CS 2451
Database Systems: Relational Algebra & Relational Calculus

http://www.seas.gwu.edu/~bhagiweb/cs2541
Spring 2018
Instructor: Dr. Bhagi Narahari

Relational Model Definitions
- A relation is a table with columns and rows.
- An attribute is a named column of a relation.
- A tuple is a row of a relation.
- A domain is a set of allowable values for one or more attributes.
- The degree of a relation is the number of attributes it contains.
- The cardinality of a relation is the number of tuples it contains.
- A relational database is a collection of normalized relations with distinct relation names.

These notes include examples using two different schemas – 'mini-banner' and 'company' database.

Codd’s Relational Algebra
- A set of mathematical operators that compose, modify, and combine tuples within different relations

- Relational algebra operations operate on relations and produce relations ("closure")

 f: Relation → Relation

 f: Relation x Relation → Relation
Preliminaries

- A query is applied to relation instances, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the result of a given query is also fixed!
 Determined by definition of query language constructs.
- Positional (R[0]) vs. named-field notation (R.name):
 - Positional notation easier for formal definitions, named-field notation more readable.
 We will use named field notation
 - Both used in SQL

Relational Algebra

- A query language is used to update and retrieve data that is stored in a data model.
- Relational algebra is a set of relational operations for retrieving data.
 - Just like algebra with numbers, relational algebra consists of operands (which are relations) and a set of operators.
 - Every relational operator takes as input one or more relations and produces a relation as output.
 - Closure property - input is relations, output is relations
 - Unary operations - operate on one relation
 - Binary operations - have two relations as input
 - A sequence of relational algebra operators is called a relational algebra expression.

Relational Algebra Operators

- Basic operations:
 - Selection (σ) Selects a subset of rows from relation.
 - Projection (π) Deletes unwanted columns from relation.
 - Cross-product (×) Allows us to combine two relations.
 - Set-difference (−) Tuples in relation 1, but not in relation 2.
 - Union (∪) Tuples in relation 1 or in relation 2.
- Additional operations:
 - Intersection, join, assignment, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed! (Algebra is “closed”.)

Relational Algebra Expression: Syntax

- RA operators operate on relations and produce relations – closed algebra
 - Defined recursively
- (B) basic expression consists of a relation in the schema or a constant relation
 - What is a constant relation?
- (R) Let E₁ and E₂ be RA expressions, then
RA expressions...contd..

- \((E_1 \cup E_2)\) is a RA expression
- \((E_1 - E_2)\) is a RA expression
- \((E_1 \times E_2)\) is a RA expression
- \(\sigma_P (E_1)\) is a RA expression
- \(\pi_S (E_1)\) is a RA expression
- \(\rho_R (E_1)\) is a RA expression

Operations Can be composed
- If \(R_1, R_2\) are relations (sets), then \(R_1 <\text{op}> R_2\) is also a relation (set) -- <\text{op}> is any of the relational algebra operators
 - Closed algebra – how is closure defined ?
- Operations are defined as Set operations
 - Input is a set, output is a set
 - SQL allows duplicated, RA does not

Operator Precedence

- Just like mathematical operators, the relational operators have precedence.
 - The precedence of operators from highest to lowest is:
 - unary operators - \(\sigma, \Pi, \rho\)
 - Cartesian product and joins - \(\times, \bowtie\), division
 - intersection
 - union and set difference
 - Parentheses can be used to changed the order of operations.
 - It is a good idea to always use parentheses around the argument for both unary and binary operators.

Data Instance for Mini-Banner Example

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>Takes</th>
<th>COURSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>name</td>
<td>sid</td>
</tr>
<tr>
<td>1</td>
<td>Jill</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Matt</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Jack</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Maury</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>500-0103</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROFESSOR</th>
<th>Teaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>fid</td>
<td>name</td>
</tr>
<tr>
<td>1</td>
<td>Narahari</td>
</tr>
<tr>
<td>2</td>
<td>Youssef</td>
</tr>
<tr>
<td>8</td>
<td>Choi</td>
</tr>
</tbody>
</table>

Projection Operation

- The projection operation \(\pi (\pi_i)\) is a unary operation that takes in a relation as input and returns a new relation as output that contains a subset of the attributes of the input relation and all non-duplicate tuples.
 - The output relation has the same number of tuples as the input relation unless removing the attributes caused duplicates to be present.
 - Question: When are we guaranteed to never have duplicates when performing a projection operation?
- Besides the relation, the projection operation takes as input the names of the attributes that are to be in the output relation.
 - Given a list of column names \(\alpha\) and a relation \(R, \pi_\alpha (R)\) extracts the columns in \(\alpha\) from the relation.
Projection Operation Formal Definition

- The projection operation on relation R with output attributes A_1, \ldots, A_m is denoted by $\Pi_{A_1, \ldots, A_m}(R)$.

$$\Pi_{A_1, \ldots, A_m}(R) = \{ [t[A_1, \ldots, A_m] | t \in R] \}$$

where

- R is a relation, t is a tuple variable
- $\{A_1, \ldots, A_m\}$ is a subset of the attributes of R over which the projection will be performed.
- Order of A_1, \ldots, A_m is significant in the result.
- Cardinality of $\Pi_{A_1, \ldots, A_m}(R)$ is not necessarily the same as R because of duplicate removal.

Projection, Π_α

- Example: find sid and grade from enrollment table

<table>
<thead>
<tr>
<th>sid</th>
<th>exp-grade</th>
<th>cid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>550-0103</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>700-1003</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>700-1003</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>500-0103</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>500-0103</td>
</tr>
</tbody>
</table>

Note: duplicate elimination. In contrast, SQL returns by default a multiset and duplicates must be explicitly removed.

Selection Operation

- The *selection operation* σ (sigma) is a unary operation that takes in a relation as input and returns a new relation as output that contains a subset of the tuples of the input relation.
 - That is, the output relation has the same number of columns as the input relation, but may have less rows.

 - To determine which tuples are in the output, the selection operation has a specified condition, called a *predicate*, that tuples must satisfy to be in the output.
 - The predicate is similar to a condition in an *if* statement.

