
1

Csci 211 Computer System ArchitectureCsci 211 Computer System Architecture
–– Review on Cache MemoryReview on Cache Memory

Xiuzhen Cheng
cheng@gwu.edu

The Five Classic Components of a Computer

The Big Picture: Where are We Now?

Control

Datapath

Memory

Processor

Input

Output

Today’s Topics:
Locality and Memory Hierarchy

Simple caching techniques

Many ways to improve cache performance

Memory Hierarchy (1/3)

Processor
executes instructions on order of nanoseconds to
picoseconds

holds a small amount of code and data in registers

Memory
More capacity than registers, still limited

Access time ~50-100 ns

Disk
HUGE capacity (virtually limitless)
VERY slow: runs ~milliseconds

Memory Hierarchy (2/3)

Control
Memory

Processor

Memory

Datapath

M
em

ory

Memory

Memory

M
em

ory

Fastest Slowest

Smallest Biggest

Highest Lowest

Speed:

Size:

Cost:

Memory Hierarchy (3/3)

If level closer to Processor, it must be:
smaller

faster

subset of lower levels (contains most recently used data)

Lowest Level (usually disk) contains all available
data

Other levels?

Goal: illusion of large, fast, cheap memory

µProc
60%/yr.
(2X/1.5yr)

100

1000 CPU

Processor-Memory

m
an

ce

“Moore’s Law”

Processor-DRAM Memory Gap (latency)
Rely on caches to bridge gap

Who Cares About the Memory Hierarchy?

DRAM
9%/yr.
(2X/10 yrs)1

10

19
80

19
81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

DRAM

19
82

Performance Gap:
(grows 50% / year)

P
er

fo
rm

Time

2

Memory Caching

We’ve discussed three levels in the hierarchy:
processor, memory, disk

Mismatch between processor and memory speeds
leads us to add a new level: a memory cache

Implemented with SRAM technology: faster but
more expensive than DRAM memory.more expensive than DRAM memory.

“S” = Static, no need to refresh, ~60ns

“D” = Dynamic, need to refresh, ~10ns

Memory Hierarchy Basis

Disk contains everything.

When Processor needs something, bring it into to all
higher levels of memory.

Cache contains copies of data in memory that are being
used.

Memory contains copies of data on disk that are being y p g
used.

Entire idea is based on Temporal and Spatial Locality
if we use it now, we’ll want to use it again soon

If we use it now, we will use those in the nearby soon

Address Space0 2^n - 1

Probability
of reference

Memory Hierarchy: Terminology

Hit: data appears in some block in the upper level
(example: Block X)

Hit Rate: the fraction of memory access found in the upper level

Hit Time: Time to access the upper level which consists of
RAM access time + Time to determine hit/miss

Miss: data needs to be retrieved from a block in the
l l l (Bl k Y)lower level (Block Y)

Miss Rate = 1 - (Hit Rate)

Miss Penalty: Time to replace a block in the upper level +
Time to deliver the block to the processor

Hit Time << Miss Penalty Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

Upper Level

faster

Levels of the Memory Hierarchy

Processor

Cache

Instr. Operands

Blocks

Lower Level

Larger

Memory

Disk

Tape

Pages

Files

Two Different Types of Locality:
Temporal Locality (Locality in Time): If an item is referenced, it
will tend to be referenced again soon.

Spatial Locality (Locality in Space): If an item is referenced,
items whose addresses are close by tend to be referenced soon.

By taking advantage of the principle of locality:
P t th ith h i il bl i th

Summary: Exploit Locality
to Achieve Fast Memory

Present the user with as much memory as is available in the
cheapest technology.

Provide access at the speed offered by the fastest technology.

DRAM is slow but cheap and dense:
Good choice for presenting the user with a BIG memory system

SRAM is fast but expensive and not very dense:
Good choice for providing the user FAST access time.

Cache Design

How do we organize cache?

Where does each memory address map to?
(Remember that cache is subset of memory, so multiple

memory addresses map to the same cache location.)

How do we know which elements are in cache?

How do we quickly locate them?How do we quickly locate them?

