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Adapted from the slides by Dr. David Patterson @ UC Berkeley

Review from Last Time

• Interest in multiple-issue because wanted to improve 
performance without affecting uniprocessor 
programming model

• Taking advantage of ILP is conceptually simple, but 
design problems are amazingly complex in practice

• Conservative in ideas, just faster clock and bigger
• Processors of last 5 years (Pentium 4 IBM Power 5
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• Processors of last 5 years (Pentium 4, IBM Power 5, 
AMD Opteron) have the same basic structure and 
similar sustained issue rates (3 to 4 instructions per 
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many 
renaming registers, and 2X as many load-store units
 performance 8 to 16X

• Peak v. delivered performance gap increasing

Outline

• Review

• Limits to ILP (another perspective)

• Thread Level Parallelism

• Multithreading

• Simultaneous Multithreading
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• Head to Head: VLIW vs. Superscalar vs. SMT

• Commentary

• Conclusion

Limits to ILP

• How much ILP is available using existing 
mechanisms with increasing HW budgets?

• Do we need to invent new HW/SW mechanisms to 
keep on processor performance curve?
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Overcoming Limits

• Advances in compiler technology + 
significantly new and different hardware 
techniques may be able to overcome 
limitations assumed in studies

• However, unlikely such advances when 
coupled with realistic hardware will
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coupled with realistic hardware will 
overcome these limits in near future 

Limits to ILP

Initial HW Model here; MIPS compilers. 

Assumptions for ideal/perfect machine to start:

1. Register renaming – infinite virtual registers 
=> all register WAW & WAR hazards are avoided

2. Branch prediction – perfect; no mispredictions 

3 Jump prediction all jumps perfectly predicted
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3. Jump prediction – all jumps perfectly predicted 
(returns, case statements)
2 & 3  no control dependencies; perfect speculation 
& an unbounded buffer of instructions available

4. Memory-address alias analysis – addresses known 
& a load can be moved before a store provided 
addresses not equal; 1&4 eliminates all but RAW

Also: perfect caches; 1 cycle latency for all instructions 
(FP *,/); unlimited instructions issued/clock cycle; 
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Limits to ILP HW Model comparison
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More Realistic HW: Window Impact
Figure 3.2

Change from Infinite window 
to 2048, 512, 128, 32 FP: 9 - 150

1. The amount of parallelism falls sharply with decreasing window size

2. FP has higher parallelism due to loop-level parallelism

3. The max # of instructions that may issue, begin
execution, and commit in the same cc is usually
much smaller than the window size
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10 times as larger as the best implementation in 2005
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Figure 3.3

Change from Infinite 
window to a window size of 
2048 and maximum issue of 
64 instructions per clock 
cycle

Branch prediction is critical!
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Misprediction Rates
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For conditional branches in the SPEC92 subset
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Outline

• Review

• Limits to ILP (another perspective)

• Thread Level Parallelism

• Multithreading

• Simultaneous Multithreading
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• Head to Head: VLIW vs. Superscalar vs. SMT

• Commentary

• Conclusion
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How to Exceed ILP Limits of this study?

• These are not laws of physics; just practical limits 
for today, and perhaps overcome via research

• Compiler and ISA advances could change results

• WAR and WAW hazards through memory: 
eliminated WAW and WAR hazards through 
register renaming, but not in memory usage
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register renaming, but not in memory usage
– Can get conflicts via allocation of stack frames as a called 

procedure reuses the memory addresses of a previous frame 
on the stack

HW v. SW to increase ILP

• Memory disambiguation: HW best

• Speculation: 
– HW best when dynamic branch prediction 

better than compile time prediction

– Exceptions easier for HW
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– HW doesn’t need bookkeeping code or 
compensation code

– Very complicated to get right

• Scheduling: SW can look ahead to 
schedule better

• Compiler independence: does not require 
new compiler, recompilation to run well

Performance beyond single thread ILP

• There can be much higher natural 
parallelism in some applications 
(e.g., Database or Scientific codes)

• Explicit Thread Level Parallelism or Data 
Level Parallelism

• Thread: process with own instructions and
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Thread: process with own instructions and 
data

– thread may be a process part of a parallel program of 
multiple processes, or it may be an independent program

– Each thread has all the state (instructions, data, PC, 
register state, and so on) necessary to allow it to execute

• Data Level Parallelism: Perform identical 
operations on data, and lots of data

Thread Level Parallelism (TLP)

• ILP exploits implicit parallel operations 
within a loop or straight-line code 
segment

• TLP explicitly represented by the use of 
multiple threads of execution that are 
inherently parallel
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• Goal: Use multiple instruction streams to 
improve 
1. Throughput of computers that run many 

programs 
2. Execution time of multi-threaded programs

• TLP could be more cost-effective to 
exploit than ILP

New Approach: Mulithreaded Execution

• Multithreading: multiple threads to share the 
functional units of 1 processor via 
overlapping

– processor must duplicate independent state of each thread 
e.g., a separate copy of register file, a separate PC, and for 
running independent programs, a separate page table
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– memory shared through the virtual memory mechanisms, 
which already support multiple processes

