Functional Dependencies
Describe “Key-Like” Relationships

A key is a set of attributes where:
If keys match, then the tuples match

A functional dependency (FD) is a generalization:
If an attribute set determines another, written $A \rightarrow B$
then if two tuples agree on attribute set A, they must agree on B:

\[\text{id} \rightarrow \text{name} \]

- FDs are independent of our schema design choice

Example FDs

- Enrollment Information/Stuff
 - (\text{id, name, cid, subj, crnum, exp-grade})
 - sid: student id, cid is course id,

- Key is (\text{sid,cid})

- $\text{sid} \rightarrow \text{name}$
- $\text{cid} \rightarrow \text{crnum}$
- $\{\text{sid,cid}\} \rightarrow \text{exp-grade}$
- $\text{crnum} \rightarrow \text{subj}$
- $\text{cid} \rightarrow \text{subj}$
Formal Definition of FD’s

Given a relation schema R and subsets X, Y of R:
Given a relation schema R and subsets X, Y of R:

An instance r of R satisfies FD \(X \rightarrow Y \) if,

for any two tuples \(t_1, t_2 \in r \),

\[
\text{if } t_1[X] = t_2[X] \text{ implies } t_1[Y] = t_2[Y]
\]

if they have the same values in X attributes/columns, they have the same values in Y attributes/columns

- For an FD to hold for schema R, it must hold for every possible instance of r
 - (Can a DBMS verify this? Can we determine this by looking at an instance?)

What do FDs tell us..

- What is FD \(X \rightarrow Y \)
 - X and Y are “related”
 - If we know value of X then values of Y can be determined
 - X is a ‘unique’ attribute of the entity
 - ...

General Thoughts on Good Schemas

We want all attributes in every tuple to be determined only by the tuple’s key attributes, i.e. part of a superkey (for key $X \rightarrow Y$, a superkey is a “non-minimal” X).

What does this say about redundancy?

But:

- What about tuples that don’t have keys (other than the entire value)?

Sets of Functional Dependencies

- Relation EMP-DEPT($\text{SSN, NAME, ADDRESS, DNUMBER, DNAME, MGRSSN}$)
 - Employee info; the dept they are assigned to; their manager’s ssn
 - Key is SSN

- Some obvious functional dependencies
 - $\{\text{SSN}\} \rightarrow \{\text{NAME, ADDRESS, DNUMBER}\}$
 - $\{\text{DNUMBER}\} \rightarrow \{\text{DNAME, MGRSSN}\}$
Sets of Functional Dependencies

- Some obvious functional dependencies
 - \{SSN\} \rightarrow \{NAME, ADDRESS, DNUMBER\}
 - \{DNUMBER\} \rightarrow \{DNAME, MGRSSN\}
- From above dependencies, we can infer
 - \{SSN\} \rightarrow \{DNAME, MGRSSN\}
- Concept of a set of dependencies that can be inferred from the given set
 - Inference rules?
 - Closure: \(F^+ \) is all dependencies that can be inferred from \(F \)

Some Questions:

- Given a set of functional dependencies (properties on the data), what other properties can we infer?
- What is the formal definition of a key?
- How can we use the formal framework of Functional dependencies to define a ’good schema design’?
- Can we automate the process (develop algorithms)?
Armstrong’s Axioms: Inferring FDs

Some FDs exist due to others; can compute using Armstrong’s axioms:

- **Reflexivity:** If \(Y \subseteq X \) then \(X \rightarrow Y \) *(trivial dependencies)*
 - name, sid \(\rightarrow \) name

- **Augmentation:** If \(X \rightarrow Y \) then \(XW \rightarrow YW \)
 - cid \(\rightarrow \) subj so cid, exp-grade \(\rightarrow \) subj, exp-grade

- **Transitivity:** If \(X \rightarrow Y \) and \(Y \rightarrow Z \) then \(X \rightarrow Z \)
 - cid \(\rightarrow \) crnum and crnum \(\rightarrow \) subj
 - so cid \(\rightarrow \) subj