 - Selection $\sigma_\theta R$ takes a relation R and extracts those rows from it that satisfy the condition θ
Selection Operation Formal Definition

- The selection operation on relation \(R \) with predicate \(F \) is denoted by \(\sigma_F(R) \).

\[
\sigma_F(R) = \{ t \mid t \in R \text{ and } F(t) \text{ is true} \}
\]

where

- \(R \) is a relation, \(t \) is a tuple variable
- \(F \) is a formula (predicate) consisting of
 - operands that are constants or attributes
 - comparison operators: \(<, >, =, \neq, \leq, \geq \)
 - logical operators: \(\text{AND}, \text{OR}, \text{NOT} \)

Example Selection, \(\sigma_9 \)

- Example: find tuples where \(\text{sid}=3 \) has exp grade of A

<table>
<thead>
<tr>
<th>sid</th>
<th>exp-grade</th>
<th>cid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>550-0103</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>700-1003</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>700-1003</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>500-0103</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>500-0103</td>
</tr>
</tbody>
</table>

Can the result have duplicates?

Complex Predicate Conditions

- Conditions are built up from boolean-valued operations on the field names.
 - \(\text{exp-grade}>"A", \text{name}="Jill", \text{STUDENT.sid}=\text{Takes.sid} \)
 - RA allows comparison predicate on attributes
 - \(=, \neq, >, <, \geq, \leq \)
 - Larger predicates can be formed using logical connectives – \(\text{or} (\lor) \) and \(\text{and} (\land) \) and \(\text{not} (\neg) \)
 - Selection predicate can include comparison between attributes
 - We don’t lose any expressive power if we don’t have complex predicates in the language, but they are convenient and useful in practice.

Selection Example

<table>
<thead>
<tr>
<th>eno</th>
<th>ename</th>
<th>title</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>J. Doe</td>
<td>EE</td>
<td>30000</td>
</tr>
<tr>
<td>E2</td>
<td>M. Smith</td>
<td>SA</td>
<td>50000</td>
</tr>
<tr>
<td>E3</td>
<td>A. Lee</td>
<td>ME</td>
<td>40000</td>
</tr>
<tr>
<td>E4</td>
<td>J. Miller</td>
<td>PR</td>
<td>20000</td>
</tr>
<tr>
<td>E5</td>
<td>B. Casey</td>
<td>SA</td>
<td>50000</td>
</tr>
<tr>
<td>E6</td>
<td>L. Chu</td>
<td>EE</td>
<td>30000</td>
</tr>
<tr>
<td>E7</td>
<td>R. Davis</td>
<td>ME</td>
<td>40000</td>
</tr>
<tr>
<td>E8</td>
<td>J. Jones</td>
<td>SA</td>
<td>50000</td>
</tr>
</tbody>
</table>

\(\sigma_{\text{title}=\text{EE}}(\text{Emp}) \)

\(\sigma_{\text{salary}>35000 \text{ OR title}=\text{PR}}(\text{Emp}) \)

<table>
<thead>
<tr>
<th>eno</th>
<th>ename</th>
<th>title</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>J. Doe</td>
<td>EE</td>
<td>30000</td>
</tr>
<tr>
<td>E6</td>
<td>L. Chu</td>
<td>EE</td>
<td>30000</td>
</tr>
</tbody>
</table>

\(\sigma_{\text{salary}>35000 \text{ OR title}=\text{PR}}(\text{Emp}) \)

<table>
<thead>
<tr>
<th>eno</th>
<th>ename</th>
<th>title</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>E2</td>
<td>M. Smith</td>
<td>SA</td>
<td>50000</td>
</tr>
<tr>
<td>E3</td>
<td>A. Lee</td>
<td>ME</td>
<td>40000</td>
</tr>
<tr>
<td>E4</td>
<td>J. Miller</td>
<td>PR</td>
<td>20000</td>
</tr>
<tr>
<td>E5</td>
<td>B. Casey</td>
<td>SA</td>
<td>50000</td>
</tr>
<tr>
<td>E7</td>
<td>R. Davis</td>
<td>ME</td>
<td>40000</td>
</tr>
<tr>
<td>E8</td>
<td>J. Jones</td>
<td>SA</td>
<td>50000</td>
</tr>
</tbody>
</table>
Union

- Union \cup is a binary operation that takes two relations R and S as input and produces an output relation that includes all tuples that are either in R or in S or in both R and S. Duplicate tuples are eliminated.

- General form:
 \[R \cup S = \{ t \mid t \in R \text{ or } t \in S \} \]
 where R, S are relations, t is a tuple variable. R and S must be union-compatible. To be union-compatible means:
 1) Both relations have same number of attributes.
 2) Each attribute pair, R_i and S_i, have compatible data types for all attribute indexes i.
 - Note that attributes do not need to have the same name.
 - Result has attribute names of first relation.

Example Union \cup

- Find persons who are faculty or students

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Darby</td>
</tr>
<tr>
<td>2</td>
<td>Matt</td>
</tr>
<tr>
<td>3</td>
<td>Dan</td>
</tr>
<tr>
<td>4</td>
<td>Maury</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>fid</th>
<th>name</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Youssef</td>
</tr>
<tr>
<td>18</td>
<td>Choi</td>
</tr>
</tbody>
</table>

