
1

NOW Handout Page 1

Csci 211 Computer System

Architecture

Lec 5 – Instruction Level ParallelismLec 5 Instruction Level Parallelism

Xiuzhen Cheng

Department of Computer Sciences

The George Washington University

Adapted from the slides by Dr. David Patterson @ UC Berkeley

Review from Last Time #1
• Leverage Implicit Parallelism for Performance:

Instruction Level Parallelism

• Loop unrolling by compiler to increase ILP

• Branch prediction to increase ILP

• Dynamic HW exploiting ILP
– Works when can’t know dependence at compile time

2/24/2010 Csci 211 – Lecture 5 2

– Can hide L1 cache misses

– Code for one machine runs well on another

Review from Last Time #2
• Reservations stations: renaming to larger set of

registers + buffering source operands
– Prevents registers as bottleneck

– Avoids WAR, WAW hazards

– Allows loop unrolling in HW

• Not limited to basic blocks
(integer units gets ahead beyond branches)

2/24/2010 Csci 211 – Lecture 5 3

(integer units gets ahead, beyond branches)

• Helps cache misses as well

• Lasting Contributions
– Dynamic scheduling

– Register renaming

– Load/store disambiguation

• 360/91 descendants are Pentium 4, Power 5, AMD
Athlon/Opteron, …

Outline

• ILP

• Speculation

• Speculative Tomasulo Example

• Memory Aliases

• Exceptions

2/24/2010 Csci 211 – Lecture 5 4

• VLIW

• Increasing instruction bandwidth

• Register Renaming vs. Reorder Buffer

• Value Prediction

• Discussion about paper “Limits of ILP”

Speculation to greater ILP

• Greater ILP: Overcome control dependence by
hardware speculating on outcome of branches
and executing program as if guesses were correct
– Speculation  fetch, issue, and execute instructions as if

branch predictions were always correct

– Dynamic scheduling  only fetches and issues
instructions

2/24/2010 Csci 211 – Lecture 5 5

instructions

• Essentially a data flow execution model:
Operations execute as soon as their operands are
available

Speculation to greater ILP

• 3 components of HW-based speculation:

1. Dynamic branch prediction to choose which
instructions to execute

2. Speculation to allow execution of instructions
before control dependences are resolved
+ ability to undo effects of incorrectly speculated sequence

2/24/2010 Csci 211 – Lecture 5 6

y y p q

3. Dynamic scheduling to deal with scheduling of
different combinations of basic blocks

2

NOW Handout Page 2

Adding Speculation to Tomasulo

• Must separate execution from allowing
instruction to finish or “commit”

• This additional step called instruction commit

• When an instruction is no longer speculative,
allow it to update the register file or memory

• Requires additional set of buffers to hold results

2/24/2010 Csci 211 – Lecture 5 7

Requires additional set of buffers to hold results
of instructions that have finished execution but
have not committed

• This reorder buffer (ROB) is also used to pass
results among instructions that may be
speculated

Reorder Buffer (ROB)

• In Tomasulo’s algorithm, once an instruction
writes its result, any subsequently issued
instructions will find result in the register file

• With speculation, the register file is not updated
until the instruction commits

– (we know definitively that the instruction should execute)

2/24/2010 Csci 211 – Lecture 5 8

• Thus, the ROB supplies operands in interval
between completion of instruction execution and
instruction commit

– ROB is a source of operands for instructions, just as
reservation stations (RS) provide operands in Tomasulo’s
algorithm

– ROB extends architectured registers like RS

Reorder Buffer Entry

• Each entry in the ROB contains four fields:

1. Instruction type
• a branch (has no destination result), a store (has a memory

address destination), or a register operation (ALU operation
or load, which has register destinations)

2. Destination
R i t b (f l d d ALU ti)

2/24/2010 Csci 211 – Lecture 5 9

• Register number (for loads and ALU operations) or
memory address (for stores)
where the instruction result should be written

3. Value
• Value of instruction result until the instruction commits

4. Ready
• Indicates that instruction has completed execution, and the

value is ready

Reorder Buffer operation

• Holds instructions in FIFO order, exactly as issued

• When instructions complete, results placed into ROB
– Supplies operands to other instruction between execution

complete & commit  more registers like RS

– Tag results with ROB buffer number instead of reservation station

• Instructions commit values at head of ROB placed in
registers or memory for store

2/24/2010 Csci 211 – Lecture 5 10

registers or memory for store

• As a result, easy to undo
speculated instructions
on mispredicted branches
or on exceptions

