(@) g

Review from Last Time #1
) « Leverage Implicit Parallelism for Performance:
Csci 211 Computer System Instruction Level Parallelism
Architecture « Loop unrolling by compiler to increase ILP
« Branch prediction to increase ILP
+ Dynamic HW exploiting ILP
Lec 5 — Instruction Level Parallelism — Works when can’t know dependence at compile time

— Can hide L1 cache misses
— Code for one machine runs well on another

Xiuzhen Cheng
Department of Computer Sciences
The George Washington University

2/24/2010 Csci 211 - Lecture 5 2

Review from Last Time #2 Outline

Reservations stations: renaming to larger set of . ILP
registers + buffering source operands

— Prevents registers as bottleneck

— Avoids WAR, WAW hazards

— Allows loop unrolling in HW Memory Aliases
Not limited to basic blocks Exceptions
(integer units gets ahead, beyond branches) . VLIW

Helps cache misses as well
Lasting Contributions
— Dynamic scheduling

— Register renaming
— Load/store disambiguation

360/91 descendants are Pentium 4, Power 5, AMD
Athlon/Opteron, ...

2/24/2010 Csci 211 - Lecture 5 3 2/24/2010 Csci 211 - Lecture 5 4

Speculation
Speculative Tomasulo Example

.

.

Increasing instruction bandwidth
Register Renaming vs. Reorder Buffer
Value Prediction

Discussion about paper “Limits of ILP”

.

.

(2 g

Speculation to greater ILP Speculation to greater ILP
* Greater ILP: Overcome control dependence by « 3 components of HW-based speculation:
hardware speculating on outcome of branches 1. Dynamic branch prediction to choose which
and executing program as if guesses were correct instructions to execute
— Speculation = fetch, issue, and execute instructions as if 2.8 lati to all ti f inst ti
branch predictions were always correct . pfecu ation to allow execution of instructions
— Dynamic scheduling = only fetches and issues before control dependences are resolved
instructions + ability to undo effects of incorrectly speculated sequence
- Essentially a data flow execution model: 3. Dynamic scheduling to deal with scheduling of
Operations execute as soon as their operands are different combinations of basic blocks
available

2/24/2010 Csci 211 - Lecture 5 5 2/24/2010 Csci 211 - Lecture 5 6

NOW Handout Page 1

(@) g

Adding Speculation to Tomasulo Reorder Buffer (ROB)
* Must separate execution from allowing ¢ In Tomasulo’s algorithm, once an instruction
instruction to finish or “commit” writes its result, any subsequently issued

This additional step called instruction commit instructions will find result in the register file
When an instruction is no longer speculative, . Wit_h spef:ulation_, the regis_ter file is not updated
allow it to update the register file or memory until the instruction commits

. . — (we know definitively that the instruction should execute
Requires additional set of buffers to hold results ¢ Y)

of instructions that have finished execution but * Thus, the ROB supplies operands in interval
have not committed between completion of instruction execution and

.) instruction commit
This reorder buffer (ROB) is also used to pass — ROB is a source of operands for instructions, just as

results among instructions that may be reservation stations (RS) provide operands in Tomasulo’s
speculated algorithm
— ROB extends architectured registers like RS

2/24/2010 Csci 211 - Lecture 5 7 2/24/2010 Csci 211 - Lecture 5 8

Reorder Buffer Entry @ Reorder Buffer operation

Holds instructions in FIFO order, exactly as issued

When instructions complete, results placed into ROB

— Supplies operands to other instruction between execution
complete & commit = more registers like RS

« Each entry in the ROB contains four fields:

1. Instruction type

« abranch (has no destination result), a store (has a memory
address destination), or a register operation (ALU operation

or load, which has register destinations) — Tag results with ROB buffer number instead of reservation station
2. Destination « Instructions commit =values at head of ROB placed in
* Register number (for loads and ALU operations) or reglsters or memory for store { [
memory address (for stores)
where the instruction result should be written *Asa result, _easY to_undo Reorder
3. val speculated instructions Buffer
- Value on mispredicted branches
« Value of instruction result until the instruction commits or on exceptions
4. Ready Commit path
. !Inaclllllceaitse?etgs;lnstructlon has completed execution, and the Res Station Res Station
1
2/24/2010 Csci 211 - Lecture 5 9 2/24/2010 Csci 211 - Lecture 5 10
. ; @ Tomasulo With Reorder buffer: @
Recall: 4 Steps of Speculative Tomasulo bone?
Algorithm FP Op > ROB7 Newest
Queue ROB6
1.1ssue—get instruction from FP Op Queue ROB5
If reservation station and reorder buffer slot free, issue instr & RQB4
send o.perandlsI 8&reorder buf;er no. for destination (this stage Reorder Buffer g?
y called “di et
. ROB2
— Oldest
2.Execution—operate on operands (EX) =) 5 F0.10(R2) [N roe:
When both operands ready then execute; if not ready, watch
CDB for result; when both in reservation station, execute;
checks RAW (sometimes called “issue”) .
3.Write result—finish execution (WB) Registers Mok,
Write on Common Data Bus to all awaiting FUs 4
& reorder buffer; mark reservation station available. Dest Dest from
4.Commit—update register with reorder result Memory
When instr. at head of reorder buffer & result present, update)es‘f*
register with result (or store to memory) and remove instr from 4 Reservation 1 [10+R2
reorder buffer. Mispredicted branch flushes reorder buffer Stations
(sometimes called “graduation”)
2/24/2010 Csci 211 - Lecture 5 1 vy T

NOW Handout Page 2

Tomasulo With Reorder buffer:

Done?
FP Op > ROB7" Newest
Queue ROB6
ROB5
RQB4
Reorder Buffer e
F1d ADDD F10,F4,FO | N | rOB2 Oldest
FO LD FO,10(R2) N | roB1
Registers To
Memory
Dest Dest from
Memory
Dest
& Reservation 1 J10+R2
Stations
27201 L

g

Tomasulo With Reorder buffer:

Done?
FP Op > ROB7 Newest
Queue FO ADDD FO,F4,F6 N | ROBé
F4 D F4,0(R3) N | roes
—— BNE F2,<.> N | RQB4
ReOl"del" Buffer F2 DIVD F2,F10,F6 | N |ROB3
F1d ADDD F10,F4,FO | N |roB2 Oldest
FO LD FO,10(R2) N | roB1
Registers To
Memory
Dest Dest from
Memory
Dest
& Reservation 1 [10+R2
Stations 5 0+R3
47201 15

g

Tomasulo With Reorder buffer:

Done?
FP Op $—_] M[10] [ST O(R3),F4 Y |ROB7 Newest
Queue FO ADDD FO,F4,F6 | N |RoB6
F4| M[10] |LD F4,0(R3) Y | ROBS
_ BNE F2,<.> N | RQB4
Reorder Buffer = BIvS P ETo s [e
F1d ADDD F10,F4,FO0 | N | rOB2 Oldest
FO LD FO,10(R2) N | roB1
Registers To
Memory
Dest Dest from
Memory
)esf*
4 Reservation 1 [10+R2
Stations
ZYAIL 1

(2

Tomasulo With Reorder buffer:

g

Done?
FP Op > ROB7" Newest
Queue ROB6
ROB5
R§B4
Reorder BUffer F2 DIVD F2,F10,F6 | N | ROB3
F1d ADDD F10,F4,FO | N | rOB2 Oldest
FO LD FO,10(R2) N | roB1
Registers To
Memory
Dest Dest from
Memory
)es?‘
4 Reservation T J[I0+R2
Stations
!!’ 010 12
Tomasulo With Reorder buffer:
Done?
FP Op ${--| ROB5 |ST O(R3),F4 N | ROB7 Newest
Queue FO ADDD FO,F4,F6 | N |ROB6
2 LD F4,0(R3) N | rRoes
- BNE F2,<.> N R§B4
Reorder Buffer F2 DIVD F2,F10,F6 | N | ROB3
F1d ADDD F10,F4,FO0 | N | roB2 Oldest
FO LD FO,10(R2) N | roB1
Registers To
Memory
Dest Dest from
Memory
Dest
A& Reservation 1 J10+R2
Stations 5 | 0+R3)
16
Tomasulo With Reorder buffer: @
Done?
FP Op $ [W[10] [ST 0(R3),F4 Y]ROB7 Newest!
Queue FO| <val2>|ADDD FO,F4,F6 [Ex|ROB6
F4| M[10] | LD F4,0(R3) Y | ross
- BNE F2,<.> N §B4
Reor‘der Buffer‘ F2 DIVD F2,F10,F6 | N | ROB3
F1d ADDD F10,F4,FO | N | rOB2 Oldest
FO LD FO,10(R2) N | roB1
Registers To
Memory
Dest Dest from
Memory
)esf‘
4 Reservation 1 [L10+R2
Stations
vy T

