
1

NOW Handout Page 1

Csci 211 Computer System

Architecture

Limits on ILP and Simultaneous

MultithreadingMultithreading

Xiuzhen Cheng

Department of Computer Sciences

The George Washington University

Adapted from the slides by Dr. David Patterson @ UC Berkeley

Review from Last Time

• Interest in multiple-issue because wanted to improve
performance without affecting uniprocessor
programming model

• Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice

• Conservative in ideas, just faster clock and bigger
• Processors of last 5 years (Pentium 4 IBM Power 5

3/31/2010 Csci 211 – Lecture 6 2

• Processors of last 5 years (Pentium 4, IBM Power 5,
AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
 performance 8 to 16X

• Peak v. delivered performance gap increasing

Outline

• Review

• Limits to ILP (another perspective)

• Thread Level Parallelism

• Multithreading

• Simultaneous Multithreading

3/31/2010 Csci 211 – Lecture 6 3

• Head to Head: VLIW vs. Superscalar vs. SMT

• Commentary

• Conclusion

Limits to ILP

• How much ILP is available using existing
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW mechanisms to
keep on processor performance curve?

10000

??%/year

3/31/2010 Csci 211 – Lecture 6 4

1

10

100

1000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e
rf
or

m
an

ce
 (
vs

. V
A
X
-1

1/
7
80

)

25%/year

52%/year

??%/year

Overcoming Limits

• Advances in compiler technology +
significantly new and different hardware
techniques may be able to overcome
limitations assumed in studies

• However, unlikely such advances when
coupled with realistic hardware will

3/31/2010 Csci 211 – Lecture 6 5

coupled with realistic hardware will
overcome these limits in near future

Limits to ILP

Initial HW Model here; MIPS compilers.

Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers
=> all register WAW & WAR hazards are avoided

2. Branch prediction – perfect; no mispredictions

3 Jump prediction all jumps perfectly predicted

3/31/2010 Csci 211 – Lecture 6 6

3. Jump prediction – all jumps perfectly predicted
(returns, case statements)
2 & 3  no control dependencies; perfect speculation
& an unbounded buffer of instructions available

4. Memory-address alias analysis – addresses known
& a load can be moved before a store provided
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions
(FP *,/); unlimited instructions issued/clock cycle;

2

NOW Handout Page 2

Model Power 5
Instructions Issued
per clock

Infinite 4

Instruction Window
Size

Infinite 200

Renaming
Registers

Infinite 88 integer +
88 Fl Pt

Limits to ILP HW Model comparison

3/31/2010 Csci 211 – Lecture 6 7

Registers 88 Fl. Pt.

Branch Prediction Perfect 2% to 6%
misprediction

(Tournament
Branch Predictor)

Cache Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory Alias
Analysis

Perfect ??

Upper Limit to ILP: Ideal Machine
(Figure 3.1)

100

120

140

160

118.7

150.1

Integer: 18 - 60

FP: 75 - 150

d
 P

er
 C

lo
ck

3/31/2010 Csci 211 – Lecture 6 8
Programs

0

20

40

60

80

gcc espresso li fpppp doducd tomcatv

54.8
62.6

17.9

75.2

In
st

ru
ct

io
n

s
Is

su
ed

New Model Model Power 5

Instructions
Issued per
clock

Infinite Infinite 4

Instruction
Window Size

Infinite, 2K, 512,
128, 32

Infinite 200

Limits to ILP HW Model comparison

3/31/2010 Csci 211 – Lecture 6 9

Window Size 128, 32

Renaming
Registers

Infinite Infinite 88 integer +
88 Fl. Pt.

Branch
Prediction

Perfect Perfect 2% to 6%
misprediction

(Tournament Branch
Predictor)

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory
Alias

Perfect Perfect ??

119

150

100

120

140

160

er
 C

lo
ck

More Realistic HW: Window Impact
Figure 3.2

Change from Infinite window
to 2048, 512, 128, 32 FP: 9 - 150

1. The amount of parallelism falls sharply with decreasing window size

2. FP has higher parallelism due to loop-level parallelism

3. The max # of instructions that may issue, begin
execution, and commit in the same cc is usually
much smaller than the window size

3/31/2010 Csci 211 – Lecture 6 10

55
63

18

75

36
41

15

61 59 60

10
15 12

49

16

45

10 13 11

35

15

34

8 8 9
14

9
14

0

20

40

60

80

gcc espresso li fpppp doduc tomcatv

In
st

ru
ct

io
n
s

P
e

Inf inite 2048 512 128 32

Integer: 8 - 63

IP
C

New Model Model Power 5

Instructions
Issued per
clock

64 Infinite 4

Instruction
Window Size

2048 Infinite 200

Limits to ILP HW Model comparison

10 times as larger as the best implementation in 2005

3/31/2010 Csci 211 – Lecture 6 11

Window Size

Renaming
Registers

Infinite Infinite 88 integer +
88 Fl. Pt.