Armstrong’s Axioms Lead to…

- **Union:** If \(X \rightarrow Y \) and \(X \rightarrow Z \) then \(X \rightarrow YZ \)
- **Pseudotransitivity:** If \(X \rightarrow Y \) and \(WY \rightarrow Z \) then \(XW \rightarrow Z \)
- **Decomposition:** If \(X \rightarrow Y \) and \(Z \subseteq Y \) then \(X \rightarrow Z \)

Can prove these from Armstrong’s Axioms…

homework ?? 😊
Next question:

- Given a set F of functional dependencies, what are all the properties we can infer?
- Do two sets of functional dependencies, F and G, imply the same set of properties?
- How to formally define this property?

Closure of a Set of FD’s

Defn. Let F be a set of FD’s. Its closure, F^+, is the set of all FD’s:

$\{X \rightarrow Y \mid X \rightarrow Y$ is derivable from F by Armstrong’s Axioms$\}$

Which of the following are in the closure of our Student-Course FD’s?

- $\text{name} \rightarrow \text{name}$
- $\text{crnum} \rightarrow \text{subj}$
- $\text{cid} \rightarrow \text{subj}$
- $\text{crnum}, \text{sid} \rightarrow \text{subj}$
- $\text{crnum} \rightarrow \text{sid}$

$F=\{\text{sid} \rightarrow \text{name}, \text{cid} \rightarrow \text{crnum}, (\text{sid}, \text{cid}) \rightarrow \text{expgrade}, \text{crnum} \rightarrow \text{subject}\}$
Why Armstrong’s Axioms?

Why are Armstrong’s axioms (or an equivalent rule set) appropriate for FD’s? They are:

- **Consistent**: any relation satisfying FD’s in F will satisfy those in F^+
- **Complete**: if an FD $X \rightarrow Y$ cannot be derived by Armstrong’s axioms from F, then there exists some relational instance satisfying F but not $X \rightarrow Y$

- In other words, Armstrong’s axioms derive **all** the FD’s that should hold

Equivalence of FD sets

Defn. Two sets of FD’s, F and G, are equivalent if their closures are equivalent, $F^+ = G^+$

e.g., these two sets are equivalent:

- $\{XY \rightarrow Z, X \rightarrow Y\}$ and
- $\{X \rightarrow Z, X \rightarrow Y\}$

- F^+ could contain a huge number of FD’s (exponential in the size of the schema?)
- Would like to have smallest “representative” FD set – the “cover” set for F
 - Why?
Minimal Cover

Defn. A FD set F is *minimal* if:

1. Every FD in F is of the form $X \rightarrow A$, where A is a single attribute

2. For no $X \rightarrow A$ in F is: $F - \{X \rightarrow A\}$ equivalent to F

3. For no $X \rightarrow A$ in F and $Z \subseteq X$ is: $F - \{X \rightarrow A\} \cup \{Z \rightarrow A\}$ equivalent to F

Defn. F is a *minimum cover* for G if F is minimal and is equivalent to G.

e.g.,

$$\{X \rightarrow Z, X \rightarrow Y\}$$ is a minimal cover for $$\{XY \rightarrow Z, X \rightarrow Y\}$$

Minimal Cover

- Let F be:
 - $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow G$, $EF \rightarrow H$, $ACDF \rightarrow EG$

- First rewrite $ACDF \rightarrow EG$, so that every right hand side (RHS) is a single attribute:
 - $ACDF \rightarrow E$, $ACDF \rightarrow G$

- Consider $ACDF \rightarrow G$; is it implied by any dep?