Union Example

<table>
<thead>
<tr>
<th>emp</th>
<th>ename</th>
<th>title</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>J. Doe</td>
<td>EE</td>
<td>30000</td>
</tr>
<tr>
<td>E2</td>
<td>M. Smith</td>
<td>SA</td>
<td>20000</td>
</tr>
<tr>
<td>E3</td>
<td>A. Lee</td>
<td>ME</td>
<td>40000</td>
</tr>
<tr>
<td>E4</td>
<td>J. Miller</td>
<td>PF</td>
<td>20000</td>
</tr>
<tr>
<td>E5</td>
<td>B. Casey</td>
<td>SA</td>
<td>30000</td>
</tr>
<tr>
<td>E6</td>
<td>J. Chu</td>
<td>EE</td>
<td>30000</td>
</tr>
<tr>
<td>E7</td>
<td>R. Davis</td>
<td>ME</td>
<td>40000</td>
</tr>
<tr>
<td>E8</td>
<td>J. Jones</td>
<td>SA</td>
<td>50000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>emp</th>
<th>ename</th>
<th>title</th>
<th>salary</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>J. Doe</td>
<td>EE</td>
<td>30000</td>
</tr>
<tr>
<td>E2</td>
<td>M. Smith</td>
<td>SA</td>
<td>20000</td>
</tr>
<tr>
<td>E3</td>
<td>A. Lee</td>
<td>ME</td>
<td>40000</td>
</tr>
<tr>
<td>E4</td>
<td>J. Miller</td>
<td>PF</td>
<td>20000</td>
</tr>
<tr>
<td>E5</td>
<td>B. Casey</td>
<td>SA</td>
<td>30000</td>
</tr>
<tr>
<td>E6</td>
<td>J. Chu</td>
<td>EE</td>
<td>30000</td>
</tr>
<tr>
<td>E7</td>
<td>R. Davis</td>
<td>ME</td>
<td>40000</td>
</tr>
<tr>
<td>E8</td>
<td>J. Jones</td>
<td>SA</td>
<td>50000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>eno</th>
<th>pno</th>
<th>resp</th>
<th>dur</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>P1</td>
<td>Manager</td>
<td>12</td>
</tr>
<tr>
<td>E2</td>
<td>P1</td>
<td>Analyst</td>
<td>24</td>
</tr>
<tr>
<td>E3</td>
<td>P2</td>
<td>Analyst</td>
<td>24</td>
</tr>
<tr>
<td>E4</td>
<td>P4</td>
<td>Engineer</td>
<td>48</td>
</tr>
<tr>
<td>E5</td>
<td>P2</td>
<td>Manager</td>
<td>24</td>
</tr>
<tr>
<td>E6</td>
<td>P4</td>
<td>Manager</td>
<td>48</td>
</tr>
<tr>
<td>E7</td>
<td>P5</td>
<td>Engineer</td>
<td>23</td>
</tr>
</tbody>
</table>

Type Matching for Set operations

- Same number of attributes
- Same type of attributes
 - Each position must match domain
 - Real systems sometimes allow sub-types: CHAR(2) and CHAR(20)
Set Difference

- **Set difference** is a binary operation that takes two relations R and S as input and produces an output relation that contains all the tuples of R that are not in S.

- General form:
 - $R - S = \{ t \mid t \in R \text{ and } t \notin S \}$
 - where R and S are relations, t is a tuple variable.

- Note that:
 - $R - S \neq S - R$
 - R and S must be union compatible.

Set Difference Example

<table>
<thead>
<tr>
<th>Emp Relation</th>
<th>WorksOn Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>eno</td>
<td>ename</td>
</tr>
<tr>
<td>E1</td>
<td>J. Doe</td>
</tr>
<tr>
<td>E2</td>
<td>M. Smith</td>
</tr>
<tr>
<td>E3</td>
<td>A. Lee</td>
</tr>
<tr>
<td>E4</td>
<td>J. Miller</td>
</tr>
<tr>
<td>E5</td>
<td>B. Casey</td>
</tr>
<tr>
<td>E6</td>
<td>L. Chu</td>
</tr>
<tr>
<td>E7</td>
<td>R. Davis</td>
</tr>
<tr>
<td>E8</td>
<td>J. Jones</td>
</tr>
<tr>
<td>eno</td>
<td>pno</td>
</tr>
<tr>
<td>E1</td>
<td>P1</td>
</tr>
<tr>
<td>E2</td>
<td>P1</td>
</tr>
<tr>
<td>E2</td>
<td>P2</td>
</tr>
<tr>
<td>E3</td>
<td>P4</td>
</tr>
<tr>
<td>E5</td>
<td>P2</td>
</tr>
<tr>
<td>E6</td>
<td>P4</td>
</tr>
<tr>
<td>E7</td>
<td>P3</td>
</tr>
<tr>
<td>E7</td>
<td>P5</td>
</tr>
</tbody>
</table>

$$\Pi_{\text{eno}}(\text{Emp}) - \Pi_{\text{eno}}(\text{WorksOn})$$

Question 1: What is the meaning of this query?

Question 2: What is $\Pi_{\text{eno}}(\text{WorksOn}) - \Pi_{\text{eno}}(\text{Emp})$?

Difference –

- Another set operator. Example: Find persons who are students but not a faculty

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>FACULTY</th>
<th>STUDENT – FACULTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>name</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Darby</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Matt</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Youssel</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Dan</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Choi</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Maury</td>
<td></td>
</tr>
</tbody>
</table>

Intersection??

- People who are both Students and Faculty??

- Do we need an Intersection operator?
Deriving Intersection

Intersection: as with set operations, derivable from difference

\[A \cap B \equiv (A - (A-B)) = (B - (B-A)) \]

Aside: Division Operator

- There is also a division operator used when you want to determine if all combinations of a relationship are present.
 - E.g. Return the list of employees who work on all the projects that 'John Smith' works on.

- The division operator is not a base operator and is not frequently used, so we will not spend any time on it.
 - Note that \(R \div S = \Pi_{R, \delta}(R) - \Pi_{S, \delta}(\Pi_{R, \delta}(R) \times S) - R \).

Operators that ‘combine’ relations

- Thus far, only operated on a single relation
- How to connect two relations?
 - To find name of students taking a specific course with cid, we need to look at both students and enrolled tables

- Operator(s) that produce a relation (set of tuples) after combining two different relations

- Set theory provides us with the cartesian product operator (between two sets: but can be applied to product of any number of sets – to get a k-tuple)

Cartesian Product

- The Cartesian product of two relations \(R \) (of degree \(k_1 \)) and \(S \) (of degree \(k_2 \)) is:

\[R \times S = \{ t \mid t[A_1, \ldots, A_{k_1}] \in R \text{ and } t[A_{k_1+1}, \ldots, A_{k_1+k_2}] \in S \} \]

- The result of \(R \times S \) is a relation of degree \((k_1 + k_2) \) and consists of all \((k_1 + k_2)\)-tuples where each tuple is a concatenation of one tuple of \(R \) with one tuple of \(S \).

- The cardinality of \(R \times S \) is \(|R| \times |S|\).