Reorder
BufferFP

Op
Queue

FP Adder FP Adder

Res Stations Res Stations

FP Regs

Commit path

Recall: 4 Steps of Speculative Tomasulo
Algorithm

1.Issue—get instruction from FP Op Queue
If reservation station and reorder buffer slot free, issue instr &
send operands & reorder buffer no. for destination (this stage
sometimes called “dispatch”)

2.Execution—operate on operands (EX)
When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station execute;

2/24/2010 Csci 211 – Lecture 5 11

CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”)

3.Write result—finish execution (WB)
Write on Common Data Bus to all awaiting FUs
& reorder buffer; mark reservation station available.

4.Commit—update register with reorder result
When instr. at head of reorder buffer & result present, update
register with result (or store to memory) and remove instr from
reorder buffer. Mispredicted branch flushes reorder buffer
(sometimes called “graduation”)

Tomasulo With Reorder buffer:

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1F0 LD F0,10(R2) N

Done?

Oldest

Newest

Reorder Buffer

2/24/2010 Csci 211 – Lecture 5 12

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

Dest Dest from
Memory

1 10+R2
Dest

Registers

3

NOW Handout Page 3

Tomasulo With Reorder buffer:

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F10F10
F0

ADDD F10,F4,F0
LD F0,10(R2)

N
N

Done?

Oldest

Newest

Reorder Buffer

2/24/2010 Csci 211 – Lecture 5 13

2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

Dest Dest from
Memory

1 10+R2
Dest

Registers

Tomasulo With Reorder buffer:

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F10F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Oldest

Newest

Reorder Buffer

2/24/2010 Csci 211 – Lecture 5 14

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

Dest Dest from
Memory

1 10+R2
Dest

Registers

Tomasulo With Reorder buffer:

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F0 ADDD F0,F4,F6 N
F4 LD F4,0(R3) N
-- BNE F2,<…> N
F2
F10F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Oldest

Newest

Reorder Buffer

2/24/2010 Csci 211 – Lecture 5 15

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

Dest Dest from
Memory

1 10+R2
Dest

Registers

5 0+R3

Tomasulo With Reorder buffer:

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

ROB5 ST 0(R3),F4
ADDD F0,F4,F6

N
N

F4 LD F4,0(R3) N
-- BNE F2,<…> N
F2
F10F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Oldest

Newest

Reorder Buffer

2/24/2010 Csci 211 – Lecture 5 16

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD ROB5, R(F6)6 ADDD ROB5, R(F6)

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

Dest Dest from
Memory

Dest

Registers

1 10+R2
5 0+R3

Tomasulo With Reorder buffer:

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

M[10] ST 0(R3),F4
ADDD F0,F4,F6

Y
N

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N
F2
F10F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Oldest

Newest

Reorder Buffer

2/24/2010 Csci 211 – Lecture 5 17

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

Dest Dest from
Memory

1 10+R2
Dest

Registers

2 ADDD R(F4),ROB12 ADDD R(F4),ROB1
6 ADDD M[10],R(F6)6 ADDD M[10],R(F6)

Tomasulo With Reorder buffer:

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

--
F0

M[10]
<val2>

ST 0(R3),F4
ADDD F0,F4,F6

Y
Ex

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N
F2
F10F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Oldest

Newest

Reorder Buffer

2/24/2010 Csci 211 – Lecture 5 18

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

Dest Dest from
Memory

1 10+R2
Dest

Registers

4

NOW Handout Page 4

--
F0

M[10]
<val2>

ST 0(R3),F4
ADDD F0,F4,F6

Y
Ex

F4 M[10] LD F4,0(R3) Y
-- BNE F2,<…> N

Tomasulo With Reorder buffer:

FP Op
Queue

ROB7
ROB6

ROB5

ROB4

ROB3

ROB2

ROB1

F2
F10F10
F0

DIVD F2,F10,F6
ADDD F10,F4,F0
LD F0,10(R2)

N
N
N

Done?

Oldest

Newest

Reorder Buffer

What about memory
hazards???

2/24/2010 Csci 211 – Lecture 5 19

3 DIVD ROB2,R(F6)3 DIVD ROB2,R(F6)
2 ADDD R(F4),ROB12 ADDD R(F4),ROB1

To
Memory

FP addersFP adders FP multipliersFP multipliers

Reservation
Stations

Dest Dest from
Memory

1 10+R2
Dest

Registers
hazards???