- $A \rightarrow B$, $ABCD \rightarrow E$, $EF \rightarrow G$
 - Therefore we can delete $ACDF \rightarrow G$

- Similarly can delete $ACDF \rightarrow E$

- Next consider $ABCD \rightarrow E$

- Since $A \rightarrow B$ holds we can replace with $ACD \rightarrow E$

- Thus, minimal cover for F is:
 - $A \rightarrow B$, $ACD \rightarrow E$, $EF \rightarrow G$, $EF \rightarrow H$
Minimal Cover Algorithm

- Put the FDs of \(F \) in a standard form
 - Obtain collection \(G \) of equivalent FDs with single attribute on RHS (using decomposition axiom)
- Minimize the left hand side of each FD
 - For each FD in \(G \), check each attribute on LHS to see if it can be deleted while preserving equivalence to \(F^+ \)
- Delete redundant FDs
- There is a polynomial time algorithm to find min cover

Attribute Closures: Is Something Dependent on \(X \)?

Defn. The closure of an attribute set \(X \), \(X^+ \), is:

\[
X^+ = \bigcup \{Y \mid X \rightarrow Y \in F^+\}
\]

- This answers the question “is \(Y \) determined (transitively) by \(X \)?”;
 - *Given values for \(X \), the values are \(Y \) are fixed*

- *Does sid, cid \(\rightarrow \) subj, name, exp-grade?*
Computing Attribute Set Closure

- For attribute set X, compute closure X^+ by:

\[
\text{Closure } X^+ := X; \\
\text{repeat until no change in } X^+ \{ \\
\quad \text{if there is an } \text{FD } U \rightarrow V \text{ in } F \\
\quad \quad \text{such that } U \text{ is in } X^+ \\
\quad \quad \text{then add } V \text{ to } X^+ \}\]

Attribute Closure: Example

- Let F be:
 - $SSN \rightarrow EName$
 - $PNUMBER \rightarrow PNAME, PLOCATION$
 - $SSN, PNUMBER \rightarrow HOURS$

 - What is the closure of \{SSN, PNUMBER\}
Attribute Set Closure and Keys

- If X is a key over relation scheme R, then what is X^+
 - Formal definition of a Key
- How to determine the keys for relation R?
 - R is a set of attributes $\{A_1, A_2, \ldots, A_n\}$
 - For each subset S of R, compute S^+
 - If $S^+ = R$ then S is Key
 - What is the “catch” here?
 - Can you improve this?

Example

- R= (C, T, H, R, S)
 - Course (C), Time (T), Hour (H), Room (R), Section (S), Grade (G)
 - $C \rightarrow T$ $CS \rightarrow G$
 - $HS \rightarrow R$ $HR \rightarrow C$
 - $HT \rightarrow R$

What is the smallest attribute set that must be part of the key?
Attribute Set Closures

- If attribute A does not appear on RHS of any FD, then any key must contain A
- If X is a key, then anything containing X is a superkey
- If X is a key, and Y → X is a FD then Y is a key

Relevance to schema design ?????
Schema Design:
Normal Forms, Functional Dependencies

Review

- Functional dependencies
- Closure of set of functional dependencies
 - Equivalence of FD sets
 - Minimal cover
- Armstrong’s Axioms
 - Guarantees Completeness and Consistency
- Attribute set closure algorithm
 - Can use to find all keys for a relation
Functional Dependencies and Schema Design: Normal Forms

- Normal forms are properties of relations
- We say a relation is in xNF if its attributes satisfy certain properties
 - Properties formally defined using functional dependencies
 - For example, test the relation to see if it is in 3NF
 - If not in 3NF, then change design...how?
 - Decomposition

How to go about designing a good schema?

- How to create a 3NF database schema? (i.e., a good design)?
- Ad-hoc approach
 - Create relations intuitively and hope for the best!
- Formal method – procedure (automated tool)
 - Start with single relation with all attributes
 - Systematically decompose relations that are not in the desired normal form
 - Repeat until all tables are in desired normal form
- Can decomposition create problems if we are not careful?
 - (i) Spurious tuples and (ii) lost dependencies
Decomposition Problems

S1: CAR (ID, Make, Color)

<table>
<thead>
<tr>
<th>ID</th>
<th>Make</th>
<th>Color</th>
</tr>
</thead>
<tbody>
<tr>
<td>123</td>
<td>Toyota</td>
<td>Blue</td>
</tr>
</tbody>
</table>