- The Cartesian product is also known as cross product.
Basic Product/Join Operation

- The product \(\times \) operation allows combination of info from two tables – it is the set product
- \(R_1 \times R_2 \) is collection of tuples from cross product of the two relations
- If \(R_1 \) has \(k \) columns and \(R_2 \) has \(n \) columns then \(R_1 \times R_2 \) has \(k \cdot n \) columns
 - Resulting schema is concatenation of two schemas
 - Refer to attribute \(B_i \) of relation \(R_i \) as \(R_i.B_i \)

Product X Example

- “Join” is a generic term for a variety of operations that connect two relations. The basic operation is the cartesian product, \(R \times S \), which concatenates every tuple in \(R \) with every tuple in \(S \). Example:

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>school</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jill</td>
<td>UPenn</td>
</tr>
<tr>
<td>2</td>
<td>Matt</td>
<td>GWU</td>
</tr>
</tbody>
</table>

What if the attribute of SCHOOL was called “name”?

Cartesian Product Example

<table>
<thead>
<tr>
<th>Emp Relation</th>
<th>Proj Relation</th>
</tr>
</thead>
<tbody>
<tr>
<td>eno</td>
<td>ename</td>
</tr>
<tr>
<td>1</td>
<td>J. Doe</td>
</tr>
<tr>
<td>E2</td>
<td>M. Smith</td>
</tr>
<tr>
<td>E3</td>
<td>A. Lee</td>
</tr>
<tr>
<td>E4</td>
<td>J. Miller</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>pno</th>
<th>pname</th>
<th>budget</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Instruments</td>
<td>150000</td>
</tr>
<tr>
<td>P2</td>
<td>DB Develop</td>
<td>135000</td>
</tr>
<tr>
<td>P3</td>
<td>CAD/CAM</td>
<td>250000</td>
</tr>
</tbody>
</table>

Product/Join

- Tuple in \(R_1 \times R_2 \) constructed by associating a tuple from \(R_1 \) with every tuple in \(R_2 \)
- If \(R_1 \) has \(n_1 \) tuples and \(R_2 \) has \(n_2 \) tuples how many does \(R_1 \times R_2 \) have?
- Same attribute can appear in both tables?
 - “link” between the two tables
\(\Theta \) -Join

- Theta (\(\Theta \)) join is a derivative of the Cartesian product. Instead of taking all combinations of tuples from \(R \) and \(S \), we only take a subset of those tuples that match a given condition \(F \).

\[R \bowtie_F S = \{ t \mid t[A_1, \ldots, A_k] \in R \text{ and } t[A_{k+1}, \ldots, A_{k+2}] \in S \text{ and } F(t) \text{ is true} \} \]

- Where
 - \(R, S \) are relations, \(t \) is a tuple variable
 - \(F(t) \) is a formula defined as that of selection.

- Note that \(R \bowtie_F S = \sigma_F(R \times S) \).

(Theta) Join, \(\bowtie_\theta \): A Combination of Product and Selection

- Products are hardly ever used alone; they are typically used in conjunction with a selection.
- Example: Find students (id and name) and courses they took with grades and cid

\[
\sigma_{\text{STUDENT.sid=Takes.sid}} (\text{STUDENT} \bowtie \text{STUDENT.sid=Takes.sid} \text{Takes})
\]

<table>
<thead>
<tr>
<th>sid:1</th>
<th>name</th>
<th>sid:2</th>
<th>exp-grade</th>
<th>cid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jill</td>
<td>1</td>
<td>A</td>
<td>550-0103</td>
</tr>
<tr>
<td>1</td>
<td>Jill</td>
<td>1</td>
<td>A</td>
<td>700-1003</td>
</tr>
<tr>
<td>3</td>
<td>Alex</td>
<td>3</td>
<td>A</td>
<td>700-1003</td>
</tr>
<tr>
<td>3</td>
<td>Alex</td>
<td>3</td>
<td>C</td>
<td>500-0103</td>
</tr>
<tr>
<td>4</td>
<td>Maury</td>
<td>4</td>
<td>C</td>
<td>500-0103</td>
</tr>
</tbody>
</table>

Joins

- Example: Find students (id and name) and courses they took with grades and cid

\[
\sigma_{\text{STUDENT.sid=Takes.sid}} (\text{STUDENT} \bowtie \text{STUDENT.sid=Takes.sid} \text{Takes})
\]

<table>
<thead>
<tr>
<th>sid:1</th>
<th>name</th>
<th>sid:2</th>
<th>exp-grade</th>
<th>cid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jill</td>
<td>1</td>
<td>A</td>
<td>550-0103</td>
</tr>
<tr>
<td>1</td>
<td>Jill</td>
<td>1</td>
<td>A</td>
<td>700-1003</td>
</tr>
<tr>
<td>3</td>
<td>Alex</td>
<td>3</td>
<td>A</td>
<td>700-1003</td>
</tr>
<tr>
<td>3</td>
<td>Alex</td>
<td>3</td>
<td>C</td>
<td>500-0103</td>
</tr>
<tr>
<td>4</td>
<td>Maury</td>
<td>4</td>
<td>C</td>
<td>500-0103</td>
</tr>
</tbody>
</table>

Join condition

\(sid:1 \) and \(sid:2 \) are duplicate information.... Do we need two columns? Why not project only one of them?
“Natural” Join, ⊙

- The most common join to do is an equality join of two relations on commonly named fields, and to leave one copy of those fields in the resulting relation. Example:

 \[
 \text{STUDENT} \bowtie \text{Takes} = \rho_{\text{sid}:1 \rightarrow \text{sid}}(\pi_{\text{sid}, \text{name}, \text{exp-grade}, \text{cid}}(\text{STUDENT} \bowtie \text{STUDENT}.\text{sid} = \text{Takes}.\text{sid}))
 \]

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>exp-grade</th>
<th>cid</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jill</td>
<td>A</td>
<td>550-0103</td>
</tr>
<tr>
<td>1</td>
<td>Jill</td>
<td>A</td>
<td>700-1003</td>
</tr>
<tr>
<td>3</td>
<td>Nick</td>
<td>A</td>
<td>700-1003</td>
</tr>
<tr>
<td>3</td>
<td>Nick</td>
<td>C</td>
<td>500-0103</td>
</tr>
<tr>
<td>4</td>
<td>Sina</td>
<td>F</td>
<td>500-0103</td>
</tr>
</tbody>
</table>

What if all the field names are the same in the two relations? What if the field names are all disjoint?

