles per instruction

Processor design (datapath and control) will determine:
Clock cycle time; Clock cycles per instruction

Who will determine Instruction Count?
Compiler, ISA

How to Design a Processor: Step by Step

1. Analyze instruction set => datapath requirements

1. the meaning of each instruction is given by the register
transfers

2. datapath must include storage element for registers

3. datapath must support each register transfer

2. Select the set of datapath components and establish p p
clocking methodology

3. Assemble the datapath meeting the requirements

4. Analyze the implementation of each instruction to
determine the settings of the control points that
effects the register transfer

5. Assemble the control logic

--- Use MIPS ISA to illustrate these five steps!

Example: MIPS
0r0

r1
°
°
°
r31
PC
lo
hi

Programmable storage

2^32 x bytes

31 x 32-bit GPRs (R0=0)

32 x 32-bit FP regs (paired DP)

HI, LO, PC

Data types ?

Format ?

Addressing Modes?

Memory Addressing?

Arithmetic logicalArithmetic logical

Add, AddU, Sub, SubU, And, Or, Xor, Nor, SLT, SLTU,

AddI, AddIU, SLTI, SLTIU, AndI, OrI, XorI, LUI

SLL, SRL, SRA, SLLV, SRLV, SRAV

Memory Access

LB, LBU, LH, LHU, LW, LWL,LWR

SB, SH, SW, SWL, SWR

Control

J, JAL, JR, JALR

BEq, BNE, BLEZ,BGTZ,BLTZ,BGEZ,BLTZAL,BGEZAL

32-bit instructions on word boundary

MIPS Instruction Format

op rs rt rd shamt funct

061116212631

6 bits 6 bits5 bits5 bits5 bits5 bits

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

02631

All MIPS instructions are 32 bits long. 3 formats:

R-type

I-type

op target address

02631

6 bits 26 bits
J-type

The different fields are:
op: operation (“opcode”) of the instruction
rs, rt, rd: the source and destination register specifiers
shamt: shift amount
funct: selects the variant of the operation in the “op” field
address / immediate: address offset or immediate value
target address: target address of jump instruction

2

MIPS Instruction Formats Summary

Minimum number of instructions required
Information flow: load/store

Logic operations: logic and/or/not, shift

Arithmetic operations: addition, subtraction, etc.

Branch operations:

Instructions have different number of operands: 1, 2, 3

32 bits representing a single instruction32 bits representing a single instruction
Disassembly is simple and starts by decoding opcode field.

CommentsFieldsName

Arithmetic instruction formatfunctshamtrdrtrsopR-format

All MIPS instructions 32 bits6 bits5 bits5 bits5 bits5 bits6 bitsField size

Transfer, branch, imm. formataddress/immediatertrsopI-format

Jump instruction formattarget addressopJ-format

MIPS Addressing Modes

Register addressing
Operand is stored in a register. R-Type

Base or displacement addressing
Operand at the memory location specified by a register value plus a
displacement given in the instruction. I-Type
Eg: lw, $t0, 25($s0)

Immediate addressingImmediate addressing
Operand is a constant within the instruction itself. I-Type

PC-relative addressing
The address is the sum of the PC and a constant in the instruction. I-Type
Eg: beq $t2, $t3, 25 # if ($t2==$t3), goto PC+4+100

Pseudodirect addressing
The 26-bit constant is logically shifted left 2 positions to get 28 bits. Then
the upper 4 bits of PC+4 is concatenated with this 28 bits to get the new
PC address. J-type, e. g., j 2500

MIPS Addressing Modes
Illustration

MIPS Instruction Subset Core

ADD and SUB
addu rd, rs, rt

subu rd, rs, rt

OR Immediate:
ori rt, rs, imm16

LOAD and

inst Register Transfers

ADDU R[rd] <– R[rs] + R[rt];

PC <– PC + 4

SUBU R[rd] <– R[rs] – R[rt];

