Introduction to course

- What is this course about?
- Let me know if you figure it out 😊

- ROOM CHANGE FOR WED LAB
 - Lab will meet Wednesday 6:10pm in Tompkins 410
CS 2441: What is it about?

1. Introduction to database design and implementation
2. Social impact and professional ethics analysis
3. Working in teams and team software development
4. Improving technical communication skills:
 1. Writing in the disciplines (WID)
 2. Presentation and discussion skills

Course is not just about Database design – you have to learn and participate in the other three course objectives.

What Is a Database?

- A very large, **integrated** collection of data.
 - Not arbitrary, unrelated data
- Models real-world **enterprise.**
 - Entities (e.g., students, courses)
 - Relationships (e.g., Cam Tucker is registered in cs2441)
Why Databases?

Most CS courses concentrate on code – our interest is managing, manipulating and representing data.

Warning: this course doesn’t focus on teaching SQL or how to be an Oracle DBA (though it will get you started)

Why Databases??

- Information gathering is first step to analysis
 - Huge amount of data can be collected easily
- To effectively analyze data:
 - collect relevant data
 - store in manner amenable to efficient access
 - provide **programming** interface
- Data analysis methods are current emphasis in the market
 - Introduces new problems in privacy
Data Analysis: Examples

- Data Warehousing
- Web search engines
- Data mining (personalization)
- Analytics on social networks
 - Twitter “sentiment analysis”
- Scientific data analysis
- …many more…

Data Analysis: Data Mining

- Data mining: finding ‘hidden patterns’ in data; i.e., patterns and relationships that are not ‘obvious’
- Example: purchasing patterns of supermarket customers
 - Pattern: 40% of Customers who buy beer also buy diapers.
 - How do you use the above pattern/knowledge to improve your marketing strategy??
 - Leave it to the Business Majors to worry about!!
- Data mining is “engine” behind Personalization software
Databases…?

- Why the discussion on Data mining etc.?
 - Analysis is important to make informed decisions
 - Efficient analysis requires efficient storage & design
 - Efficient storage & design requires study of DBMS!
 - Data analysis of no use if your data is useless/incomplete?
- Data Mining and other data analysis tools
 - Require database at the backend!!
- And ….- DBMS is basic backbone in Transaction Processing systems!
 - Airline reservations, banking, e-commerce

Database & Application Development Process

- Organize and Store relevant data
- Operate on the data
 - Search, aggregate,…
- Present results to user
 - Provide interface
- Analyze data
 - Extract patterns …
Example: PDA

- Information on Lucas’s PDA/Cell-phone

<table>
<thead>
<tr>
<th>Calendar</th>
<th>Event</th>
<th>Day</th>
<th>When</th>
<th>Who</th>
<th>Where</th>
</tr>
</thead>
<tbody>
<tr>
<td>lunch</td>
<td></td>
<td>1/15</td>
<td>1pm</td>
<td>John</td>
<td>TGIF</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Contacts</th>
<th>Who</th>
<th>Phone</th>
<th>Email</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>John</td>
<td>123-4567</td>
<td>john@..</td>
<td>1 main st.</td>
</tr>
</tbody>
</table>

Example:

- What if we want to include contact info on our calendar?
 - Do we also have to keep tel. numbers, email, etc.
 - Should we expand the number of “fields”?
 - Should we re-enter the data?
Solution

- Can we link calendar with contacts?
 - “link” calendar entries with contact information and show the results of the two
 - Link should be based on something – simple solution is to link on person’s name
 - What if name is not unique?
 - How to follow links?

Organizing information

- Person has attributes
 - SSN
 - GW ID
 - Name
 - ..
- Student IS a person who:
 - Takes courses at GW
 - Is given grades
 - registers.
 - ..
- This is yet another kind of information…..
 - Where have you seen this?
How to organize the information?

- **What is the data needed?**
 - Eg: What do we need to store to uniquely identify a student entity?

- **How to store & organize the data?**
 - How many attributes are really needed
 - What is an efficient way to organize the data?
 - This is why we need to study schema design and Normal forms

- **How to query the data and generate reports for the end users?**
 - Need a database query language, such as SQL

Data Models and data representation

- All of the data have an implicit *data model*
 - Basic assumption on what is an item of data, how to interpret it, etc.