– HW for fast thread switch; much faster than full process 
switch  100s to 1000s of clocks

• When switch?
– Alternate instruction per thread (fine grain)

– When a thread is stalled, perhaps for a cache miss, another 
thread can be executed (coarse grain)

Fine-Grained Multithreading

• Switches between threads on each instruction, causing the 
execution of multiple threads to be interleaved 

• Usually done in a round-robin fashion, skipping any stalled 
threads

• CPU must be able to switch threads at every clock

• Advantage is it can hide both short and long stalls, since 
instructions from other threads executed when one thread 
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stalls 

• Disadvantage is it slows down execution of individual 
threads, since a thread ready to execute without stalls will 
be delayed by instructions from other threads

• Used on Sun’s Niagara (will see later)
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Course-Grained Multithreading

• Switches threads only on costly stalls, such as L2 
cache misses

• Advantages 
– Relieves need to have very fast thread-switching
– Doesn’t slow down thread, since instructions from other 

threads issued only when the thread encounters a costly 
stall

• Disadvantage is hard to overcome throughput
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Disadvantage is hard to overcome throughput 
losses from shorter stalls, due to pipeline start-up 
costs

– Since CPU issues instructions from 1 thread, when a stall 
occurs, the pipeline must be emptied or frozen 

– New thread must fill pipeline before instructions can 
complete 

• Because of this start-up overhead, coarse-grained 
multithreading is better for reducing penalty of 
high cost stalls, where pipeline refill << stall time

• Used in IBM AS/400

For most apps, most execution units lie idle

For an 8-way 
superscalar.

From: Tullsen, 
Eggers, and Levy,
“Simultaneous 
Multithreading: 
Maximizing On-chip 
Parallelism, ISCA 
1995.

Do both ILP and TLP?

• TLP and ILP exploit two different kinds of 
parallel structure in a program 

• Could a processor oriented at ILP to 
exploit TLP?

– functional units are often idle in data path designed for 
ILP because of either stalls or dependences in the code 
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• Could the TLP be used as a source of 
independent instructions that might keep 
the processor busy during stalls? 

• Could TLP be used to employ the 
functional units that would otherwise lie 
idle when insufficient ILP exists?

Simultaneous Multi-threading ...
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Simultaneous Multithreading (SMT)

• Simultaneous multithreading (SMT): insight that 
dynamically scheduled processor already has 
many HW mechanisms to support multithreading

– Large set of virtual registers that can be used to hold the 
register sets of independent threads 

– Register renaming provides unique register identifiers, so 
instructions from multiple threads can be mixed in datapath 
without confusing sources and destinations across threads
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without confusing sources and destinations across threads

– Out-of-order completion allows the threads to execute out of 
order, and get better utilization of the HW 

• Just adding a per thread renaming table and 
keeping separate PCs

– Independent commitment can be supported by logically 
keeping a separate reorder buffer for each thread

Source: Micrprocessor Report, December 6, 1999
“Compaq Chooses SMT for Alpha”
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Design Challenges in SMT

• Since SMT makes sense only with fine-grained 
implementation, impact of fine-grained scheduling 
on single thread performance?

– A preferred thread approach sacrifices neither throughput nor 
single-thread performance? 

– Unfortunately, with a preferred thread, the processor is likely to 
sacrifice some throughput, when preferred thread stalls

• Larger register file needed to hold multiple contexts
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Larger register file needed to hold multiple contexts
• Not affecting clock cycle time, especially in 

– Instruction issue - more candidate instructions need to be 
considered

– Instruction completion - choosing which instructions to commit 
may be challenging

• Ensuring that cache and TLB conflicts generated 
by SMT do not degrade performance

Initial Performance of SMT

• Pentium 4 Extreme SMT yields 1.01 speedup for 
SPECint_rate benchmark and 1.07 for SPECfp_rate

– Pentium 4 is dual threaded SMT

– SPECRate requires that each SPEC benchmark be run against a 
vendor-selected number of copies of the same benchmark

• Running on Pentium 4 each of 26 SPEC 
benchmarks paired with every other (262 runs)
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benchmarks paired with every other (26 runs) 
speed-ups from 0.90 to 1.58; average was 1.20

• Power 5, 8 processor server 1.23 faster for 
SPECint_rate with SMT, 1.16 faster for SPECfp_rate

• Power 5 running 2 copies of each app speedup 
between 0.89 and 1.41

– Most gained some

– Fl.Pt. apps had most cache conflicts and least gains
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Issue / 

Execute
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Head to Head ILP competition
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Athlon 64 
FX-57

dynamically 
scheduled

3 FP 115 
mm2

W

IBM 
Power5 
(1 CPU 
only)

Speculative 
dynamically 

scheduled; SMT; 
2 CPU cores/chip

8/4/8 6 int. 
2 FP

1.9 200 M 
300 
mm2

(est.)

80W 
(est.)