PC <– PC + 4

ORi R[rt] <– R[rs] | zero_ext(Imm16); LOAD and
STORE Word

lw rt, rs, imm16

sw rt, rs, imm16

BRANCH:
beq rs, rt, imm16

PC <– PC + 4

LOAD R[rt] <– MEM[R[rs] + sign_ext(Imm16)];

PC <– PC + 4

STORE MEM[R[rs] + sign_ext(Imm16)] <– R[rt];

PC <– PC + 4

BEQ if (R[rs] == R[rt]) then

PC <– PC + 4 + ([sign_ext(Imm16)]<<2)

else PC <– PC + 4

Step 1: Requirements of the Instruction Set

Memory

instruction & data: instruction=MEM[PC]

Registers (32 x 32)

read RS; read RT; Write RT or RD

PC, what is the new PC?

Add 4 or extended immediate to PC

Extender: sign-extension or 0-extension?

Add and Sub register or extended immediate

Step 2: Components of the Datapath

32
A

B
32

Y
32

Select

M
U

X

32

32

A

B
32

Sum

Carry

A
d

d
er

CarryIn

32

32

A

B
32

Result

OP

A
L

U

3

Storage Element: Register File

Register File consists of 32 registers:
Two 32-bit output busses:
busA and busB
One 32-bit input bus: busW

Register is selected by: Clk

busW

Write Enable

32
32

busA

32
busB

5 5 5
RW RA RB

32 32-bit
Registers

RA (number) selects the register
to put on busA (data)
RB (number) selects the register to put on busB (data)
RW (number) selects the register to be written via busW
(data) when Write Enable is high

Clock input (CLK)
The CLK input is a factor ONLY during write operation
During read operation, behaves as combinational logic:

RA or RB valid => busA or busB outputs valid after
“access time.”

32

Storage Element: Idealized Memory

Memory (idealized)

One input bus: Data In

One output bus: Data Out

Memory word is selected by:

Address selects the word to put on Data Out

Clk

Data In

Write Enable

32 32
DataOut

Address

Address selects the word to put on Data Out

Write Enable = 1: address selects the memory
word to be written via the Data In bus

Clock input (CLK)

The CLK input is a factor ONLY during write operation

During read operation, behaves as a combinational logic
block:

Address valid => Data Out valid after “access time.”

Step 3: Assemble DataPath
meeting our requirements

Instruction Fetch
Instruction = MEM[PC]

Update PC

R d O d d E t O tiRead Operands and Execute Operation
Read one or two registers

Execute operation

Datapath for Instruction Fetch

Fetch the Instruction: mem[PC]
Update the program counter:

Sequential Code: PC <- PC + 4
Branch and Jump: PC <- “something else”

32

Instruction Word
Address

Instruction
Memory

PCClk

Next Address
Logic

Datapath for R-Type Instructions

R[rd] <- R[rs] op R[rt] Example: addU rd, rs, rt
Ra, Rb, and Rw come from instruction’s rs, rt, and rd fields

ALUctr and RegWr: control logic after decoding the instruction

op rs rt rd shamt funct

061116212631

32

Result

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

Rs RtRd

A
L

U

6 bits 6 bits5 bits5 bits5 bits5 bits

Logic Operations with Immediate

R[rt] <- R[rs] op
ZeroExt[imm16]]

Eg. Ori $7, $8, 0x20

Rs

RtRd
RegDst

Mux

11

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits rd?

immediate

016 1531

16 bits16 bits

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Rt?

32

Result

ALUctr

Clk

busW

RegWr

32

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

Rs

Z
eroE

xt

M
u

x

3216
imm16

ALUSrc

A
L

U

Rt?

4

Load Operations
R[rt] <- Mem[R[rs] + SignExt[imm16]] Example: lw rt, rs, imm16

11

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits rd

Rs

RtRd
RegDst Mux

Rt?