Avoiding Memory Hazards

• WAW and WAR hazards through memory are
eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

• RAW hazards through memory are maintained
by two restrictions:

2/24/2010 Csci 211 – Lecture 5 20

1. not allowing a load to initiate the second step of its execution
if any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an
effective address of a load with respect to all earlier stores.

• these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data

Exceptions and Interrupts

• Technique for both precise interrupts/exceptions
and speculation: in-order completion and in-
order commit

– If we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly

– This is exactly same as need to do with precise exceptions

• Exceptions are handled by not recognizing the

2/24/2010 Csci 211 – Lecture 5 21

• Exceptions are handled by not recognizing the
exception until instruction that caused it is ready
to commit in ROB

– If a speculated instruction raises an exception, the exception
is recorded in the ROB

– This is why reorder buffers in all new processors

Getting CPI below 1

• CPI ≥ 1 if issue only 1 instruction every clock cycle
• Multiple-issue processors come in 3 flavors:

1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and
3. VLIW (very long instruction word) processors

• Two types of superscalar processors issue varying
numbers of instructions per clock

2/24/2010 Csci 211 – Lecture 5 22

numbers of instructions per clock
– use in-order execution if they are statically scheduled, or
– out-of-order execution if they are dynamically scheduled

• VLIW processors, in contrast, issue a fixed number
of instructions formatted either as one large
instruction or as a fixed instruction packet with the
parallelism among instructions explicitly indicated
by the instruction (Intel/HP Itanium)

VLIW: Very Large Instruction Word

• Each “instruction” has explicit coding for multiple
operations

– In IA-64, grouping called a “packet”

– In Transmeta, grouping called a “molecule” (with “atoms” as ops)

• Tradeoff instruction space for simple decoding
– The long instruction word has room for many operations

2/24/2010 Csci 211 – Lecture 5 23

The long instruction word has room for many operations

– By definition, all the operations the compiler puts in the long
instruction word are independent => execute in parallel

– E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch

» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide

– Need compiling technique that schedules across several branches

Recall: Unrolled Loop that Minimizes
Stalls for Scalar

1 Loop: L.D F0,0(R1)
2 L.D F6,-8(R1)
3 L.D F10,-16(R1)
4 L.D F14,-24(R1)
5 ADD.D F4,F0,F2
6 ADD.D F8,F6,F2

L.D to ADD.D: 1 Cycle
ADD.D to S.D: 2 Cycles

2/24/2010 Csci 211 – Lecture 5 24

6 ADD.D F8,F6,F2
7 ADD.D F12,F10,F2
8 ADD.D F16,F14,F2
9 S.D 0(R1),F4
10 S.D -8(R1),F8
11 S.D -16(R1),F12
12 DSUBUI R1,R1,#32
13 BNEZ R1,LOOP
14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration

5

NOW Handout Page 5

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op. 2 branch

L.D F0,0(R1) L.D F6,-8(R1) 1

L.D F10,-16(R1) L.D F14,-24(R1) 2

L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3

L.D F26,-48(R1) ADD.D F12,F10,F2 ADD.D F16,F14,F2 4

2/24/2010 Csci 211 – Lecture 5 25

ADD.D F20,F18,F2 ADD.D F24,F22,F2 5

S.D 0(R1),F4 S.D -8(R1),F8 ADD.D F28,F26,F2 6

S.D -16(R1),F12 S.D -24(R1),F16 DSUBUI R1,R1,#56 7

S.D 24(R1),F20 S.D 16(R1),F24 8

S.D 8(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays

7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)

Average: 2.5 ops per clock, 50% efficiency

Note: Need more registers in VLIW (15 vs. 6 in SS)

Problems with 1st Generation VLIW

• Increase in code size
– generating enough operations in a straight-line code fragment

requires ambitiously unrolling loops

– whenever VLIW instructions are not full, unused functional
units translate to wasted bits in instruction encoding

• Operated in lock-step; no hazard detection HW

2/24/2010 Csci 211 – Lecture 5 26

Operated in lock step; no hazard detection HW
– a stall in any functional unit pipeline caused entire processor

to stall, since all functional units must be kept synchronized

– Compiler might schedule function units to avoid stalls, but
cache misses hard to predict

• Binary code compatibility
– Pure VLIW => different numbers of functional units and unit

latencies require different versions of the code

Intel/HP IA-64 “Explicitly Parallel
Instruction Computer (EPIC)”