- A *data model* is a collection of concepts for describing data.
 - Starting point to design of DBMS
 - Provides us with the mathematical basis to prove/assert properties and show correctness of algorithms

- The *relational model* was the first model of data that is *independent* of its data structures and implementation
 - A theory of normalization guides you in designing relations
 - Other data models: network, hierarchical, Object Oriented…
What Is a DBMS?

- **Database** is a large, cohesive, collection of data.
 - Not arbitrary, unrelated data
 - Models real-world *enterprise*.

- A **Database Management System (DBMS)** is the software to store/retrieve and manage databases.
 - Provides an interface over the database
 - Examples: Oracle, MS SQL-server, MySQL,…

Why use a DBMS?

- Why do we need a DBMS, instead of coding in Java?
DBMS Benefits

1. Generality: Programmer/user need not know implementation details; works with logical model
 - indices, sort orders, machine speeds, disk speeds, concurrency
2. Efficiency and Scale: DBMS takes care of optimizing for speed and scaling the system; user not aware
3. Concurrency and Reliability: DBMS handles these
 - What if system crashes – how to recover the data?
 - How to manage different users accessing data at the same time (eg. What if you have multiple threads)
 - Key concept of Transactions

Layered Architecture of a DBMS

(Simplification!)

- **API/GUI**: SQL Query
- **Optimizer**: Physical plan
- **Catalog**: Schemas
- **Index/file/rec Mgr**: Data/etc Requests
- **Buffer Mgr**: Pages Requests
- **Storage Mgr**: Data Requests
- **Storage**: Pages
- **Logging, recovery**: Red = logical, Black = physical
The Layers of the DBMS

The Database Abstraction Provided by the DBMS

We think of databases at two levels:

- **Logical structure:**
 - What users/programmers see – program or query interface
- **Physical structure:**
 - Organization on disk, indices, etc.

The logical level is further split into:

- Overall database design (conceptual; seen by the DB designer)
- Views that various users get to see
Levels of Abstraction

- Many views, single conceptual (logical) schema and physical schema.
 - Views describe how users see the data.
 - Conceptual schema defines logical structure
 - Physical schema describes the files and indexes used.

* Schemas are defined using Data Definition Language (DDL);
* data is modified/queried using Data Manipulation Language (DML).

Data Independence

A user of a relational database system should be able to use the database without knowing about how the precisely how data is stored,

e.g.
SELECT When, Where
FROM Calendar
WHERE Who = "Jane"

After all, you don't worry about IEEE floating-point when you do division in a Java program or with a calculator
More on Data Independence

Logical data independence
Protects the user from changes in the logical structure of the data:
could reorganize the calendar “schema” without changing how we query it

Physical data independence
Protects the user from changes in the physical structure of data:
could change how calendar is stored in memory without changing how the user would write the query

Presentation Layer (4th Tier):
Data-Driven Web Sites

- “Data driven web sites” also add an HTML “presentation” layer on top of what we’ve seen
- Or they use XML plus “style sheets” to get the same effect
How to define and use the database: Data Definition and Manipulation Languages

- data definition language (DDL) to specify database schema
- Data manipulation language (DML) allows users to access or manipulate data as organized by data model
 - procedural DMLs: require user to specify what data and how to get it
 - non-procedural DMLs: require user to specify what data is needed without specifying how to get it.
 - Commercial languages – SQL

Query Languages

- Formal query languages: Relational algebra, Relational Calculus, Domain calculus
 - Why study formal languages?
- Commercial query languages: SQL, QUEL
- SQL: “descendent” of SEQUEL; mostly relational algebra and some aspects of relational calculus
 - has procedural and non-procedural aspects
Processing the Query

Diagram:
- **Web Server / UI / etc**
- **Execution Engine**
- **Storage Subsystem**

Flow:
1. **Hash**
2. **Merge**
3. **Optimizer**
 - **STUDENT**
 - Takes by cid
 - COURSE by cid

SQL Query:
```sql
SELECT *
FROM STUDENT, Takes, COURSE
WHERE STUDENT.sid = Takes.sID
AND Takes.cID = cid
```