Intel 
Itanium 2

Statically 
scheduled 
VLIW-style

6/5/11 9 int. 
2 FP

1.6 592 M 
423 
mm2

130 
W

Performance on SPECint2000

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

ti
o

Itanium 2 Pentium 4 AMD Athlon 64 Power 5

3/31/2010 Csci 211 – Lecture 6 34

0

5 0 0

10 0 0

15 0 0

2 0 0 0

gzip vpr gcc mcf craf t y parser eon per lbmk gap vort ex bzip2 t wolf

S
P

E
C

 R
at

Performance on SPECfp2000

8000

10000

12000

14000

ti
o

Itanium 2 Pentium 4 AMD Athlon 64 Power 5

3/31/2010 Csci 211 – Lecture 6 35

0

2000

4000

6000

w upw ise sw im mgrid applu mesa galgel art equake facerec ammp lucas fma3d sixtrack apsi

S
P

E
C

 R
a

t

Normalized Performance: Efficiency

20

25

30

35

Itanium 2 Pentium 4 AMD Athlon 64 POWER 5

Rank

I
t
a
n
i
u
m
2

P
e
n
t
I
u
m
4

A
t
h
l
o
n

P
o
w
e
r
5

Int/Trans 4 2 1 3

3/31/2010 Csci 211 – Lecture 6 36

0

5

10

15

SPECInt / M
Transistors

SPECFP / M
Transistors

SPECInt /
mm^2

SPECFP /
mm^2

SPECInt /
Watt

SPECFP /
Watt

FP/Trans 4 2 1 3

Int/area 4 2 1 3

FP/area 4 2 1 3

Int/Watt 4 3 1 2

FP/Watt 2 4 3 1



7

NOW Handout Page 7

No Silver Bullet for ILP 

• No obvious over all leader in performance

• The AMD Athlon leads on SPECInt performance 
followed by the Pentium 4, Itanium 2, and Power5

• Itanium 2 and Power5, which perform similarly on 
SPECFP, clearly dominate the Athlon and 
Pentium 4 on SPECFP
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• Itanium 2 is the most inefficient processor both 
for Fl. Pt. and integer code for all but one 
efficiency measure (SPECFP/Watt)

• Athlon and Pentium 4 both make good use of 
transistors and area in terms of efficiency, 

• IBM Power5 is the most effective user of energy 
on SPECFP and essentially tied on SPECINT

Limits to ILP

• Doubling issue rates above today’s 3-6 
instructions per clock, say to 6 to 12 instructions, 
probably requires a processor to 

– issue 3 or 4 data memory accesses per cycle, 

– resolve 2 or 3 branches per cycle, 

– rename and access more than 20 registers per cycle, and 

– fetch 12 to 24 instructions per cycle
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– fetch 12 to 24 instructions per cycle. 

• The complexities of implementing these 
capabilities is likely to mean sacrifices in the 
maximum clock rate 

– E.g,  widest issue processor is the Itanium 2, but it also has 
the slowest clock rate, despite the fact that it consumes the 
most power!

Limits to ILP

• Most techniques for increasing performance increase power 
consumption 

• The key question is whether a technique is energy efficient: 
does it increase power consumption faster than it increases 
performance? 

• Multiple issue processors techniques all are energy 
inefficient:
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1. Issuing multiple instructions incurs some overhead in logic that 
grows faster than the issue rate grows

2. Growing gap between peak issue rates and sustained 
performance

• Number of transistors switching = f(peak issue rate), and 
performance = f( sustained rate), 
growing gap between peak and sustained performance 
 increasing energy per unit of performance

Commentary

• Itanium architecture does not represent a significant 
breakthrough in scaling ILP or in avoiding the problems of 
complexity and power consumption

• Instead of pursuing more ILP, architects are increasingly 
focusing on TLP implemented with single-chip 
multiprocessors 

• In 2000, IBM announced the 1st commercial single-chip, 
general p rpose m ltiprocessor the Po er4 hich
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general-purpose multiprocessor, the Power4, which 
contains 2 Power3 processors and an integrated L2 cache 

– Since then, Sun Microsystems, AMD, and Intel have switch to a focus 
on single-chip multiprocessors rather than more aggressive 
uniprocessors.

• Right balance of ILP and TLP is unclear today
– Perhaps right choice for server market, which can exploit more TLP, 

may differ from desktop, where single-thread performance may 
continue to be a primary requirement

And in conclusion …

• Limits to ILP (power efficiency, compilers, 
dependencies …) seem to limit to 3 to 6 issue for 
practical options

• Explicitly parallel (Data level parallelism or 
Thread level parallelism) is next step to 
performance

• Coarse grain vs. Fine grained multihreading
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Coarse grain vs. Fine grained multihreading
– Only on big stall vs. every clock cycle

• Simultaneous Multithreading if fine grained 
multithreading based on Out-Of-Order 
superscalar microarchitecture

– Instead of replicating registers, reuse rename registers

• Itanium/EPIC/VLIW is not a breakthrough in ILP
• Balance of ILP and TLP decided in marketplace