Cache Technologies
Direct-Mapped Cache

Fully Associative Cache

Set Associative Cache

3

Direct-Mapped Cache (1/2)

In a direct-mapped cache, each memory address is
associated with one possible block within the
cache

Therefore, we only need to look in a single location in the
cache for the data if it exists in the cache

Block is the unit of transfer between cache and memory

Direct-Mapped Cache (2/2)

Memory
Memory
Address

0
1
2
3
4
5

4 Byte Direct
Mapped Cache

Cache
Index

0
1
2
3

Cache Location 0 can be occupied
by data from:

Memory location 0, 4, 8, ...

4 blocks => any memory location that is
multiple of 4

5
6
7
8
9
A
B
C
D
E
F

Issues with Direct-Mapped

Since multiple memory addresses map to same
cache index, how do we tell which one is in there?

What if we have a block size > 1 byte?

Answer: divide memory address into three fields

ttttttttttttttttt iiiiiiiiii oooo

tag index byte
to check to offset
if have select within
correct block block block

Direct-Mapped Cache Terminology

All fields are read as unsigned integers.

Index: specifies the cache index (which “row” of the
cache we should look in)

Offset: once we’ve found correct block, specifies
which byte within the block we want

Tag: the remaining bits after offset and index areTag: the remaining bits after offset and index are
determined; these are used to distinguish between
all the memory addresses that map to the same
location

Direct-Mapped Cache Example (1/3)

Suppose we have a 16KB of data in a direct-mapped
cache with 4 word blocks

Determine the size of the tag, index and offset fields if
we’re using a 32-bit architecture

Offset
need to specify correct byte within a blockp y y

block contains 4 words
= 16 bytes

= 24 bytes

need 4 bits to specify correct byte

Direct-Mapped Cache Example (2/3)

Index: (~index into an “array of blocks”)
need to specify correct row in cache

cache contains 16 KB = 214 bytes

block contains 24 bytes (4 words)

blocks/cache
= bytes/cache

bytes/blockbytes/block

= 214 bytes/cache
24 bytes/block

= 210 blocks/cache

need 10 bits to specify this many rows

4

Direct-Mapped Cache Example (3/3)

Tag: use remaining bits as tag
tag length = addr length – offset - index

= 32 - 4 - 10 bits
= 18 bits

so tag is leftmost 18 bits of memory address

Why not full 32 bit address as tag?
All bytes within block need same address (4 bits)All bytes within block need same address (4 bits)

Index must be same for every address within a block, so it’s
redundant in tag check, thus can leave off to save memory (here 10
bits)

And in conclusion…

We would like to have the capacity of disk at the
speed of the processor: unfortunately this is not
feasible.

So we create a memory hierarchy:
each successively lower level contains “most used” data from
next higher level

exploits temporal/spatial locality

do the common case fast, worry less about the exceptions
(design principle of MIPS)

Locality of reference is a Big Idea

Caching Terminology

When we try to read memory, 3 things can happen:

1. cache hit:
cache block is valid and contains proper address, so
read desired word

2. cache miss:
nothing in cache in appropriate block, so fetch from g pp p ,
memory

3. cache miss, block replacement:
wrong data is in cache at appropriate block, so
discard it and fetch desired data from memory
(cache always copy)

Accessing data in a direct mapped cache

Ex.: 16KB of data,
direct-mapped,
4 word blocks
Read 4 addresses

1. 0x00000014
2. 0x0000001C
3. 0x00000034
4. 0x00008014

Memory values on
right:

Address (hex)Value of Word
Memory

00000010
00000014
00000018
0000001C

a
b
c
d

... ...

right:
only cache/ memory level of
hierarchy

... ...
00000030
00000034
00000038
0000003C

e
f
g
h

00008010
00008014
00008018
0000801C

i
j
k
l

... ...

... ...

Accessing data in a direct mapped cache
4 Addresses:

0x00000014, 0x0000001C,
0x00000034, 0x00008014

4 Addresses divided (for convenience) into Tag,
Index, Byte Offset fields

000000000000000000 0000000001 0100

000000000000000000 0000000001 1100

000000000000000000 0000000011 0100

000000000000000010 0000000001 0100

Tag Index Offset

16 KB Direct Mapped Cache, 16B blocks

Valid bit: determines whether anything is stored in that
row (when computer initially turned on, all entries invalid)
Valid

Tag 0x0-3 0x4-7 0x8-b 0xc-f
0
1
2

Index
0
0
0

...

2
3
4
5
6
7

1022
1023

...