• IA-64: instruction set architecture

• 128 64-bit integer regs + 128 82-bit floating point regs

– Not separate register files per functional unit as in old VLIW

• Hardware checks dependencies
(interlocks => binary compatibility over time)

• Predicated execution (select 1 out of 64 1 bit flags)

2/24/2010 Csci 211 – Lecture 5 27

• Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

• Itanium™ was first implementation (2001)

– Highly parallel and deeply pipelined hardware at 800Mhz

– 6-wide, 10-stage pipeline at 800Mhz on 0.18 µ process

• Itanium 2™ is name of 2nd implementation (2005)
– 6-wide, 8-stage pipeline at 1666Mhz on 0.13 µ process

– Caches: 32 KB I, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3

Increasing Instruction Fetch Bandwidth
by BTB

• Predicts next
instruct address,
sends it out
before decoding
instructuction

• PC of branch
sent to BTB

Branch Target Buffer (BTB)

2/24/2010 Csci 211 – Lecture 5 28

sent to BTB

• When match is
found, Predicted
PC is returned

• If branch
predicted taken,
instruction fetch
continues at
Predicted PC

Increasing Instruction Fetch Bandwidth
by Return Address Predictor

• Small buffer of
return addresses
acts as a stack

• Caches most
recent return
addresses

50%

60%

70%

re
q

u
e

n
c
y

go

m88ksim

cc1

compress

2/24/2010 Csci 211 – Lecture 5 29

addresses

• Call  Push a
return address
on stack

• Return  Pop an
address off stack &
predict as new PC

0%

10%

20%

30%

40%

0 1 2 4 8 16
Return address buffer entries

M
is

p
re

d
ic

ti
o

n
 f

r

xlisp

ijpeg

perl

vortex

More Instruction Fetch Bandwidth

• Integrated branch prediction branch predictor is
part of instruction fetch unit and is constantly
predicting branches

• Instruction prefetch Instruction fetch units prefetch
to deliver multiple instruct. per clock, integrating it
with branch prediction

2/24/2010 Csci 211 – Lecture 5 30

• Instruction memory access and buffering Fetching
multiple instructions per cycle:

– May require accessing multiple cache blocks
(prefetch to hide cost of crossing cache blocks)

– Provides buffering, acting as on-demand unit to
provide instructions to issue stage as needed
and in quantity needed

6

NOW Handout Page 6

Speculation: Register Renaming vs. ROB

• Alternative to ROB is a larger physical set of
registers combined with register renaming

– Extended registers replace function of both ROB and
reservation stations

• Instruction issue maps names of architectural
registers to physical register numbers in

2/24/2010 Csci 211 – Lecture 5 31

registers to physical register numbers in
extended register set

– On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

– Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

• Most Out-of-Order processors today use
extended registers with renaming

Value Prediction

• Attempts to predict value produced by instruction

– E.g., Loads a value that changes infrequently

• Value prediction is useful only if it significantly
increases ILP

– Focus of research has been on loads; so-so
results no processor uses value prediction

2/24/2010 Csci 211 – Lecture 5 32

results, no processor uses value prediction

• Related topic is address aliasing prediction

– RAW for load and store or WAW for 2 stores

• Address alias prediction is both more stable and
simpler since need not actually predict the address
values, only whether such values conflict

– Has been used by a few processors

(Mis) Speculation on Pentium 4

39%
43%

24%

45%

24%30%

35%

40%

45%

• % of micro-ops mis-speculated (issued but
useless)

2/24/2010 Csci 211 – Lecture 5 33

24% 24%

3%
1% 1% 0%

20%

0%

5%

10%

15%

20%

25%

30%

Integer Floating Point

Perspective

• Interest in multiple-issue because wanted to improve
performance without affecting uniprocessor
programming model

• Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice

• Conservative in ideas, just faster clock and bigger
• Processors of last 5 years (Pentium 4 IBM Power 5

2/24/2010 Csci 211 – Lecture 5 34

• Processors of last 5 years (Pentium 4, IBM Power 5,
AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

– Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
 performance 8 to 16X

• Peak v. delivered performance gap increasing

In Conclusion …

• Interrupts and Exceptions either interrupt the current
instruction or happen between instructions

– Possibly large quantities of state must be saved before interrupting

• Machines with precise exceptions provide one single
point in the program to restart execution

– All instructions before that point have completed

2/24/2010 Csci 211 – Lecture 5 35

– No instructions after or including that point have completed

• Hardware techniques exist for precise exceptions even
in the face of out-of-order execution!

– Important enabling factor for out-of-order execution