S2: CAR1 (ID, Color)
CAR2 (Color, Make)

<table>
<thead>
<tr>
<th>ID</th>
<th>Color</th>
<th>Make</th>
</tr>
</thead>
<tbody>
<tr>
<td>456</td>
<td>Audi</td>
<td>Blue</td>
</tr>
<tr>
<td>789</td>
<td>Toyota</td>
<td>Red</td>
</tr>
</tbody>
</table>

What happens when we join CAR1 and CAR2?
Lossless Join Decomposition

R_1, \ldots, R_k is a lossless join decomposition of R w.r.t. an FD set F if for every instance r of R that satisfies F,

$$\Pi_{R_1}(r) \bowtie \ldots \bowtie \Pi_{R_k}(r) = r$$

Consider:

<table>
<thead>
<tr>
<th>sid</th>
<th>name</th>
<th>cid</th>
<th>subj</th>
<th>crnum</th>
<th>exp-grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sam</td>
<td>570103</td>
<td>SW</td>
<td>cs143</td>
<td>B</td>
</tr>
<tr>
<td>23</td>
<td>Dan</td>
<td>550103</td>
<td>DB</td>
<td>cs178</td>
<td>A</td>
</tr>
</tbody>
</table>

What if we decompose on
(sid, name) and (cid, subj, crnum, exp-grade)?
Testing for Lossless Join

R₁, R₂ is a lossless join decomposition of R with respect to F iff at least one of the following dependencies is in F⁺:

\[(R₁ \cap R₂) \rightarrow R₁ - R₂\]
\[(R₁ \cap R₂) \rightarrow R₂ - R₁\]

- Set of attributes common to the two tables are key to one of the two table.

So for the FD set:
- sid → name
- cid → crnum, exp-grade
- crnum → subj

Is (sid, name) and (crnum, subj, cid, exp-grade) a lossless decomposition?

Dependency Preservation

- Ensures we can “easily” check whether a FD X → Y is violated during an update to a database:
 - The projection of an FD set F onto a set of attributes Z, F_Z is:
 \[\{X \rightarrow Y \mid X \rightarrow Y \in F^+, X \cup Y \subseteq Z\}\]
 i.e., it is those FDs local to Z’s attributes
 - A decomposition R₁, …, Rₖ is dependency preserving if
 \[F^+ = (F_{R₁} \cup \ldots \cup F_{Rₖ})^+\]

- Why is this important/desirable?
- The decomposition hasn’t “lost” any essential FD’s, so we can check without doing a join
Example of Lossless and Dependency-Preserving Decompositions

Given relation scheme

\[R(\text{name, street, city, st, zip, item, price}) \]

And FD set

- \(\text{name} \rightarrow \text{street, city} \)
- \(\text{street, city} \rightarrow \text{st} \)
- \(\text{street, city} \rightarrow \text{zip} \)
- \(\text{name, item} \rightarrow \text{price} \)

Consider the decomposition

\[R_1(\text{name, street, city, st, zip}) \text{ and } R_2(\text{name, item, price}) \]

- Is it lossless?
- Is it dependency preserving?

What if we added FD \(\text{street, city} \rightarrow \text{item} \)?

Dependency Preservation

- Example:
 - FD set \(F = C \rightarrow \{\text{everything}\}, JP \rightarrow C, SD \rightarrow P, J \rightarrow S \)
 - Is decomposition of CSJDQV into SDP, JS and CJDQV dependency preserving

- It is a lossless join decomposition.
- In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - JPC tuples stored only for checking FD! *(Redundancy!)*
FD's and Keys

- Ideally, we want a design s.t. for each nontrivial dependency $X \rightarrow Y$, X is a superkey for some relation schema in R and all dependencies are preserved
 - We just saw that this isn’t always possible
- What if a dependency is lost during decomposition, but we want to enforce the condition ?
 - Is there anything in SQL that can help us enforce this dependency condition?