Branch
Prediction

Perfect vs. 8K
Tournament vs.
512 2-bit vs.
profile vs. none

Perfect 2% to 6%
misprediction

(Tournament Branch
Predictor)

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory
Alias

Perfect Perfect ??

35

41

61
58

60

48
46

4545 45

29

46

30

40

50

60

More Realistic HW: Branch Impact
Figure 3.3

Change from Infinite
window to a window size of
2048 and maximum issue of
64 instructions per clock
cycle

Branch prediction is critical!

3/31/2010 Csci 211 – Lecture 6 12

16

9

12
10

15

6
7 6

13

6 6 7

14

2 2 2

29

4

19

0

10

20

30

gcc espresso li fpppp doducd tomcatv

Program

Perfect Selective predictor Standard 2-bit Static None

ProfileBHT (512)TournamentPerfect No prediction

IP
C

3

NOW Handout Page 3

Misprediction Rates

14% 14%
16%

18%

23%

18%

30%

15%

20%

25%

30%

35%

d
ic

ti
o

n
 R

at
e 1. Branch prediction is critical!

For conditional branches in the SPEC92 subset

3/31/2010 Csci 211 – Lecture 6 13

1%

5%

12% 12%

1%0%

3% 2% 2%
4%

6%

0%

5%

10%

15%

tomcatv doduc fpppp li espresso gcc

M
is

p
re

d

Profile-based 2-bit counter Tournament

New Model Model Power 5

Instructions
Issued per
clock

64 Infinite 4

Instruction
Window Size

2048 Infinite 200

Limits to ILP HW Model comparison

3/31/2010 Csci 211 – Lecture 6 14

Window Size

Renaming
Registers

Infinite v. 256,
128, 64, 32, none

Infinite 88 integer +
88 Fl. Pt.

Branch
Prediction

8K two level
tournament

Perfect Tournament Branch
Predictor

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory
Alias

Perfect Perfect Perfect

29

54

49

35

44

28

59

45

30

40

50

60

70

More Realistic HW:
Renaming Register Impact (N int + N fp)
Figure 3.5

Change 2048 instr
window, 64 instr
issue, 8K two level
Prediction

3/31/2010 Csci 211 – Lecture 6 15

11

15

12
10

15

12

16

10

13
12

15

9 10
11

20

11

28

5 5 6 5 5
7

4 4
5

4
5 5

0

10

20

30

gcc espresso li fpppp doducd tomcatv

Program

Infinite 256 128 64 32 None

64 None256Infinite 32128

IP
C

64 GPR
Register renaming is critical to ILP

New Model Model Power 5

Instructions
Issued per
clock

64 Infinite 4

Instruction
Window Size

2048 Infinite 200

Limits to ILP HW Model comparison

3/31/2010 Csci 211 – Lecture 6 16

Window Size

Renaming
Registers

256 Int + 256 FP Infinite 88 integer +
88 Fl. Pt.

Branch
Prediction

8K two level
tournament

Perfect Tournament

Cache Perfect Perfect 64KI, 32KD, 1.92MB
L2, 36 MB L3

Memory
Alias

Perfect v. Stack
v. Inspect v.
none

Perfect Perfect

20

25

30

35

40

45

50
49

16

45

49

16

45

More Realistic HW:
Memory Address Alias Impact
Figure 3.6

Change 2048 instr
window, 64 instr
issue, 8K 2 level
Prediction, 256
renaming registers

3/31/2010 Csci 211 – Lecture 6 17

Program

0

5

10

15

gcc espresso li fpppp doducd tomcatv

10

15

12

16

7 7
9

16

4
5 4 4

6
5

3
5

3 3 4 4

Perfect Global/stack Perfect Inspection None

NoneGlobal/Stack perf;
heap conflicts

Perfect Inspec.
Assem.