32

ALUctr

Clk

busW

RegWr

32
32

busA

32
busB

5 5 5

Rw Ra Rb
32 32-bit
Registers

Rs

E
xten

d
er

M
u

x

32
16

imm16

ALUSrc

ExtOp

Clk

Data In
WrEn

32

Adr

Data
Memory

32

A
L

U

MemWr M
u

x

W_Src

??

Rt?

Store Operations
Mem[R[rs] + SignExt[imm16] <- R[rt]] Example: sw rt, rs, imm16

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

ALUctr

RegWr 55 5
Rs

Rt

Rt

Rd

RegDst Mux

MemWr W_Src

32
Clk

busW

g

32

32

busA

32

busB

55 5

Rw Ra Rb

32 32-bit
Registers

E
xten

d
er

M
u

x

3216
imm16

ALUSrcExtOp

Clk

Data In
WrEn

32

Adr

Data
Memory

A
L

U

32

M
u

x

The Branch Instruction

beqrs, rt, imm16

mem[PC] Fetch the instruction from

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

mem[PC] Fetch the instruction from
memory

Equal <- R[rs] == R[rt] Calculate the branch condition

if (Equal) Calculate the next instruction’s address
PC <- PC + 4 + (SignExt(imm16) x 4)

else
PC <- PC + 4

Datapath for Branch Operations

beq rs, rt, imm16 Datapath generates condition (equal)

op rs rt immediate

016212631

6 bits 16 bits5 bits5 bits

4
nPC_sel

RegWr
Rs Rt

CondInst Address

32

imm16

P
C

Clk

00

A
d

d
er

M
u

x

A
d

d
er

4

Clk

busW

RegWr

32

busA

32

busB

5 5 5

Rw Ra Rb

32 32-bit
Registers

E
q

u
al

?

P
C

 E
xt

Putting it All Together: A Single Cycle Datapath

ALUctr

R W
Rs

Rt

Rt

Rd
RegDst MemtoRegMemWrEqual

Instruction<31:0>

01

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRtRs

4

nPC_sel

Adr

Inst
Memory

im
m

16

32

Clk

busW

RegWr

32

32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

E
xten

d
er

M
u

x

3216
imm16

ALUSrcExtOp

M
u

x

Clk

Data In
WrEn32 Adr

Data
Memory

A
L

U 0

1

0

1

=

A
d

d
er

A
d

d
er

P
C

Clk

00

M
u

x

4

P
C

 E
xt

Step 4: Given Datapath: RTL -> Control

Instruction<31:0>

<
21:25>

<
16:20>

<
11:15>

<
0:15>

Imm16RdRsRt

Adr

Inst
Memory

Control

Op

<
21:25>

Fun

ALUctrRegDst ALUSrcExtOp MemtoRegMemWr EqualnPC_sel

DATA PATH

RegWr

5

Meaning of the Control Signals

Rs, Rt, Rd and Imed16 hardwired into datapath

nPC_sel: 0 => PC <– PC + 4; 1 => PC <– PC + 4 +
SignExt(Im16) || 00

Adr

Inst
Memory

nPC sel

A
d

d
er

A
d

d
er

P
C

Clk

00

M
u

x

4

nPC_sel

P
C

 E
xtim

m
16

Meaning of the Control Signals

ExtOp: “zero”, “sign”

ALUsrc: 0 => regB; 1 => immed

ALUctr: “add”, “sub”, “or”

° MemWr: write memory

° MemtoReg: 1 => Mem

° RegDst: 0 => “rt”; 1 => “rd”