0
0
0
0
0
0

0
0

5

1. Read 0x00000014

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

So we read block 1 (0000000001)

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

No valid data

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0
0
0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

So load that data into cache, setting tag, valid

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000000 0000000001 0100

Index

Tag field Index field Offset

0

0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

Read from cache at offset, return word b
000000000000000000 0000000001 0100

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

Index

Tag field Index field Offset

0

0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

2. Read 0x0000001C = 0…00 0..001 1100

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

6

Index is Valid

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

Index valid, Tag Matches

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

Index Valid, Tag Matches, return d

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000000 0000000001 1100

Index

Tag field Index field Offset

0

0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

3. Read 0x00000034 = 0…00 0..011 0100

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000000 0000000011 0100

Index

Tag field Index field Offset

0

0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

So read block 3

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000000 0000000011 0100

Index

Tag field Index field Offset

0

0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

No valid data

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000000 0000000011 0100

Index

Tag field Index field Offset

0

0
0

...

4
5
6
7

1022
1023

...

0
0
0
0

0
0

7

Load that cache block, return word f

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000000 0000000011 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

...

4
5
6
7

1022
1023

...

g
0
0
0
0

0
0

4. Read 0x00008014 = 0…10 0..001 0100

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000010 0000000001 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

...

4
5
6
7

1022
1023

...

g
0
0
0
0

0
0

So read Cache Block 1, Data is Valid

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000010 0000000001 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

...

4
5
6
7

1022
1023

...

g
0
0
0
0

0
0

Cache Block 1 Tag does not match (0 != 2)

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 0 a b c d

000000000000000010 0000000001 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

...

4
5
6
7

1022
1023

...

g
0
0
0
0

0
0

Miss, so replace block 1 with new data & tag

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 2 i j k l

000000000000000010 0000000001 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

...

4
5
6
7

1022
1023

...

g
0
0
0
0

0
0

And return word j

Valid
Tag 0x0-3 0x4-7 0x8-b 0xc-f

0
1
2
3

1 2 i j k l

000000000000000010 0000000001 0100

1 0 e f g h

Index

Tag field Index field Offset

0

0

...

4
5
6
7

1022
1023

...

g
0
0
0
0

0
0

8

Block Size Tradeoff (1/3)

Benefits of Larger Block Size
Spatial Locality: if we access a given word, we’re likely to
access other nearby words soon

Very applicable with Stored-Program Concept: if we execute
a given instruction, it’s likely that we’ll execute the next few
as well

Works nicely in sequential array accesses too

Block Size Tradeoff (2/3)

Drawbacks of Larger Block Size
Larger block size means larger miss penalty

on a miss, takes longer time to load a new block from next
level

If block size is too big relative to cache size, then there are
too few blocks

R lt i tResult: miss rate goes up

In general, minimize
Average Access Time

= Hit Time
+ Miss Penalty x Miss Rate

Block Size Tradeoff (3/3)

Hit Time = time to find and retrieve data from
current level cache

Miss Penalty = average time to retrieve data on a
current level miss (includes the possibility of
misses on successive levels of memory hierarchy)

Hit Rate = % of requests that are found in currentHit Rate % of requests that are found in current
level cache

Miss Rate = 1 - Hit Rate

Block Size Tradeoff

Miss
Penalty

Bl k Si

Exploits Spatial Locality

Fewer blocks:
compromises
temporal locality

Miss
Rate

Block Size

Increased Miss Penalty
& Miss Rate

Average
Access

Time

Block Size

Block Size

Types of Cache Misses (1/2)

“Three Cs” Model of Misses

1st C: Compulsory Misses
occur when a program is first started

cache does not contain any of that program’s data yet, so
misses are bound to occur

can’t be avoided easily

Types of Cache Misses (2/2)

2nd C: Conflict Misses
miss that occurs because two distinct memory addresses map to the
same cache location

two blocks (which happen to map to the same location) can keep
overwriting each other

big problem in direct-mapped caches

how do we lessen the effect of these?

Dealing with Conflict Misses
Solution 1: Make the cache size bigger

Fails at some point

Solution 2: Multiple distinct blocks can fit in the same cache Index?