Types of Joins

- The \(\bowtie \)-Join is a general join in that it allows any expression in the condition \(F \). However, there are more specialized joins that are frequently used.

 - A **equijoin** only contains the equality operator (=) in formula \(F \).
 - e.g. WorksOn \(\bowtie \) WorksOn.\text{pno} = Proj.\text{pno} Proj

 - A **natural join** over two relations \(R \) and \(S \) denoted by \(R \bowtie S \) is the equijoin of \(R \) and \(S \) over a set of attributes common to both \(R \) and \(S \).
 - It removes the “extra copies” of the join attributes.
 - The attributes must have the same name in both relations.

Equijoin Example

<table>
<thead>
<tr>
<th>\text{eno}</th>
<th>\text{pno}</th>
<th>\text{resp}</th>
<th>\text{dur}</th>
<th>\text{proj}</th>
<th>\text{pno}</th>
<th>\text{pmame}</th>
<th>\text{budget}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>P1</td>
<td>Manager</td>
<td>12</td>
<td></td>
<td>P1</td>
<td>Instruments</td>
<td>150000</td>
</tr>
<tr>
<td>E2</td>
<td>P1</td>
<td>Analyst</td>
<td>24</td>
<td></td>
<td>P1</td>
<td>Instruments</td>
<td>150000</td>
</tr>
<tr>
<td>E3</td>
<td>P1</td>
<td>Analyst</td>
<td>24</td>
<td></td>
<td>P1</td>
<td>Instruments</td>
<td>150000</td>
</tr>
<tr>
<td>E4</td>
<td>P2</td>
<td>Engineer</td>
<td>48</td>
<td></td>
<td>P3</td>
<td>CAD/CAM</td>
<td>250000</td>
</tr>
<tr>
<td>E5</td>
<td>P3</td>
<td>Engineer</td>
<td>36</td>
<td></td>
<td>P4</td>
<td>Maintenance</td>
<td>310000</td>
</tr>
<tr>
<td>E6</td>
<td>P3</td>
<td>Engineer</td>
<td>36</td>
<td></td>
<td>P4</td>
<td>Maintenance</td>
<td>310000</td>
</tr>
<tr>
<td>E7</td>
<td>P4</td>
<td>Engineer</td>
<td>23</td>
<td></td>
<td>P3</td>
<td>CAD/CAM</td>
<td>250000</td>
</tr>
</tbody>
</table>

What is the meaning of this join?

Natural join Example

<table>
<thead>
<tr>
<th>\text{eno}</th>
<th>\text{pno}</th>
<th>\text{resp}</th>
<th>\text{dur}</th>
<th>\text{pmame}</th>
<th>\text{budget}</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>P1</td>
<td>Manager</td>
<td>12</td>
<td>Instruments</td>
<td>150000</td>
</tr>
<tr>
<td>E2</td>
<td>P1</td>
<td>Analyst</td>
<td>24</td>
<td>DB Develop</td>
<td>135000</td>
</tr>
<tr>
<td>E3</td>
<td>P2</td>
<td>Engineer</td>
<td>36</td>
<td>Maintenance</td>
<td>310000</td>
</tr>
<tr>
<td>E4</td>
<td>P3</td>
<td>Engineer</td>
<td>36</td>
<td>CAD/CAM</td>
<td>250000</td>
</tr>
<tr>
<td>E5</td>
<td>P4</td>
<td>Engineer</td>
<td>23</td>
<td>Maintenance</td>
<td>310000</td>
</tr>
</tbody>
</table>

What is the meaning of this join?

Natural join is performed by comparing \text{pno} in both relations.
Outer Joins

- Outer joins are used in cases where performing a join "loses" some tuples of the relations. These are called dangling tuples.

- There are three types of outer joins:
 - 1) **Left outer join** - \(R \bowtie S \) - The output contains all tuples of \(R \) that match with tuples of \(S \). If there is a tuple in \(R \) that matches with no tuple in \(S \), the tuple is included in the final result and is padded with nulls for the attributes of \(S \).
 - 2) **Right outer join** - \(R \bowtie S \) - The output contains all tuples of \(S \) that match with tuples of \(R \). If there is a tuple in \(S \) that matches with no tuple in \(R \), the tuple is included in the final result and is padded with nulls for the attributes of \(R \).
 - 3) **Full outer join** - \(R \bowtie S \) - All tuples of \(R \) and \(S \) are included in the result whether or not they have a matching tuple in the other relation.

Semi-Join and Anti-Join

- A **semi-join** between tables returns rows from the first table where one or more matches are found in the second table.
 - Semi-joins are used in EXISTS and IN constructs in SQL.

- An **anti-join** between two tables returns rows from the first table where no matches are found in the second table.
 - Anti-joins are used with NOT EXISTS, NOT IN, and FOR ALL.
 - Anti-join is the complement of semi-join: \(R \bowtie S = R - R \bowtie S \)
Anti-Join Example

<table>
<thead>
<tr>
<th>eno</th>
<th>pno</th>
<th>resp</th>
<th>dur</th>
</tr>
</thead>
<tbody>
<tr>
<td>E1</td>
<td>P1</td>
<td>Manager</td>
<td>12</td>
</tr>
<tr>
<td>E2</td>
<td>P1</td>
<td>Analyst</td>
<td>24</td>
</tr>
<tr>
<td>E3</td>
<td>P4</td>
<td>Engineer</td>
<td>6</td>
</tr>
<tr>
<td>E4</td>
<td>P2</td>
<td>Analyst</td>
<td>24</td>
</tr>
<tr>
<td>E5</td>
<td>P4</td>
<td>Manager</td>
<td>48</td>
</tr>
<tr>
<td>E6</td>
<td>P3</td>
<td>Engineer</td>
<td>36</td>
</tr>
<tr>
<td>E7</td>
<td>P4</td>
<td>Engineer</td>
<td>23</td>
</tr>
</tbody>
</table>