° RegWr: write dest register

ALUctr
RtRd

RegDst MemtoRegMemWrEqual

01

32

Clk

busW

RegWr

32
32

busA

32
busB

55 5

Rw Ra Rb
32 32-bit
Registers

Rs Rt

E
xten

d
er

M
u

x

3216
imm16

ALUSrcExtOp

M
u

x

Clk

Data In
WrEn32 Adr

Data
Memory

A
L

U 0

1

0

1

=

Review on ALU Design

ALU Control Lines Function

0000 And

0001 Or

0010 Add

0110 Subtraction

0111

1100

Slt, beq

NOR

ALU Control and the Central Control

Two-level design to ease the job
ALU Control generates the 4 control lines for ALU operation
Func code field is only effective for R-type instructions, whose
Opcode field contains 0s.
The operation of I-type and J-type instructions is determined only
by the 6 bit Opcode field.
Lw/sw and beq need ALU even though they are I-type instructions.
Three cases: address computation for lw/sw, comparison for beq,
and R-Type; needs two control lines from the main control unit:
ALUOp: 00 for lw/sw, 01 for beq, 10 for R-type

Design ALU control
Input: the 6 bit func code field for R-type
Input: the 2 bit ALUOp from the main control unit.

Design the main control unit
Input: the 6 bit Opcode field.

Step 5: Logic for each control signal Step 5: Logic for each control signal

6

An Abstract View of the Critical Path

Register file and ideal memory:
The CLK input is a factor ONLY during write operation

During read operation, behave as combinational logic:

Instruction

Ideal
Instruction

Memory

Clk

5

Rw Ra Rb

32 32-bit
Registers

Rd

A
L

U

Clk

Data
In

Data
Address

Ideal
Data

Memory

Instruction
Address

y

C
lk

P
C

5
Rs

5
Rt

16
Imm

32

32
3232

A

B

N
ex

t A
dd

re
ss

An Abstract View of the Implementation

Data

5

Rw Ra Rb

Rd

Data
Add

Instruction

Instruction
Address

Ideal
Instruction

Memory

5
Rs

5
Rt

32
A

s

Control
Control Signals Conditions

Out

Clk

Rw Ra Rb

32 32-bit
Registers

A
L

U

Clk

Data
In

Address
Ideal
Data

Memory

C
lk

P
C

32

32
3232

B

N
ex

t A
d

d
re

s

Datapath

Example: R-type add $t1, $t2, $t3 Example: lw

Example: beq How to Implement jump Instruction?

7

How to Implement J Answer Performance of Single-Cycle Datapath

Time needs by functional units:
Memory units: 200 ps

ALU and adders: 100 ps

Register file (r/w): 50 ps

No delay for other units

Two single cycle datapath implementationsg y p p
Clock cycle time is the same for all instructions

Variable clock cycle time per instruction

Instruction mix: 25% loads, 10% stores, 45% ALU,
15% branches, and 5% jumps

Compare the performance of R-type, lw, sw, branch,
and j

Performance of Single-Cycle Datapath

Time needed per instruction:
Variable clock cycle time datapath:
R: 400ps, lw: 600ps, sw: 550ps, branch: 350, j: 200

Same clock cycle time datapath: 600ps

Average time needed per instructiong p
With a variable clock: 447.5ps

With the same clock: 600ps

Performance ratio:
600/447.5 = 1.34

Remarks on Single Cycle Datapath

Single Cycle Datapath ensures the execution of any
instruction within one clock cycle

Functional units must be duplicated if used multiple times by one
instruction. E.g. ALU. Why?

Functional units can be shared if used by different instructions

Single cycle datapath is not efficient in time
Clock Cycle time is determined by the instruction taking the
longest time. Eg. lw in MIPS

Variable clock cycle time is too complicated.

Multiple clock cycles per instruction

Pipelining

Summary

5 steps to design a processor
1. Analyze instruction set => datapath requirements

2. Select set of datapath components & establish clock methodology

3. Assemble datapath meeting the requirements

4. Analyze implementation of each instruction to determine setting of
control points that affects the register transferp g

5. Assemble the control logic

MIPS makes it easier
Instructions same size

Source registers always in same place

Immediates same size, location

Operations always on registers/immediates

Single cycle datapath => CPI=1, CCT => long

Outline

Single Cycle Datapath and Control Design

Pipelined Datapath and Control Design

8

Pipelining

Pipelining is an implementation technique in which
multiple instructions are overlapped in execution

Subset of MIPS instructions:
lw, sw, and, or, add, sub, slt, beq

Pipelining is Natural!