Architecture of Query Proc. Engine

Diagram:
- **SQL query**
- **Parse Query**
- **Select Logical Plan**
- **Select Physical Plan**
- **Query Execution**

Flow:
1. **Query optimization**
2. **Logical plan**
3. **Physical plan**
Summary

- DBMS used to maintain, query large datasets.
- Levels of abstraction give data independence.
 - A DBMS typically has a layered architecture.
 - Design and use of a database can be done using a query language.
- DBAs hold responsible jobs and are well-paid!
- DBMS form essential piece in information processing applications
 - Data mining, search engines, Human Genome

Course Administrivia...
Course Objectives

- Relational database theory and design
 - Concepts of data storage and retrieval
- Fluency in SQL and database application dev.
 - Working with relational database systems
- Software integration experience and team experience
 - Design and deploy a large database application
- Social impact analysis skills
 - Social impact of computers, professional ethics
- Technical writing skills and oral communication skills

Very Important: You must come prepared to class (read BEFORE class) and will work on problems during class

Course Outline: Topics

- **Part 1:** Design of Relational Databases
 - Entity-Relationship Model (similar to UML)
 - Formal Query Languages: Rel. algebra
 - Query languages: SQL
 - Relational Schema Design and Normal Forms, Tuning
 - Overview of DBMS architecture
 - File manager, transaction processing, query processing
 - Team based term Project
- **Part 2:** Social Impact of Computing (class discussions, guest speakers)
 - Social impact analysis
 - Codes of professional ethics
 - Intellectual property and software copyrights
 - Privacy
- Writing requirements: discussion of papers, term project report
Course Information - URL

- All course material will be placed at the URL:
 - www.seas.gwu.edu/~bhagiweb/cs2441/
 - Also linked from my homepage
- All course announcements will be placed on web-- check once a week!
- Textbook:
 - You can use any other Database textbook
 - Gift of Fire, Sara Baase. (for Part 2)

Course Requirements: Grading

- Exams: 30-35*%
 - Exam 1 on Databases
 - Exam 2 focuses more on Social Impact
- In-class discussions, assignments, Quizzes: 10-15*%
- Homeworks, Lab assignments, and programming assignments: 20%
 - Most are Database related
- Writing assignments: 10%
 - Includes report of project
- Team term project: 20-25*%
 - Demos required...to pass you must have a working project
- * will depend on final enrollment and size of teams
- Grades scaled as percentage of highest score in class
Project: An example

- A large project requirement with a set of “applications” will be posted on the web site
 - Objective: Build a complete end-to-end working project
- Team based project with multiple “phases”
 - Phase 1: each student assigned to an application, and required to provide a design of the database schema.
 - Phase 2: One set of teams build application A, Second set of teams build application B
 - Phase 3: Create new teams, with members from group A and B. Integrate the applications to provide a complete solution.
 - Integration is not = redesign!
 - Integration reflects real world team SW development practice
- A clear set of “minimum” requirements will be specified – note that meeting minimum requirements only implies a C grade on the project.
- Clear deadlines for specific phases and steps in the project will be posted – no extensions!

Lab Sections and TA

- Lab sections conducted by TA: Roxana Leontie
- Lab sections will cover
 - Intro MySQL, Oracle: SQL, PL/SQL, JDBC
 - Short tutorials – including application development using PHP, JDBC, XML
 - Clarifications on Programming Assignments
 - Help with analysis of Project (but not in the design of the project)
 - In-class exercises in some weeks: have to implement the queries during the lab; no extensions!
- Lab Assignments will be posted “separate” from homeworks – you may have BOTH due concurrently
Academic Integrity Policy

- www.cs.gwu.edu/academics/integrity.html
 - details and FAQ
- No collaboration (of any sort) on homeworks and programming assignments
 - Including external resources
- No collaboration between teams
 - within team each team member must have clear role -- i.e., clearly partitioned tasks for each team member
- violation of integrity policy -- default is maximum punishment (at least F for course)

Next ..

- Read Chapter 1,2
- Intro to Entity-Relationship Model
 - Homework 1 assigned – due Jan.24th !!
 - Lab Homework 1 will be posted – due next week.
 - Notes posted