Combining Operations

- Relational algebra operations can be combined in one expression by nesting them:
 \[\Pi_{eno,pno,dur} (\sigma_{ename='J. Doe'} (Emp) \bowtie \sigma_{dur>16} (WorksOn)) \]
 - Return the eno, pno, and duration for employee ‘J. Doe’ when he has worked on a project for more than 16 months.
- Operations also can be combined by using temporary relation variables to hold intermediate results.
 - We will use the assignment operator \(\leftarrow \) for indicating that the result of an operation is assigned to a temporary relation.

\[
\begin{align*}
\text{empdoc} &\leftarrow \sigma_{ename='J. Doe'} (Emp) \\
\text{wodur} &\leftarrow \sigma_{dur>16} (WorksOn) \\
\text{empwo} &\leftarrow \text{empdoc} \bowtie \text{wodur} \\
\text{result} &\leftarrow \Pi_{eno,pno,dur} (\text{empwo})
\end{align*}
\]

Rename, \(\rho_{\alpha} (R) \)

- The rename operator can be expressed several ways:
 - The book has a very odd definition that’s not algebraic BUT is more readable!
 - An alternate definition:
 \[\rho_{\alpha}(x) \]
 Takes the relation x and returns a copy of the relation with the name \(\alpha \).
 General Def: can rename only attribute list with new names \(\beta \)
 - Rename isn’t all that useful, except if you join a relation with itself
 - \(\rho_{Person} (STUDENT) = \) copy of STUDENT with table name Person
 - Find pairs of student IDs who have the same name:
 \[\Pi_{\text{STUDENT.sid, Person.sid}} (\text{STUDENT} \bowtie \text{STUDENT.name=}Person.name \ \ \ (\rho_{Person} (\text{STUDENT})) \]

Rename Operator

- Variations allow renaming of specific attributes
 - \(\rho_{X(C,D)} (R (A,B)) \)
 Relation R renamed to X
 Fields A,B in R are now renamed to C,D in X
 - \(\rho_{Person(id, who)} (\text{STUDENT (sid, name)}) \)
 - Find pairs of student IDs who have the same name:?
Rename Operation

- Renaming can be applied when assigning a result:

\[
\text{result(EmployeeNum, ProjectNum, Duration)} \leftarrow \Pi_{\text{emp}, \text{pno}, \text{dur}}(\text{empwo})
\]

- Or by using the rename operator \(\rho \) (rho):

\[
\rho \text{result(EmployeeName, ProjectNum, Duration)}(\text{empwo})
\]

Complete Set of Relational Algebra Operators

- It has been shown that the relational operators \{\(\sigma \), \(\Pi \), \(\times \), \(\cup \), \(\setminus \)\} form a complete set of operators.
- That is, any of the other operators can be derived from a combination of these 5 basic operators.

- Examples:
 - Intersection - \(R \cap S = R \cup S \setminus ((R \setminus S) \cup (S \setminus R)) \)
 - We have also seen how a join is a combination of a Cartesian product followed by a selection.

Other Relational Algebra Operators

- There are other relational algebra operators that we will not discuss. Most notably, we often need **aggregate operations** that compute functions on the data.

- For example, given the current operators, we cannot answer the query:
 - What is the total amount of deposits at the Kelowna branch?
 - What are the total number of employees in department 5?

- We will see how to answer these queries when we study SQL.

How to write a RA query?

- Find out which tables you need to access
 - Compute \(\times \) of these tables
- What are the conditions/predicates you need to apply?
 - Determines what select \(\sigma \) operators you need to apply
- What attributes/columns are needed in result
 - Determines what project \(\Pi \) operators you need

\[
\text{Project (Select (Product))}
\]
More examples…

- This completes the basic operations of the relational algebra.
 - These form a complete set of operations
 - Additional operators provided for better writability
- Try writing queries for these:
 - The IDs of students named “Bob”
 - The names of students expecting an “A”
 - The names of students in Youssef’s class
 - The sids and names of students not enrolled in any class

Examples

<table>
<thead>
<tr>
<th>STUDENT</th>
<th>Takes</th>
<th>COURSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>sid</td>
<td>name</td>
<td>sid</td>
</tr>
<tr>
<td>1</td>
<td>Jill</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Bob</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>Sina</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>Maury</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PROFESSOR</th>
<th>Teaches</th>
</tr>
</thead>
<tbody>
<tr>
<td>fid</td>
<td>name</td>
</tr>
<tr>
<td>1</td>
<td>Narahari</td>
</tr>
<tr>
<td>2</td>
<td>Youssef</td>
</tr>
<tr>
<td>8</td>
<td>Stanton</td>
</tr>
</tbody>
</table>

Modifying the Database

- Need to insert, delete, update tuples in the database
- What is insert?
 - Add a new tuple to existing set = Union
- What is delete?
 - Remove a tuple from existing set = Set difference
- How to update attribute to new value?
 - Need new operator: δ

Another Example: Bank Database

- Simplified Bank database
 - Bank has a number of branches at different locations
 - Bank handles customer accounts and loans
- Four relations/tables
 - Customer: stores info about customer
 - Deposit: stores accounts at the branch/bank
 - Loan: stores loans given by bank/branch
 - Branch: stores info about the branch
Schema of Bank DB

- **Customer** (CustID, Name, street, city, zip)
 - Customer ID, Name, and Address info: street, city, zip

- **Deposit** (CustID, Acct-num, balance, Branch-name)
 - Customer ID, Account number, Balance in account, name of branch where account is held

- **Loan** (CustID, Loan-num, Amount, Branch-name)
 - Customer ID, loan number, amount of loan…

- **Branch** (Branch-name, assets, Branch-city)

Modifying Database

- Delete all accounts of Customer with CustID=3333
 - Deposit ← Deposit – (tuples of CustID 3333)

- Insert tuple (4444, Downtown, 1000, 1234)
 - Deposit ← Deposit  (4444, Downtown, 1000, 1234)

- Update: δ_{A \leftarrow E}(R)
 - Update attribute A to E for tuples in relation R
 - δ_{balance \leftarrow 1.05*balance}(Deposit) : updates balances
 - Can also specify selection condition on Deposit
 Update balances only for customers with CustID=1234

Views: Important Concept

- Relational Model, using SQL, allows definition of a view
 - View is a virtual relation
 - Executed each time it is referenced
 - More when we get to SQL

Relational Calculus
Next . . .