9

Fully Associative Cache (1/3)

Memory address fields:
Tag: same as before

Offset: same as before

Index: non-existant

What does this mean?
no “rows”: any block can go anywhere in the cache

must compare with all tags in entire cache to see if data is there

Fully Associative Cache (2/3)

Fully Associative Cache (e.g., 32 B block)
compare tags in parallel

Byte Offset

C h D

0431
Cache Tag (27 bits long)

:

Cache Data
B 0

:

Valid

:

B 1B 31 :

Cache Tag
=

=
=

=

=
:

Fully Associative Cache (3/3)

Benefit of Fully Assoc Cache
No Conflict Misses (since data can go anywhere)

Drawbacks of Fully Assoc Cache
Need hardware comparator for every single entry: if we have
a 64KB of data in cache with 4B entries, we need 16K
comparators: infeasible

Third Type of Cache Miss

Capacity Misses
miss that occurs because the cache has a limited size

miss that would not occur if we increase the size of the cache

sketchy definition, so just get the general idea

This is the primary type of miss for Fully
Associative caches.

N-Way Set Associative Cache (1/4)

Memory address fields:
Tag: same as before

Offset: same as before

Index: points us to the correct “row” (called a set in this case)

So what’s the difference?
each set contains multiple blocksp

once we’ve found correct set, must compare with all tags in
that set to find our data

N-Way Set Associative Cache (2/4)

Summary:
cache is direct-mapped w/respect to sets

each set is fully associative

10

N-Way Set Associative Cache (3/4)

Given memory address:
Find correct set using Index value.

Compare Tag with all Tag values in the determined set.

If a match occurs, hit!, otherwise a miss.

Finally, use the offset field as usual to find the desired data
within the block.

N-Way Set Associative Cache (4/4)

What’s so great about this?
even a 2-way set assoc cache avoids a lot of conflict misses

hardware cost isn’t that bad: only need N comparators

In fact, for a cache with M blocks,
it’s Direct-Mapped if it’s 1-way set assoc

it’s Fully Assoc if it’s M-way set assocy y

so these two are just special cases of the more general set
associative design

Cache Things to Remember

Caches are NOT mandatory:
Processor performs arithmetic
Memory stores data
Caches simply make data transfers go faster

Each level of Memory Hiererarchy
is a subset of next higher level

Caches speed up due to temporal locality: store data used
recentlyy

Block size > 1 wd spatial locality speedup:
Store words next to the ones used recently

Cache design choices:
size of cache: speed v. capacity
N-way set assoc: choice of N (direct-mapped, fully-associative just
special cases for N)

Block Replacement Policy (1/2)

Direct-Mapped Cache: index completely specifies
position which position a block can go in on a miss

N-Way Set Assoc: index specifies a set, but block
can occupy any position within the set on a miss

Fully Associative: block can be written into any
positionpos t o

Question: if we have the choice, where should we
write an incoming block?

Block Replacement Policy (2/2)

If there are any locations with valid bit off (empty),
then usually write the new block into the first one.

If all possible locations already have a valid block,
we must pick a replacement policy: rule by which
we determine which block gets “cached out” on a
miss.

Block Replacement Policy: LRU

LRU (Least Recently Used)
Idea: cache out block which has been accessed (read or
write) least recently

Pro: temporal locality  recent past use implies likely future
use: in fact, this is a very effective policy

Con: with 2-way set assoc, easy to keep track (one LRU bit);
ith 4 t i li t d h d dwith 4-way or greater, requires complicated hardware and

much time to keep track of this

11

Block Replacement Example

We have a 2-way set associative cache with a four
word total capacity and one word blocks. We
perform the following word accesses (ignore bytes
for this problem):

0, 2, 0, 1, 4, 0, 2, 3, 5, 4

How many hits and how many misses will there be
f th LRU bl k l t li ?for the LRU block replacement policy?

Block Replacement Example: LRU
Addresses 0, 2, 0, 1, 4, 0, ... 0 lru

2

loc 0 loc 1

set 0

set 10: miss, bring into set 0 (loc 0)

2: miss, bring into set 0 (loc 1)

0: hit

0set 0

set 1

lrulru

0 2set 0

set 1

lru lru

1 lru
0 2lruset 0

set 1
1: miss, bring into set 1 (loc 0)

4: miss, bring into set 0 (loc 1, replace 2)

0: hit

set 0

set 1

0
1 lru

lru24lru

set 0

set 1

0 4
1 lru

lru lru

Big Idea

How to choose between associativity, block size,
replacement policy?
Design against a performance model

Minimize: Average Memory Access Time
= Hit Time

+ Miss Penalty x Miss Rate
influenced by technology & program behavior
N t Hit Ti Hit R t !!!Note: Hit Time encompasses Hit Rate!!!