IP
C

Outline

• Review

• Limits to ILP (another perspective)

• Thread Level Parallelism

• Multithreading

• Simultaneous Multithreading

3/31/2010 Csci 211 – Lecture 6 18

• Head to Head: VLIW vs. Superscalar vs. SMT

• Commentary

• Conclusion

4

NOW Handout Page 4

How to Exceed ILP Limits of this study?

• These are not laws of physics; just practical limits
for today, and perhaps overcome via research

• Compiler and ISA advances could change results

• WAR and WAW hazards through memory:
eliminated WAW and WAR hazards through
register renaming, but not in memory usage

3/31/2010 Csci 211 – Lecture 6 19

register renaming, but not in memory usage
– Can get conflicts via allocation of stack frames as a called

procedure reuses the memory addresses of a previous frame
on the stack

HW v. SW to increase ILP

• Memory disambiguation: HW best

• Speculation:
– HW best when dynamic branch prediction

better than compile time prediction

– Exceptions easier for HW

3/31/2010 Csci 211 – Lecture 6 20

– HW doesn’t need bookkeeping code or
compensation code

– Very complicated to get right

• Scheduling: SW can look ahead to
schedule better

• Compiler independence: does not require
new compiler, recompilation to run well

Performance beyond single thread ILP

• There can be much higher natural
parallelism in some applications
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data
Level Parallelism

• Thread: process with own instructions and

3/31/2010 Csci 211 – Lecture 6 21

Thread: process with own instructions and
data

– thread may be a process part of a parallel program of
multiple processes, or it may be an independent program

– Each thread has all the state (instructions, data, PC,
register state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical
operations on data, and lots of data

Thread Level Parallelism (TLP)

• ILP exploits implicit parallel operations
within a loop or straight-line code
segment

• TLP explicitly represented by the use of
multiple threads of execution that are
inherently parallel

3/31/2010 Csci 211 – Lecture 6 22

• Goal: Use multiple instruction streams to
improve
1. Throughput of computers that run many

programs
2. Execution time of multi-threaded programs

• TLP could be more cost-effective to
exploit than ILP

New Approach: Mulithreaded Execution

• Multithreading: multiple threads to share the
functional units of 1 processor via
overlapping

– processor must duplicate independent state of each thread
e.g., a separate copy of register file, a separate PC, and for
running independent programs, a separate page table

3/31/2010 Csci 211 – Lecture 6 23

– memory shared through the virtual memory mechanisms,
which already support multiple processes

– HW for fast thread switch; much faster than full process
switch  100s to 1000s of clocks

• When switch?
– Alternate instruction per thread (fine grain)

– When a thread is stalled, perhaps for a cache miss, another
thread can be executed (coarse grain)

Fine-Grained Multithreading

• Switches between threads on each instruction, causing the
execution of multiple threads to be interleaved

• Usually done in a round-robin fashion, skipping any stalled
threads

• CPU must be able to switch threads at every clock

• Advantage is it can hide both short and long stalls, since
instructions from other threads executed when one thread

3/31/2010 Csci 211 – Lecture 6 24

stalls

• Disadvantage is it slows down execution of individual
threads, since a thread ready to execute without stalls will
be delayed by instructions from other threads

• Used on Sun’s Niagara (will see later)

5

NOW Handout Page 5

Course-Grained Multithreading

• Switches threads only on costly stalls, such as L2
cache misses

• Advantages
– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other

threads issued only when the thread encounters a costly
stall

• Disadvantage is hard to overcome throughput

3/31/2010 Csci 211 – Lecture 6 25

Disadvantage is hard to overcome throughput
losses from shorter stalls, due to pipeline start-up
costs

– Since CPU issues instructions from 1 thread, when a stall
occurs, the pipeline must be emptied or frozen

– New thread must fill pipeline before instructions can
complete

• Because of this start-up overhead, coarse-grained
multithreading is better for reducing penalty of
high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400

For most apps, most execution units lie idle

For an 8-way
superscalar.

From: Tullsen,
Eggers, and Levy,
“Simultaneous
Multithreading:
Maximizing On-chip
Parallelism, ISCA
1995.

Do both ILP and TLP?

• TLP and ILP exploit two different kinds of
parallel structure in a program

• Could a processor oriented at ILP to
exploit TLP?