NOW Handout Page 3

Tomasulo With Reorder buffer: @

Done?
FP Op $[——[M[10] [ST O(R3),F4 Y |ROB7 Newest
Queue FO| <val2>| ADDD FO,F4,F6 |Ex|RoBé
MLTed [LD F4,0(R3) Y| roes
—— E F2,<.> N | RQB4
Reorder Buffér F2 DIVQ F2,F10,F6 | N R%Ba
F1d ADDD W10,F4,F0 | N|R082 | o1dest
What about memory [FO LD FO,1q(R2) [N]ros1
hazards???
Registers

Dest

A Reservation
Stations

Avoiding Memory Hazards

« WAW and WAR hazards through memory are
eliminated with speculation because actual
updating of memory occurs in order, when a
store is at head of the ROB, and hence, no
earlier loads or stores can still be pending

* RAW hazards through memory are maintained
by two restrictions:
1. not allowing a load to initiate the d step of its

if any active ROB entry occupied by a store has a Destination
field that matches the value of the A field of the load, and

2. maintaining the program order for the computation of an
effective address of a load with respect to all earlier stores.
« these restrictions ensure that any load that
accesses a memory location written to by an
earlier store cannot perform the memory access
until the store has written the data

2/24/2010 Csci 211 - Lecture 5 20

Exceptions and Interrupts

* Technique for both precise interrupts/exceptions
and speculation: in-order completion and in-
order commit

— If we speculate and are wrong, need to back up and restart
execution to point at which we predicted incorrectly

— This is exactly same as need to do with precise exceptions
« Exceptions are handled by not recognizing the
exception until instruction that caused it is ready
to commit in ROB

— If a speculated instruction raises an exception, the exception
is recorded in the ROB

— This is why reorder buffers in all new processors

2/24/2010 Csci 211 - Lecture 5 21

Getting CPI below 1

« CPI21if issue only 1 instruction every clock cycle

¢ Multiple-issue processors come in 3 flavors:
1. statically-scheduled superscalar processors,
2. dynamically-scheduled superscalar processors, and
3. VLIW (very long instruction word) processors

« Two types of superscalar processors issue varying
numbers of instructions per clock
— use in-order execution if they are statically scheduled, or
— out-of-order execution if they are dynamically scheduled

* VLIW processors, in contrast, issue a fixed number
of instructions formatted either as one large
instruction or as a fixed instruction packet with the
parallelism among instructions explicitly indicated
by the instruction (Intel/HP Itanium)

2/24/2010 Csci 211 - Lecture 5 22

VLIW: Very Large Instruction Word

« Each “instruction” has explicit coding for multiple
operations
— In 1A-64, grouping called a “packet”
— In Transmeta, grouping called a “molecule” (with “atoms” as ops)
« Tradeoff instruction space for simple decoding
— The long instruction word has room for many operations

— By definition, all the operations the compiler puts in the long
instruction word are independent => execute in parallel

— E.g., 2 integer operations, 2 FP ops, 2 Memory refs, 1 branch
» 16 to 24 bits per field => 7*16 or 112 bits to 7*24 or 168 bits wide
— Need compiling technique that schedules across several branches