Laundry Example

Ann, Brian, Cathy, Dave
each have one load of clothes
to wash, dry, and fold

Washer takes 30 minutes

A B C D

Dryer takes 40 minutes

“Folder” takes 20 minutes

Sequential Laundry

A

30 40 20 30 40 20 30 40 20 30 40 20

6 PM 7 8 9 10 11 Midnight

T
a
s
k

Time

Sequential laundry takes 6 hours for 4 loads

If they learned pipelining, how long would laundry take?

B

C

D

O
r
d
e
r

Pipelined Laundry: Start work ASAP

A

6 PM 7 8 9 10 11 Midnight

T
a
s
k

Time

30 40 40 40 40 20

Pipelined laundry takes 3.5 hours for 4 loads

B

C

D

O
r
d
e
r

Pipelining Lessons
Pipelining doesn’t help
latency of single task, it helps
throughput of entire workload

Pipeline rate is limited by
slowest pipeline stage

Multiple tasks operating
simultaneously using
different resources

A

6 PM 7 8 9

T
a
s

Time

30 40 40 40 40 20

Potential speedup = Number
pipeline stages

Unbalanced lengths of
pipeline stages reduces
speedup

Time to “fill” pipeline and
time to “drain” it reduces
speedup

Stall for Dependencies

B

C

D

k

O
r
d
e
r

The Five Stages of Load

Ifetch: Instruction Fetch
Fetch the instruction from the Instruction Memory

Reg/Dec: Registers Fetch and Instruction Decode

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5

Ifetch Reg/Dec Exec Mem WrLoad

Reg/Dec: Registers Fetch and Instruction Decode

Exec: Calculate the memory address

Mem: Read the data from the Data Memory

Wr: Write the data back to the register file

9

Pipelining
Improve performance by increasing throughput

Ideal speedup is number of stages in the pipeline.
Do we achieve this? NO!
The computer pipeline stage time are limited by the slowest resource, either
the ALU operation, or the memory access
Fill and drain time

Single Cycle, Multiple Cycle, vs. Pipeline

Clk

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

Clk

Single Cycle Implementation:

Load Store Waste

Cycle 1 Cycle 2

Multiple Cycle Implementation:

Ifetch Reg Exec Mem Wr

Load Ifetch Reg Exec Mem Wr

Ifetch Reg Exec Mem

Load Store

Pipeline Implementation:

Ifetch Reg Exec Mem WrStore

Ifetch

R-type

Ifetch Reg Exec Mem WrR-type

Why Pipeline?

Suppose we execute 100 instructions

Single Cycle Machine
45 ns/cycle x 1 CPI x 100 inst = 4500 ns

Multicycle Machine
10 ns/cycle x 4.6 CPI (due to inst mix) x 100 inst = 4600 ns

Ideal pipelined machineIdeal pipelined machine
10 ns/cycle x (1 CPI x 100 inst + 4 cycle drain) = 1040 ns

Why Pipeline? Because the resources are there!

I
n
s
t
r.

Time (clock cycles)

Inst 0

Inst 1

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

O
r
d
e
r

Inst 2

Inst 4

Inst 3

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

Can pipelining get us into trouble?
Yes: Pipeline Hazards

Structural hazards: attempt to use the same resource two different
ways at the same time

E.g., combined washer/dryer would be a structural hazard or folder busy
doing something else (watching TV)
Single memory cause structural hazards

Data hazards: attempt to use item before it is ready
E.g., one sock of pair in dryer and one in washer; can’t fold until you get g p y y g
sock from washer through dryer
instruction depends on result of prior instruction still in the pipeline