- Quick look at Relational Calculus
 - Tuple calculus
 - Domain calculus

- Non-procedural language

- Relational algebra gave you a procedure:
 - Which relations to access
 - What selection/predicate conditions to apply
 - Etc…

Relational Calculus

- Comes in two flavors: Tuple relational calculus (TRC) and Domain relational calculus (DRC).
- Calculus has variables, constants, comparison ops, logical connectives and quantifiers.
 - TRC: Variables range over (i.e., get bound to) tuples.
 - DRC: Variables range over domain elements (= field values).
- Both TRC and DRC are simple subsets of first-order logic.
- Expressions in the calculus are called formulas. An answer tuple is essentially an assignment of values to variables that make the formula evaluate to true.

Relational Calculus: An Equivalent, But Very Different, Formalism

- Codd invented a relational calculus that he proved was equivalent in expressiveness
 - Based on a subset of first-order logic — declarative, without an implicit order of evaluation
 Tuple relational calculus
 Domain relational calculus
 - More convenient for describing certain things, and for certain kinds of manipulations
- The database uses the relational algebra internally, but query languages (e.g., SQL) use concepts from the relational calculus

Tuple Relational Calculus (RC)

- A tuple variable is a variable whose values can be tuples of a relational schema

- Formula/Query in RC is expressed as:
 \(\{ t \mid P(t) \} \)
 - \(t \) is a tuple variable
 - \(P(t) \) is property of tuple \(t \); it is a predicate formula that describes properties of the tuple variable
 - Thereby defining the possible values of \(t \)
 - Result is set of all tuples for which predicate \(P \) is true
- Find all loans at the Downtown branch
- "syntax" is set theory notations

\{ t | t \in \text{Loan} \land t[\text{branch-name}] = "Downtown" \}

Tuple Relational Calculus (RC) – alternate syntax
- A tuple variable is a variable whose values can be tuples of a relational schema
- Formula/Query in RC is expressed as:
 \{ \langle t[\text{att1}], t[\text{att2}], ... \rangle | R(t) \land P(t) \}
 - t is a tuple variable in relation R
 - t[\text{att1}] is value of attribute 1 in tuple t
 - P(t) is property of tuple t; it is a predicate formula that describes properties of the tuple variable
 - Therefore defining the possible values of t
 - Result is set of all tuples for which predicate P is true

Domain Relational Calculus (DRC)
- Queries have form:
 \{ \langle x_1, x_2, ..., x_n \rangle | p \}
 - Predicate: boolean expression over \(x_1, x_2, ..., x_n \)
 - Answer includes all tuples that make the formula true.
 - The variables come from the domain of the attributes in the relation schema
 - In contrast to the tuple calculus where variables are tuples

Note: We will use set theory notations (to continue with what you learnt in CS1311!)
Domain Relational Calculus
- Define domain of each attribute in result set and the type
- Find branch-name, loan number, amount, custID for loans over $1200

\{ <b,l,c,a> | <b,l,c,a> \in \text{loan} \land b='Downtown' \}

RC Formulas
- Atomic formula:
 \(t \in \text{Rname} \), or \(X \ \text{op} \ Y \), or \(X \ \text{op} \ \text{constant} \)
 \(\text{op} \) is one of \(<,>,=,\geq,\leq,\neq \)

- Formula: an atomic formula, or
 \(\neg p, p \land q, p \lor q \), where \(p \) and \(q \) are formulas, or
 \(\exists X(p(X)) \), where variable \(X \) is free in \(p(X) \), or
 \(\forall X(p(X)) \) where variable \(X \) is free in \(p(X) \)

- The use of quantifiers \(\exists X \) and \(\forall X \) is said to bind \(X \).
 - A variable that is not bound is free.

Expressions and Formulas in RC
- Truth value of an atomic formula (atom) evaluates to either TRUE or FALSE
- Formula is made up of one or more atoms connected via logical operations AND, OR, NOT...

Existential and Universal Quantifiers
- Two special symbols can appear in formulas:
 - \(\forall t : \) universal quantifier
 - \(\exists t : \) existential quantifier
- Informally: a tuple is bound if it is quantified- it appears in an universal or existential clause, otherwise it is free
- If \(F \) is a formula, then so are \((\exists t)(F) \) and \((\forall t)(F) \)
 - The formula \((\exists t)(F) \) is true if the formula \(F \) evaluates to true for some (at least one) tuple assigned to free occurences of \(t \) in \(F \); otherwise it is false.
 - The formula \((\forall t)(F) \) is true if the formula \(F \) evaluates to true for every tuple (in the universe) assigned to free occurrences of \(t \) in \(F \); otherwise it is false.
 - \(\forall \) is called universal “for all” quantifier because every tuple in the universe of tuples must make \(F \) true to make the formula true
 - \(\exists \) is called existential or “there exists” quantifier because any tuple that exists may make \(F \) true to make formula true
More Complex Predicates in Relational Calculus

Starting with these atomic predicates, build up new predicates by the following rules:

- Logical connectives: If \(p \) and \(q \) are predicates, then so are
 \[p \land q, \quad p \lor q, \quad \neg p, \quad \text{and} \quad p \Rightarrow q \]
 - \((x>2) \land (x<4) = ?\) (True or false)
 - \((x>2) \land \neg(x<0) = ?\)

- Existential quantification: If \(p \) is a predicate, then so is \(\exists x. p \)
 \[\exists x. (x>2) \land (x<4) = ? \]

- Universal quantification: If \(p \) is a predicate, then so is \(\forall x. p \)
 \[\forall x. (x>2) = ? \quad \forall x. \exists y. (y>x) = ? \]

Logical Equivalences

- Recall from discrete math cs1311
- There are two logical equivalences that are heavily used:
 - \(p \Rightarrow q \equiv \neg p \lor q \)
 (Whenever \(p \) is true, \(q \) must also be true.)
 - \(\forall x. p(x) \equiv \neg \exists x. \neg p(x) \)
 (\(p \) is true for all \(x \))
- The second can be a lot easier to check!
- Example:
 - The highest course number offered