– functional units are often idle in data path designed for
ILP because of either stalls or dependences in the code

3/31/2010 Csci 211 – Lecture 6 27

• Could the TLP be used as a source of
independent instructions that might keep
the processor busy during stalls?

• Could TLP be used to employ the
functional units that would otherwise lie
idle when insufficient ILP exists?

Simultaneous Multi-threading ...

1

2

3

M M FX FX FP FP BR CCCycle
One thread, 8 units

1

2

3

M M FX FX FP FP BR CCCycle
Two threads, 8 units

4

5

6

7

8

9
M = Load/Store, FX = Fixed Point, FP = Floating Point, BR = Branch, CC = Condition Codes

4

5

6

7

8

9

Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): insight that
dynamically scheduled processor already has
many HW mechanisms to support multithreading

– Large set of virtual registers that can be used to hold the
register sets of independent threads

– Register renaming provides unique register identifiers, so
instructions from multiple threads can be mixed in datapath
without confusing sources and destinations across threads

3/31/2010 Csci 211 – Lecture 6 29

without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of
order, and get better utilization of the HW

• Just adding a per thread renaming table and
keeping separate PCs

– Independent commitment can be supported by logically
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”

Multithreaded Categories

ro
ce

ss
or

 c
yc

le
) Superscalar Fine-Grained Coarse-Grained Multiprocessing

Simultaneous
Multithreading

3/31/2010 Csci 211 – Lecture 6 30

Ti
m

e
(p

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

6

NOW Handout Page 6

Design Challenges in SMT

• Since SMT makes sense only with fine-grained
implementation, impact of fine-grained scheduling
on single thread performance?

– A preferred thread approach sacrifices neither throughput nor
single-thread performance?

– Unfortunately, with a preferred thread, the processor is likely to
sacrifice some throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts

3/31/2010 Csci 211 – Lecture 6 31

Larger register file needed to hold multiple contexts
• Not affecting clock cycle time, especially in

– Instruction issue - more candidate instructions need to be
considered

– Instruction completion - choosing which instructions to commit
may be challenging

• Ensuring that cache and TLB conflicts generated
by SMT do not degrade performance

Initial Performance of SMT

• Pentium 4 Extreme SMT yields 1.01 speedup for
SPECint_rate benchmark and 1.07 for SPECfp_rate

– Pentium 4 is dual threaded SMT

– SPECRate requires that each SPEC benchmark be run against a
vendor-selected number of copies of the same benchmark

• Running on Pentium 4 each of 26 SPEC
benchmarks paired with every other (262 runs)

3/31/2010 Csci 211 – Lecture 6 32

benchmarks paired with every other (26 runs)
speed-ups from 0.90 to 1.58; average was 1.20

• Power 5, 8 processor server 1.23 faster for
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

• Power 5 running 2 copies of each app speedup
between 0.89 and 1.41

– Most gained some

– Fl.Pt. apps had most cache conflicts and least gains

Processor Micro architecture Fetch /
Issue /

Execute

FU Clock
Rate
(GHz)

Transis
-tors

Die size

Power

Intel
Pentium

4
Extreme

Speculative
dynamically

scheduled; deeply
pipelined; SMT

3/3/4 7 int.
1 FP

3.8 125 M
122
mm2

115
W

AMD
Athlon 64

Speculative
dynamically

3/3/4 6 int.
3 FP

2.8 114 M
115

104
W

Head to Head ILP competition

3/31/2010 Csci 211 – Lecture 6 33

Athlon 64
FX-57

dynamically
scheduled

3 FP 115
mm2

W

IBM
Power5
(1 CPU
only)

Speculative
dynamically

scheduled; SMT;
2 CPU cores/chip

8/4/8 6 int.
2 FP

1.9 200 M
300
mm2

(est.)

80W
(est.)