Control hazards: attempt to make a decision before condition is
evaluated

E.g., washing football uniforms and need to get proper detergent level;
need to see after dryer before next load in
branch instructions

Can always resolve hazards by waiting
pipeline control must detect the hazard
take action (or delay action) to resolve hazards

• Perfect pipelining with no hazards an instruction
completes every cycle (total cycles ~ num instructions)
 speedup = increase in clock speed = num pipeline stages

• With hazards and stalls, some cycles (= stall time) go by

Slow Down From Stalls

y () g y
during which no instruction completes, and then the stalled
instruction completes

• Total cycles = number of instructions + stall cycles

• Slowdown because of stalls = 1/ (1 + stall cycles per instr)

10

Speed Up Equation for Pipelining

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline CPI Ideal

depth Pipeline CPI Ideal Speedup

Instper cycles Stall Average CPI Ideal CPIpipelined

Compared to unpipelined,

pipelined TimeCycleCPI stall Pipeline CPI Ideal

pipelined

dunpipeline

 TimeCycle
 TimeCycle

CPI stall Pipeline 1

depth Pipeline Speedup

For simple RISC pipeline, CPI = 1:

Single Memory is a Structural Hazard

I
n
s
t
r.

Time (clock cycles)

Load

Instr 1

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg
A

Mem

O
r
d
e
r

Instr 2

Instr 3

Instr 4

A
L

UMem Reg Mem Reg

A
L

UReg Mem Reg

A
L

UMem Reg Mem Reg

Detection is easy in this case! (right half highlight means read, left half write)

Structural Hazards limit performance

Example: if 1.3 memory accesses per instruction
and only one memory access per cycle then

average CPI 1.3

otherwise resource is more than 100% utilized

Example: Dual-port vs. Single-port

Machine A: Dual ported memory (“Harvard
Architecture”)

Machine B: Single ported memory, but its pipelined
implementation has a 1.05 times faster clock rate

Ideal CPI = 1 for both

Loads are 40% of instructions executed
SpeedUpA = Pipeline Depth/(1 + 0) x (clockunpipe/clockpipe)

= Pipeline Depth

SpeedUpB = Pipeline Depth/(1 + 0.4 x 1) x (clockunpipe/(clockunpipe / 1.05)

= (Pipeline Depth/1.4) x 1.05

= 0.75 x Pipeline Depth

SpeedUpA / SpeedUpB = Pipeline Depth/(0.75 x Pipeline Depth) = 1.33

Machine A is 1.33 times faster

Control Hazard Solution #1: Stall
I
n
s
t
r.

O
r
d

Time (clock cycles)

Add

Beq

Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

A
L

UReg Mem RegMem
Lost

potential

Stall: wait until decision is clear

Impact: 2 lost cycles (i.e. 3 clock cycles per branch instruction) =>slow

Move decision to end of decode by improving hardware
save 1 cycle per branch

If 20% instructions are BEQ, all others have CPI 1, what is the average
CPI?

e
r

U

potential

Control Hazard Solution #1: Stall

11

Control Hazard Solution #2: Predict

I
n
s
t
r.

O
r
d

Time (clock cycles)

Add

Beq

Load

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Predict: guess one direction then back up if wrong

Impact: 0 lost cycles per branch instruction if right, 1 if
wrong (right - 50% of time)

Need to “Squash” and restart following instruction if wrong

Produce CPI on branch of (1 *.5 + 2 * .5) = 1.5

Total CPI might then be: 1.5 * .2 + 1 * .8 = 1.1 (20% branch)

More dynamic scheme: history of each branch (- 90%)

d
e
r

U

Control Hazard Solution #2: Predict

Control Hazard Solution #3: Delayed Branch
I
n
s
t
r.