2/24/2010 Csci 211 - Lecture 5 23

Recall: Unrolled Loop that Minimizes @
Stalls for Scalar

1Lloop: L.D FO,0(R1) L.D to ADD.D: 1 Cycle
2 L.D F6,-8(R1) ADD.D to S.D: 2 Cycles
3 L.D F10,-16(R1)

4 L.D F14,-24(R1)

5 ADD.D F4,FO0,F2

6 ADD.D F8,F6,F2

7 ADD.D F12,F10,F2

8 ADD.D F16,F14,F2

9 S.D O(R1),F4

10 S.D -8(R1),F8

1 S.D -16(R1),F12

12 DSUBUI R1,R1,#32

13 BNEZ R1,LOOP

14 S.D 8(R1),F16 ; 8-32 = -24

14 clock cycles, or 3.5 per iteration
212412010 Csci 211 - Lecture 5 24

NOW Handout Page 4

Loop Unrolling in VLIW

Memory Memory FP FP Int. op/ Clock
reference 1 reference 2 operation 1 op.2 _ branch
L.D FO,0(R1) L.D F6,-8(R1) 1
L.DF10,-16(R1) L. A 2
L.D F18,-32(R1) L.D F22,-40(R1) ADD.D F4,F0,F2 ADD.D F8,F6,F2 3
L.D F26,-48(R1) .D F12,F10,F2 ADD.D F16,F14,F2 4
ADD.D F20,F18,F2 ADD.D F24,F22,F2 5
S.DO(R1),F4 S.D-8(R1),F8 ADD.D F28,F26,F2 6
S.D -16(R1),F12 S.D -24(R1),F16 DSUBUI R1,R1,#56 7
S.D 24(R1),F20 S.D 16(R1),F24 8
S.D 8(R1),F28 BNEZ R1,LOOP 9

Unrolled 7 times to avoid delays
7 results in 9 clocks, or 1.3 clocks per iteration (1.8X)
Average: 2.5 ops per clock, 50% efficiency
Note: Need more registers in VLIW (15 vs. 6 in SS)
2124/2010 Csci 211 - Lecture 5 25

Intel/HP IA-64 “Explicitly Parallel [
Instruction Computer (EPIC)”

IA-64: instruction set architecture
128 64-bit integer regs + 128 82-bit floating point regs
— Not separate register files per functional unit as in old VLIW

Hardware checks dependencies
(interlocks => binary compatibility over time)

Predicated execution (select 1 out of 64 1-bit flags)
=> 40% fewer mispredictions?

Itanium™ was first implementation (2001)

— Highly parallel and deeply pipelined hardware at 800Mhz

— 6-wide, 10-stage pipeline at 800Mhz on 0.18 p process
Itanium 2™ is name of 2nd implementation (2005)

— 6-wide, 8-stage pipeline at 1666Mhz on 0.13 p process

— Caches: 32 KB |, 32 KB D, 128 KB L2I, 128 KB L2D, 9216 KB L3
2/24/2010 Csci 211 - Lecture 5 27

Increasing Instruction Fetch Bandwidth @
by Return Address Predictor

* Small buffer of
return addresses
acts as a stack

70%
%o
+ Caches most Toowi ¥ = masksim
recent return 3 50% 1 X — g — - — — — — cel
o A compress
addresses < 0% e xiisp
g i
e Call = Push a FR ™ S _,_:;'::g
return address £ 2% vortex
on stack F10% - - - e Ay o - -
0% +——— X

Return = Pop an
address off stack &
predict as new PC

2/24/2010 Csci 211 - Lecture 5 29

o 1 2 4 8 16

Return address buffer entries

g

Problems with 1st Generation VLIW

¢ Increase in code size

— generating enough operations in a straight-line code fragment
requires ambitiously unrolling loops

— whenever VLIW instructions are not full, unused functional
units translate to wasted bits in instruction encoding
« Operated in lock-step; no hazard detection HW

— a stall in any functional unit pipeline caused entire processor
to stall, since all functional units must be kept synchronized

— Compiler might schedule function units to avoid stalls, but
cache misses hard to predict

» Binary code compatibility

— Pure VLIW => different numbers of functional units and unit
latencies require different versions of the code

2/24/2010 Csci 211 - Lecture 5 26

.