Two Important Normal Forms

Boyce-Codd Normal Form (BCNF). For every relation scheme R and for every $X \rightarrow A$ that holds over R,

- either $A \in X$ (it is trivial), or
- X is a superkey for R

Third Normal Form (3NF). For every relation scheme R and for every $X \rightarrow A$ that holds over R,

- either $A \in X$ (it is trivial), or
- X is a superkey for R, or
- A is a member of some key for R
Why these normal forms?

- What problems/anamolies exist?
- What problems are “removed” by a normal form?

- Start with Second Normal Form
 - Not used today
- Let’s work with a simplified model first
 - Called Primary Key version

Definitions

- Relation schema R
 - Superkey
 - Key
 - Candidate key – same as key
 - Primary key – a key designated for common use
 - Prime attribute – an attribute that belongs to some candidate key
 - Non-prime attribute – does not belong to any key
1NF and 2NF

- First Normal Form – assumed as condition
 - Value of any attribute is a single value
 - Domains of attribute contain only atomic values
 - Cannot be sets of values

Partial Dependency

- A FD $X \rightarrow Y$ is a partial dependency if there exists an attribute $A \in X$ such that $X - A \rightarrow Y$
 - Y is partially dependent on X
- Second Normal Form: Relation is in 2NF if no non-prime attribute is partially dependent on the primary key.
Problems with Partial Dependency

EMP_PROJ(SSN, PNUMBER, HOURS, ENAME,
 PNAME, PLOCATION)

Some FDs:
{SSN, PNUMBER} → HOURS
{SSN, PNUMBER} → ENAME

Since SSN → ENAME, ENAME is partially dependent on the
primary key {SSN, PNUMBER}
• So why is this a problem?

- Insert tuple
 • <987654321, 3, 12, Jones, Sprite, Atlanta>
- We have insertion anomaly
 • Check if 987654321 is Jones, project 3 is Sprite…
- We have deletion problem
 • If last tuple with Project #1 is deleted

- Similarly, we have modification anamoly
 • Smith changes name to Brown
Transitive Dependencies & 3NF

- FD $X \rightarrow Y$ is a transitive dependency in relation R if there exists set of attributes $Z \in R$ such that
 - $X \rightarrow Z$ and $Z \rightarrow Y$
 - Z is not a subset of any key of R
- A relation R is in Third Normal Form if (1) it is in 2NF and (2) no non-prime attribute is transitorily dependent on any key.

Problem with Transitive Dependencies

- EMP_DEPT(ENAME, SSN, BDATE, ADDRESS, DNO, DNAME, MGRSSN)
 FDs in relation:
 - $\{SSN\} \rightarrow \{DNO\}$
 - $\{DNO\} \rightarrow \{MGRSSN\}$
 - $\{DNO\} \rightarrow \{DNAME\}$
- Insertion, Deletion, Modification anomalies in above schema
Problem with 3NF?

- ADDR_INFO(CITY, ADDRESS, ZIP)
 \{CITY, ADDRESS\} → ZIP
 \{ZIP\} → \{CITY\}

Possible keys: \{CITY, ADDRESS\} or
\{ADDRESS, ZIP\}
Is it in 3NF?

Problems with the 3NF schema

- Delete <Washington, 801 22nd St, 20052>
- What if this is the last 20052 tuple ?
 - We lose the info that 20052 is in Washington
 - We also have insert, modify anomalies
- Why the problem ?
 - Dependencies from an attribute to part of a key
- Solution?
 - Make all LHS of dependencies be key or superkey!
 - BCNF – Boyce Codd Normal Form: if all FDs are of the form X → Y where X is superkey.
General Definition of 3NF, BCNF

- Can simplify the 3NF definition to remove the reference to partial dependencies/2NF
- R is in 3NF if for every FD $X \rightarrow Y$, either
 - X is a superkey or
 - Y is a prime attribute
- R is in BCNF if for every FD $X \rightarrow Y$, X is a superkey
 - R in BCNF \Rightarrow R is in 3NF