Create the illusion of a memory that is large,
cheap, and fast - on average

Example

Assume
Hit Time = 1 cycle

Miss rate = 5%

Miss penalty = 20 cycles

Calculate AMAT…

Avg mem access time g
= 1 + 0.05 x 20

= 1 + 1 cycles

= 2 cycles

Ways to reduce miss rate

Larger cache
limited by cost and technology

hit time of first level cache < cycle time

More places in the cache to put each block of
memory – associativity

fully-associativey
any block any line

N-way set associated
N places for each block

direct map: N=1

Improving Miss Penalty

When caches first became popular, Miss Penalty ~
10 processor clock cycles

Today 2400 MHz Processor (0.4 ns per clock cycle)
and 80 ns to go to DRAM
 200 processor clock cycles!

Proc $2

D
R

A
M$

MEM

Solution: another cache between memory and
the processor cache: Second Level (L2) Cache

12

Analyzing Multi-level cache hierarchy

Proc $2

D
R

A
M$

L1 hit
time

L1 Miss Rate

L2 hit
time L2 Miss Rate

L2 Miss Penalty
L1 Miss Rate
L1 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate * L1 Miss Penalty

L1 Miss Penalty =
L2 Hit Time + L2 Miss Rate * L2 Miss Penalty

Avg Mem Access Time =
L1 Hit Time + L1 Miss Rate *
(L2 Hit Time + L2 Miss Rate * L2 Miss Penalty)

Typical Scale

L1
size: tens of KB
hit time: complete in one clock cycle

miss rates: 1-5%
L2:

size: hundreds of KB
hit time: few clock cycles

miss rates: 10-20%miss rates: 10 20%

L2 miss rate is fraction of L1 misses that also miss
in L2

why so high?

Example: with L2 cache

Assume
L1 Hit Time = 1 cycle

L1 Miss rate = 5%

L2 Hit Time = 5 cycles

L2 Miss rate = 15% (% L1 misses that miss)

L2 Miss Penalty = 200 cycles

L1 miss penalty = 5 + 0.15 * 200 = 35

Avg mem access time = 1 + 0.05 x 35
= 2.75 cycles

Example: without L2 cache

Assume
L1 Hit Time = 1 cycle

L1 Miss rate = 5%

L1 Miss Penalty = 200 cycles

Avg mem access time = 1 + 0.05 x 200
= 11 cyclesy

4x faster with L2 cache! (2.75 vs. 11)

What to do on a write hit?

Write-through
update the word in cache block and corresponding word in
memory

Write-back
update word in cache block
allow memory word to be “stale”

 add ‘dirty’ bit to each block indicating that memory needs to
be updated when block is replaced

 OS flushes cache before I/O…

Performance trade-offs?

Generalized Caching

We’ve discussed memory caching in detail.
Caching in general shows up over and over in
computer systems

Filesystem cache
Web page cache
Game Theory databases / tablebases
Software memoization
Others?

fBig idea: if something is expensive but we want to
do it repeatedly, do it once and cache the result.

13

Memory Hierarchy: Apple iMac G5

07 Reg L1 Inst L1 Data L2 DRAM Disk

Size 1K 64K 32K 512K 256M 80G

Managed
by compiler

Managed
by hardware

Managed by OS,
hardware,
application

iMac G5
1.6 GHz

Latency

Cycles,
Time

1,
0.6 ns

3,
1.9 ns

3,
1.9 ns

11,
6.9 ns

88,
55 ns

107,
12 ms

Let programs address a memory space that
scales to the disk size, at a speed that is

usually as fast as register access

Goal: Illusion of large, fast, cheap memory

And in Conclusion…

Cache design choices:
size of cache: speed v. capacity
direct-mapped v. associative
for N-way set assoc: choice of N
block replacement policy
2nd level cache?
Write through v. write back?

Use performance model to pick between choices,
depending on programs, technology, budget, ...

Virtual Memory
Predates caches; each process thinks it has all the memory to
itself; protection!