.

Increasing Instruction Fetch Bandwidth
by BTB

Predicts next

instruct address, Branch Target Buffer (BTB)

sends it out

before decoding { Poctinuncton o n |
instructuction | Procicnd PG
PC of branch

sent to BTB

When match is
found, Predicted
PC is returned

If branch k
predicted taken,
instruction fetch
continues at
Predicted PC

2/24/2010

Mo: instructon is '
= Pt predicted o o Branch
Branch; proced nomaly -

Yea: then instruction is branch ard predicled it
PC shoukd b used 2 the naxt PG

g

More Instruction Fetch Bandwidth

* Integrated branch prediction branch predictor is
part of instruction fetch unit and is constantly
predicting branches

* Instruction prefetch Instruction fetch units prefetch
to deliver multiple instruct. per clock, integrating it
with branch prediction

* Instruction memory access and buffering Fetching
multiple instructions per cycle:

—May require accessing multiple cache blocks
(prefetch to hide cost of crossing cache blocks)

—Provides buffering, acting as on-demand unit to
provide instructions to issue stage as needed
and in quantity needed

212412010 Csci 211 - Lecture 5 30

NOW Handout Page 5

g

Speculation: Register Renaming vs. ROB

« Alternative to ROB is a larger physical set of
registers combined with register renaming
— Extended registers replace function of both ROB and
reservation stations
* Instruction issue maps names of architectural
registers to physical register numbers in
extended register set

— On issue, allocates a new unused register for the destination
(which avoids WAW and WAR hazards)

— Speculation recovery easy because a physical register
holding an instruction destination does not become the
architectural register until the instruction commits

* Most Out-of-Order processors today use
extended registers with renaming

2/24/2010 Csci 211 - Lecture 5 31

g

(Mis) Speculation on Pentium 4

* % of micro-ops mis-speculated (issued but

useless)
43% 4%

45% 39v%
0%+ - --@f-—-———-———-———-
35% -
30% -
25% -
20+0-BB-BB------
5% 8-R-B-BB---------
10%

5%
% 4

Integer l loatjllg Point
2/24/2010 usci 211 - L re 5 33

0
& 1% 1% 0%

In Conclusion ... @

« Interrupts and Exceptions either interrupt the current
instruction or happen between instructions
— Possibly large quantities of state must be saved before interrupting
* Machines with precise exceptions provide one single
point in the program to restart execution
— All instructions before that point have completed
— No instructions after or including that point have completed
» Hardware techniques exist for precise exceptions even
in the face of out-of-order execution!
— Important enabling factor for out-of-order execution

2/24/2010 Csci 211 - Lecture 5 35

g

Value Prediction

Attempts to predict value produced by instruction
—E.g., Loads a value that changes infrequently

Value prediction is useful only if it significantly
increases ILP

—Focus of research has been on loads; so-so
results, no processor uses value prediction

Related topic is address aliasing prediction
—RAW for load and store or WAW for 2 stores

Address alias prediction is both more stable and
simpler since need not actually predict the address
values, only whether such values conflict

—Has been used by a few processors

.

2/24/2010 Csci 211 - Lecture 5 32

g

< Interest in multiple-issue because wanted to improve
performance without affecting uniprocessor
programming model

Taking advantage of ILP is conceptually simple, but
design problems are amazingly complex in practice

Conservative in ideas, just faster clock and bigger

Processors of last 5 years (Pentium 4, IBM Power 5,
AMD Opteron) have the same basic structure and
similar sustained issue rates (3 to 4 instructions per
clock) as the 1st dynamically scheduled, multiple-
issue processors announced in 1995

— Clocks 10 to 20X faster, caches 4 to 8X bigger, 2 to 4X as many
renaming registers, and 2X as many load-store units
= performance 8 to 16X

Peak v. delivered performance gap increasing

Perspective

2/24/2010 Csci 211 - Lecture 5 34

NOW Handout Page 6