O
r
d

Time (clock cycles)

Add

Beq

Misc

A
L

UMem Reg Mem Reg

A
L

UMem Reg Mem Reg

Mem

A
L

UReg Mem Reg

Delayed Branch: Redefine branch behavior (takes place after
next instruction)

Impact: 0 extra clock cycles per branch instruction if can find
instruction to put in “slot” (- 50% of time)

The longer the pipeline, the harder to fill

Used by MIPS architecture

d
e
r

U

Load Mem
A

L
UReg Mem Reg

Control Hazard Solution #3: Delayed Branch

Scheduling Branch Delay Slots (Fig A.14)

add $1,$2,$3
if $2=0 then

delay slot

A. From before branch B. From branch target C. From fall through

add $1,$2,$3
if $1=0 then

delay slot

add $1,$2,$3
if $1=0 then

delay slot

sub $4,$5,$6

sub $4,$5,$6

becomes becomes becomes

A is the best choice, fills delay slot & reduces instruction count (IC)
In B, the sub instruction may need to be copied, increasing IC

In B and C, must be okay to execute sub when branch fails

if $2=0 then

add $1,$2,$3
add $1,$2,$3
if $1=0 then

sub $4,$5,$6

add $1,$2,$3
if $1=0 then

sub $4,$5,$6

More On Delayed Branch

Compiler effectiveness for single branch delay
slot:

Fills about 60% of branch delay slots

About 80% of instructions executed in branch delay slots
useful in computation

About 50% (60% x 80%) of slots usefully filled

Delayed Branch downside: As processor go to
deeper pipelines and multiple issue, the branch
delay grows and need more than one delay slot

Delayed branching has lost popularity compared to more
expensive but more flexible dynamic approaches

Growth in available transistors has made dynamic approaches
relatively cheaper

12

Evaluating Branch Alternatives

Assume 4% unconditional branch, 6% conditional branch-
untaken, 10% conditional branch-taken

Scheduling Branch CPI speedup v speedup v

Pipeline speedup = Pipeline depth
1 +Branch frequency Branch penalty

A simplified pipeline speedup equation for Branch:

Scheduling Branch CPI speedup v. speedup v.
scheme penalty unpipelined stall

Stall pipeline 3 1.60 3.1 1.0

Predict taken 1 1.20 4.2 1.33

Predict not taken 1 1.14 4.4 1.40

Delayed branch 0.5 1.10 4.5 1.45

*Branch penalty resulted from decision making and/or address computation

* Predict taken: still needs one cycle to compute address

Branch Stall Impact

Two part solution:
Determine branch taken or not sooner, AND

Compute taken branch address earlier

MIPS branch tests if register = 0 or 0

MIPS Solution:MIPS Solution:
Move Zero test to ID/RF stage

Adder to calculate new PC in ID/RF stage

1 clock cycle penalty for branch versus 3

Data Hazard on r1

add r1 ,r2,r3

sub r4, r1 ,r3

and r6 r1 r7

An instruction depends on the result of a previous instruction still in the pipeline

and r6, r1 ,r7

or r8, r1 ,r9

xor r10, r1 ,r11

• Dependencies backwards in time are hazards
Data Hazard on r1:

I
n
s
t

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

r.

O
r
d
e
r

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

• “Forward” result from one stage to another

Data Hazard Solution:

I
n
s
t

Time (clock cycles)

add r1,r2,r3

sub r4,r1,r3

I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm Reg

A
L

UIm Reg Dm Reg

• “or” OK if define read/write properly
•Forwarding can’t prevent all data hazard! – lw followed by R-type?

r.

O
r
d
e
r

and r6,r1,r7

or r8,r1,r9

xor r10,r1,r11

A
L

UIm Reg Dm Reg

Im

A
L

UReg Dm Reg

A
L

UIm Reg Dm Reg

Reg

• Dependencies backwards in time are hazards

Forwarding (or Bypassing): What about Loads?