Intel
Itanium 2

Statically
scheduled
VLIW-style

6/5/11 9 int.
2 FP

1.6 592 M
423
mm2

130
W

Performance on SPECint2000

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

ti
o

Itanium 2 Pentium 4 AMD Athlon 64 Power 5

3/31/2010 Csci 211 – Lecture 6 34

0

5 0 0

10 0 0

15 0 0

2 0 0 0

gzip vpr gcc mcf craf t y parser eon per lbmk gap vort ex bzip2 t wolf

S
P

E
C

 R
at

Performance on SPECfp2000

8000

10000

12000

14000

ti
o

Itanium 2 Pentium 4 AMD Athlon 64 Power 5

3/31/2010 Csci 211 – Lecture 6 35

0

2000

4000

6000

w upw ise sw im mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi

S
P

E
C

 R
a

t

Normalized Performance: Efficiency

20

25

30

35

Itanium 2 Pentium 4 AMD Athlon 64 POWER 5

Rank

I
t
a
n
i
u
m
2

P
e
n
t
I
u
m
4

A
t
h
l
o
n

P
o
w
e
r
5

Int/Trans 4 2 1 3

3/31/2010 Csci 211 – Lecture 6 36

0

5

10

15

SPECInt / M
Transistors

SPECFP / M
Transistors

SPECInt /
mm^2

SPECFP /
mm^2

SPECInt /
Watt

SPECFP /
Watt

FP/Trans 4 2 1 3

Int/area 4 2 1 3

FP/area 4 2 1 3

Int/Watt 4 3 1 2

FP/Watt 2 4 3 1

7

NOW Handout Page 7

No Silver Bullet for ILP

• No obvious over all leader in performance

• The AMD Athlon leads on SPECInt performance
followed by the Pentium 4, Itanium 2, and Power5

• Itanium 2 and Power5, which perform similarly on
SPECFP, clearly dominate the Athlon and
Pentium 4 on SPECFP

3/31/2010 Csci 211 – Lecture 6 37

• Itanium 2 is the most inefficient processor both
for Fl. Pt. and integer code for all but one
efficiency measure (SPECFP/Watt)

• Athlon and Pentium 4 both make good use of
transistors and area in terms of efficiency,

• IBM Power5 is the most effective user of energy
on SPECFP and essentially tied on SPECINT

Limits to ILP

• Doubling issue rates above today’s 3-6
instructions per clock, say to 6 to 12 instructions,
probably requires a processor to

– issue 3 or 4 data memory accesses per cycle,

– resolve 2 or 3 branches per cycle,

– rename and access more than 20 registers per cycle, and

– fetch 12 to 24 instructions per cycle

3/31/2010 Csci 211 – Lecture 6 38

– fetch 12 to 24 instructions per cycle.

• The complexities of implementing these
capabilities is likely to mean sacrifices in the
maximum clock rate

– E.g, widest issue processor is the Itanium 2, but it also has
the slowest clock rate, despite the fact that it consumes the
most power!

Limits to ILP

• Most techniques for increasing performance increase power
consumption

• The key question is whether a technique is energy efficient:
does it increase power consumption faster than it increases
performance?

• Multiple issue processors techniques all are energy
inefficient:

3/31/2010 Csci 211 – Lecture 6 39

1. Issuing multiple instructions incurs some overhead in logic that
grows faster than the issue rate grows

2. Growing gap between peak issue rates and sustained
performance

• Number of transistors switching = f(peak issue rate), and
performance = f(sustained rate),
growing gap between peak and sustained performance
 increasing energy per unit of performance

Commentary

• Itanium architecture does not represent a significant
breakthrough in scaling ILP or in avoiding the problems of
complexity and power consumption

• Instead of pursuing more ILP, architects are increasingly
focusing on TLP implemented with single-chip
multiprocessors

• In 2000, IBM announced the 1st commercial single-chip,
general p rpose m ltiprocessor the Po er4 hich

3/31/2010 Csci 211 – Lecture 6 40

general-purpose multiprocessor, the Power4, which
contains 2 Power3 processors and an integrated L2 cache

– Since then, Sun Microsystems, AMD, and Intel have switch to a focus
on single-chip multiprocessors rather than more aggressive
uniprocessors.

• Right balance of ILP and TLP is unclear today
– Perhaps right choice for server market, which can exploit more TLP,

may differ from desktop, where single-thread performance may
continue to be a primary requirement

And in conclusion …

• Limits to ILP (power efficiency, compilers,
dependencies …) seem to limit to 3 to 6 issue for
practical options

• Explicitly parallel (Data level parallelism or
Thread level parallelism) is next step to
performance

• Coarse grain vs. Fine grained multihreading

3/31/2010 Csci 211 – Lecture 6 41

Coarse grain vs. Fine grained multihreading
– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained
multithreading based on Out-Of-Order
superscalar microarchitecture

– Instead of replicating registers, reuse rename registers

• Itanium/EPIC/VLIW is not a breakthrough in ILP
• Balance of ILP and TLP decided in marketplace