Normal Forms Compared

- BCNF is preferable, but sometimes in conflict with the goal of dependency preservation
 - It’s strictly stronger than 3NF
- Let’s see algorithms to obtain:
 - A BCNF lossless join decomposition
 - A 3NF lossless join, dependency preserving decomposition
 - Read this on your own from the textbook
BCNF Decomposition Algorithm

Input: Relation R (consisting of all attributes), set of functional dependencies F
Output: BCNF schema result

\[result := \{R\} \]

while there is a schema \(R_i \) in result that is not in BCNF

\{

let \(A \rightarrow B \) be a FD that violates BCNF in relation \(R_i \)

\[result := (result - R_i) \cup \{(R_i - B), (A,B)\} \]

\}

Example 1

- **R** = \((C,T,H,R,S)\)
 - Course (C), Time (T), Hour (H), Room (R), Section (S), Grade (G)
 - \(C \rightarrow T \)
 - \(CS \rightarrow G \)
 - \(HS \rightarrow R \)
 - \(HR \rightarrow C \)
 - \(HT \rightarrow R \)

Key = \{HS\}
Prime attributes = \{H,S\}
Testing for 3NF, BCNF

- Is the schema in BCNF?
 - Check if there are non-BCNF dependencies

- Is the schema in 3NF?
 - Check if there are non-3NF dependencies
 - Is there a dependency to non-prime attribute from something that is not a key?

Normalization Procedure: Summary

- Input= (Set of dependencies F, Set of attributes - single table schema)
 1. Use attribute set closure algo to find (a) keys and (b) prime attributes
 - Prune the search using the various “tricks”
 2. Test each FD in F to see if it satisfies 3NF/BCNF properties
 3. Decompose into smaller relations using decomposition algorithm
 4. If BCNF is not dependency preserving, then go with a 3NF decomposition
Decomposition into BCNF

- Consider relation R with FDs F. If X → Y violates BCNF, decompose R into R - Y and XY.
 - Repeated application of this idea will give us a collection of relations that are in BCNF; lossless join decomposition, and guaranteed to terminate.
 - e.g., CSJDPQV, key C (C → everything), JP → C, SD → P, J → S
 - To deal with SD → P, decompose into SDP, CSJDQV.
 - To deal with J → S, decompose CSJDQV into JS and CJDQV

- In general, several dependencies may cause violation of BCNF. The order in which we ``deal with'' them could lead to very different sets of relations!

BCNF and Dependency Preservation

- In general, there may not be a dependency preserving decomposition into BCNF.

- Example: decomposition of CSJDQV into SDP, JS and CJDQV is not dependency preserving (w.r.t. the FDs JP → C, SD → P and J → S).
 - However, it is a lossless join decomposition.
 - In this case, adding JPC to the collection of relations gives us a dependency preserving decomposition.
 - JPC tuples stored only for checking FD! (Redundancy!)
Example 2:

- \(R = (A, B, C, D, E) \)
- \(A \rightarrow BC \)
- \(CD \rightarrow E \)
- \(B \rightarrow D \)
- \(E \rightarrow A \)

Summary

- We can always decompose into 3NF and get:
 - Lossless join
 - Dependency preservation
- But with BCNF we are only guaranteed lossless joins
- BCNF is stronger than 3NF: every BCNF schema is also in 3NF
- The BCNF algorithm is nondeterministic, so there is not a unique decomposition for a given schema \(R \)
Some Complexity results

- Testing if schema is in 3NF is NP-complete
- Testing for non-BCNF FD is NP-complete
- Finding all keys is NP-complete
- Polynomial time algorithms for computing all minimal covers
- Polynomial time algorithm to compute a lossless-join dependency preserving 3NF relation schema

So how do you design a schema from ground up?

- Go over the application specifications
 - Can represent as ER diagram
- Identify all required information
 - This will constitute your “data”/attributes
- Identify the ‘business rules’
 - This will define the functional dependencies
 - Will also define some of your application logic
 - This step may require you to “interact” with the “client” to clarify your questions
- Apply decomposition algorithm to get a good schema
- Now you are ready to start developing the application
 - Writing SQL queries
 - Writing the PHP/interface code