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm

A
L

UIm Reg Dm Reg

• Can’t solve with forwarding:
• Must delay/stall instruction dependent on loads

13

Reg

• Dependencies backwards in time are hazards

Forwarding (or Bypassing): What about Loads

Time (clock cycles)

lw r1,0(r2)

sub r4,r1,r3

I
F

ID/R
F

E
X

ME
M

W
B

A
L

UIm Reg Dm

A
L

UIm Reg Dm RegStall

• Can’t solve with forwarding:
• Must delay/stall instruction dependent on loads

Try producing fast code for

a = b + c;

d = e – f;

assuming a, b, c, d ,e, and f in memory.
Slow code:

LW Rb b

Software Scheduling to Avoid Load
Hazards

Fast code:
LW Rb,b

LW Rc,c

ADD Ra,Rb,Rc

SW a,Ra

LW Re,e

LW Rf,f

SUB Rd,Re,Rf

SW d,Rd

LW Rb,b

LW Rc,c

LW Re,e

ADD Ra,Rb,Rc

LW Rf,f

SW a,Ra

SUB Rd,Re,Rf

SW d,Rd

Compiler optimizes for performance. Hardware checks for safety.

Extending to Multicycle Instructions

Latency is defined to be the number
of intervening cycles between an
instruction that produces a result
and an instruction that
uses the result.

The initiation or repeat interval is

Functional unit Delay (Latency) Initiation interval

Integer ALU 1 (0) 1

Data memory 2 (1) 1

FP add 4 (3) 1

FP multiply 7 (6) 1

FP divide 25 (24) 25

p
the number of cycles that must
elapse between issuing two
operations of a given type

• Structural hazards if the unit is not fully pipelined (divider)

• Frequent Read-After-Write hazard stalls

• Potentially multiple writes to the register file in a cycle

Effects of Multicycle Instructions

• Write-After-Write hazards because of out-of-order instr
completion

• Imprecise exceptions because of o-o-o instr completion

Note: Can also increase the “width” of the processor: handle
multiple instructions at the same time: for example, fetch
two instructions, read registers for both, execute both, etc.

• On an exception:
 must save PC of instruction where program must resume
 all instructions after that PC that might be in the pipeline

must be converted to NOPs (other instructions continue
to execute and may raise exceptions of their own)

Precise Exceptions

 temporary program state not in memory (in other words,
registers) has to be stored in memory

 potential problems if a later instruction has already
modified memory or registers

• A processor that fulfils all the above conditions is said to
provide precise exceptions (useful for debugging and of
course, correctness)

Imprecise Exceptions

•An exception is imprecise if the processor state when an
exception is raised does not look exactly as if the instrs.
Were executed sequentially in strict program order

• The pipeline may have already completed instructions
that are later in program order than the instruction
causing the exception

•The pipeline may have not yet completed some instructions
that are earlier than the one causing the exception

•Example: DIV.D F0, F2, F4
ADD.D F10, F10, F8
SUB.D F12, F12, F14

•Imprecise exception appears when ADD and SUB have
completed while DIV raises an exception
• ADD and SUB have modified registers already!

14

• Multiple writes to the register file: increase the number of
ports; stall one of the writers during ID; stall one of the
writers during WB (the stall will propagate)

• WAW hazards: detect the hazard during ID and stall the

Dealing With These Effects

g
later instruction

• Imprecise exceptions: buffer the results if they complete
early or save more pipeline state so that you can return to
exactly the same state that you left at

Summary: Pipelining
What makes it easy

all instructions are the same length

just a few instruction formats

memory operands appear only in loads and stores; Memory
addresses are asigned

What makes it hard?
structural hazards: suppose we had only one memory

control hazards: need to worry about branch instructions

data hazards: an instruction depends on a previous instruction

We’ll talk about modern processors and what really
makes it hard:

trying to improve performance with out-of-order execution, etc.

Summary & Questions

Pipelining is a fundamental concept
multiple steps using distinct resources

Utilize capabilities of the Datapath by pipelined
instruction processing

start next instruction while working on the current one

limited by length of longest stage (plus fill/flush)y g g g (p)

detect and resolve hazards

Questions?