Free and Bound Variables

- The use of quantifiers \(\forall \) or \(\exists \) in a formula is said to bind the variables
- A variable \(v \) is bound in a predicate \(p \) when \(p \) is of the form \(\forall v \ldots \) or \(\exists v \ldots \)
- A variable occurs free in \(p \) if it occurs in a position where it is not bound by an enclosing \(\forall \) or \(\exists \)
- Examples:
 - \(x \) is free in \(x > 2 \)
 - \(y \) is free and \(x \) is bound in \(\exists x. x > y \)
- Important restriction: the variables that appear to the left of \("|" \) must be the only free variables in the formula \(p(...). \)

Can Rename Bound Variables Only

- When a variable is bound one can replace it with some other variable without altering the meaning of the expression, providing there are no name clashes
 - Example: \(\exists x. x > 2 \) is equivalent to \(\exists y. y > 2 \)
- Otherwise, the variable is defined outside our “scope”…
Free Variables

- A variable v is bound in a predicate p when p is of the form $\forall v \ldots$ or $\exists v \ldots$
- Important restriction: the variables that appear to the left of `|` must be the only free variables in the formula $p(...)$.
- Implication: the values that the free variables can legally take on are the results of the query!

Safety of Operators

- Query of the form $\exists t \in R \ (Q(t))$
 - There exists tuple t in set/relation R such that predicate Q is true
- Safety of Expressions
 - What about $\{ t \mid \exists t (t \in \text{loan}) \}$
 - Infinitely many tuples outside loan relation

Safety of Expressions

- A query is safe if no matter how we instantiate the relations, it always produces a finite answer
 - Domain independent: answer is the same regardless of the domain in which it is evaluated
 - Unfortunately, both this definition of safety and domain independence are semantic conditions, and are undecidable
- There are syntactic conditions that are used to guarantee “safe” formulas
 - One solution: For each tuple relational formula P, define domain $\text{Dom}(P)$ which is set of all values referenced by P
 - The formulas that are expressible in real query languages based on relational calculus are all “safe”
- Many DB languages include additional features, like recursion, that must be restricted in certain ways to guarantee termination and consistent answers

Safety and Termination Guarantees

- There are syntactic conditions that are used to guarantee “safe” formulas
 - The definition is complicated, and we won’t discuss it; you can find it in Ullman’s Principles of Database and Knowledge-Base Systems
 - The formulas that are expressible in real query languages based on relational calculus are all “safe”
Examples: Relational Calculus
- Find branch name, ID, loan number and amount for loans over $1200
 - What is the "type" of the elements in the result, i.e., where do they come from?
 - What is the property of the elements?
- \{ t | (t ∈ Loan) ∧ (t[amount]>1200) \}
 - Type of tuple t is Loan (since it is an element of Loan)
 - Property is that value of amount attribute in the tuple must be greater than 1200

Domain Relational Calculus
- Define domain of each attribute in result set and the type
- Find branch-name, loan number, amount, custID for loans over $1200
 - \{ <b,l,c,a> | <b,l,c,a> ∈ loan ∧ a>1200 \}
 - Domain of each attr in result is defined by <b,l,c,a> is an element in loan

Relational calculus – projections
- Two approaches depending on use of set notation or not...
- What if the type has to be inferred?
- Find only Customer ID attribute in the previous example
 - This type has to be inferred by the query
 - Tuples on ID, for which there is a tuple in Loan with same CustID and amount > 1200.
- \{ t | ∃ s ∈ Loan (s[custID]=t[CustID] ∧ s[amount]>1200) \}
 - 'schema' of t can be deduced, from query, as containing an attribute CustID
 - No other attribute is defined for t
 - Therefore the 'type' of t is [CustID] (a single attribute)
 - Note use of existential quantifier...
 - s is bound variable
 - t is free variable….result of query is values that free variable can take to make the predicate true

Using named field notation…easier
\{ t.CustID | ∃ s ∈ Loan (s[custID]=t[CustID] ∧ s[amount]>1200) \}
Cross Products in TRC
- Find Customer names of customers who have loans greater than 1200
 - for Cust ID with loans we had
 - \(\{ t \mid \exists s \in \text{Loan} \ (s[\text{custID}]=t[\text{CustID}] \land s[\text{amount}]>1200) \} \)
- How about name? It exists in Customer relation?
 - For tuple \(c \in \text{Customer} \) what property does \(c \) have?
 - The customer ID in tuple \(c \) Customer relation is same as customer ID in tuple \(s \) in Loan relation
- Free variable?
 - Result tuples \(t \) must have only name
 - So this is the only attribute for which \(t \) is defined in the predicate condition

Summary: Relational Model, Formal Query languages
- **Relational Completeness:** Query language (e.g., SQL) can express every query that is expressible in relational algebra/calculus.
- Relational calculus is non-operational
 - users define queries in terms of what they want, not in terms of how to compute it.
- Algebra and safe calculus have same expressive power, leading to the notion of relational completeness.

Recap: How to write a RA query?
- Find out which tables you need to access
 - Compute \(\times \) of these tables
- What are the conditions/predicates you need to apply?
 - Determines what select \(\sigma \) operators you need to apply
- What attributes/columns are needed in result
 - Determines what project \(\pi \) operators you need
Limitations of the Relational Algebra / Calculus
Can’t do:
• Aggregate operations
• Recursive queries
• Complex (non-tabular) structures

• Most of these are expressible in SQL, XQuery – using other special operators
• Sometimes we even need the power of a Turing-complete programming language

Why Formal languages?
Example: Optimization Is Based on Algebraic Equivalences

- Relational algebra has laws of commutativity, associativity, etc. that imply certain expressions are equivalent in semantics
- They may be different in cost of evaluation!
 • \(\sigma_{P_1 \land P_2}(R) = \sigma_{P_1}(\sigma_{P_2}(R)) \)
 • \((R_1 \bowtie R_2) = (R_2 \bowtie R_1) \)
 • \((R_1 \bowtie R_2) \bowtie R_3 = R_1 \bowtie (R_2 \bowtie R_3) \)

- Query optimization finds the most efficient representation to evaluate (or one that’s not bad)

The Big Picture: SQL to Algebra to Query Plan to Web Page

```
SELECT *
FROM STUDENT, Takes, COURSE
WHERE STUDENT.sid = Takes.sid
AND Takes.cid = cid
```