
P a g e 1 | 17

NoSQL DB

• Overview ... 2

• Traditional RDBMSs .. 2

• NoSQL Database .. 6

• NoSQL Database Taxonomy .. 6

• Large databases Scalability: CAP Theorem & Base Properties 14

o CAP Theorem .. 14

o Base Properties .. 15

• Strengths and weaknesses of NoSQL ... 16

P a g e 2 | 17

• Overview

o It is a non-relational database solution for Big Data in a more

efficient way.

o RDBMS were not designed to be distributed

o It is originally developed by Google and Amazon

• Traditional RDBMSs

o Data stored in columns and tables

o Data Manipulation Language: Select, Insert, Update, & Delete

statements

o Functions and Procedures

o Explicit transaction control

o Schema defined at the start

o Triggers to respond to Insert, Update , & Delete

o Security and Access Control

o Transactions

o Create indexes to support queries

o In Memory databases

o Vertical Scalability (or up)

▪ Can be achieved by hardware upgrades (e.g., faster CPU, more

memory, or larger disk)

o ACID properties:

▪ For every change you make, you should ensure strict ACID

properties.

▪ The properties are:

o Atomicity:

• An “all or nothing” rule.

P a g e 3 | 17

• If a transaction fails, the entire transaction is rolled

back.

o Consistency:

• A transaction is successful only once it is

completely executed and saved any failure.

• No half-completed transactions.

o Isolation:

• Multiple transactions can occur simultaneously

without interfering with each other.

• Each transaction is independent.

o Durability:

• The results of a committed transaction survive

failures.

• Ensures that once a transaction is successful

(committed) to the database, it is saved in the

transaction logs.

• Changes made to the system by successful

transactions are durable - saved on disks.

▪ Example:

- Given a checking account A with a balance of $1000 and a

saving account B with a balance of $500.

- We want to transfer $300 from A to B.

Atomicity

Successful Transaction Failed Transaction

Before: A=$1000 and B=500

➔ Total=$1500

Step1: Read balance(A)

Step2: Write Balance(A) - $300

Step3: Read Balance(B)

Step4: Write Balance(B)+$300

After: A=$700 and B=$800

➔ Total=$1500

Before: A=$1000 and B=500 ➔

Total=$1500

Step1: Read balance(A)

Step2: Write Balance(A) - $300

Step3: Read Balance(B)

Failure ➔ Rollback at the beginning

Step4: Write Balance(B)+$300

After: A=$1000 and B=$500 ➔

Total=$1500

P a g e 4 | 17

Consistency

Successful Transaction Failed Transaction

Before: A=$1000 and B=500

➔ Total=$1500

Step1: Read balance(A)

Step2: Write Balance(A) - $300

Step3: Read Balance(B)

Step4: Write Balance(B)+$300

After: A=$700 and B=$800

➔ Total=$1500

Before: A=$1000 and B=500 ➔

Total=$1500

Step1: Read balance(A)

Step2: Write Balance(A) - $300

Failure:

A=$1200 and B=$500

Data is inconsistent

Tables should be locked.

Step3: Read Balance(B)

Step4: Write Balance(B)+$300

Isolation

Two concurrent transactions: T1 and T2

Assume: A=$1000 and B=300 ➔ Total=$1300

T1: First T2: Second

Step1: Read balance(A)

Step2: Write Balance(A) - $100

Step3: Read Balance(B)

Step4: Write Balance(B)+$100

Step1: Read balance(B)

Step2: Write Balance(B) - $200

Step3: Read Balance(A)

Step4: Write Balance(A)+$200

Assume T1 then T2 Assume T2 then T1

T1: First

Before: A=$1000 and B=300

➔ Total=$1300

After: A=$900 and B=$400

➔ Total=$1300

T2: First

Before: A=$1000 and B=300

➔ Total=$1300

After: A=$1200 and B=$100

➔ Total=$1300

T2: Second

Before: A=$900 and B=$400

➔ Total=$1300

Final: A=$1100 and B=$200

T1: Second

Before: A=$1200 and B=$100

➔ Total=$1300

Final: A=$1100 and B=$200

P a g e 5 | 17

➔ Total=$1300 ➔ Total=$1300

Durability

Updates and modifications to the database are stored in and written to disk

and they persist even if system failure occurs

P a g e 6 | 17

• NoSQL Database

o NoSQL stands for:

▪ No Relational

▪ No RDBMS

▪ Not Only SQL

o NoSQL is a database solution for all databases that don’t follow the

RDBMS principles.

o Does not give importance to ACID properties

o Unlike RDBMS, NoSQL is Schema-less (not a well-defined schema)

o It is for big data applications that require mostly queries and few

updates.

o Definition:

▪ Wikipedia: “A NoSQL database provides a mechanism for

storage and retrieval of data that use looser consistency models

than traditional relational databases in order to

achieve horizontal scaling and higher availability. Some

authors refer to them as "Not only SQL" to emphasize that

some NoSQL systems do allow SQL-like query language to be

used.”

o NoSQL solutions are designed to run on clusters or multi-node

database solutions:

▪ Horizontal scalability (or out):

o Can be achieved by adding more machines

o Requires database sharding and probably replication

• NoSQL Database Taxonomy

▪ There are a variety of NoSQL databases:

o key-value stores

o Document databases

o Column-family (aka big-table) stores

o graph databases

P a g e 7 | 17

▪ key-value stores

o They are the simplest NoSQL databases.

o Every single item in the database is stored as an attribute name

(or 'key'), together with its value.

o A design concept that exists in several programming languages:

an array or dictionaries in Python, etc.

o A value, which can be basically any piece of data or

information, is stored with a key that identifies its location.

o Key-value database schema:

• Table

name:primary_key_value:attribute_name:value

o Example: Customer table

custID Lname Fname Email

C01 May Kate mk@myemail.com

mailto:mk@myemail.com

P a g e 8 | 17

The key-value database schema is:

Customer:C01:Lname:”Mary”

Customer:C01:Fname:”Kate”

Customer:C01:Email:”mk@myemail.com”

Customer:C02:Lname:”John”

Customer:C02:Fname:”Paul”

Customer:C02:Email:” mk@myemail.com”

Customer:C03:Lname:”Omar”

Customer:C03:Fname:”Anbar”

Customer:C03:Email:” jo@myemail.com”

o Database examples:

▪ Amazon DynamoDB

▪ Couchbase

▪ Document databases:

o Pair each key with a complex data structure known as a

document.

o The main element is a "document“ that corresponds to a row in

RDBMS.

o Documents are stored in some standard formats like JSON

(BSON).

o Documents are uniquely identified via a unique key.

o The database offers an API or query language that retrieves

documents based on their contents.

o It is a simple, powerful, and scalable data model

o Documents are schema free:

C02 John Paul jo@myemail.com

C03 Omar Anbar oa@myemail.com

mailto:jo@myemail.com

P a g e 9 | 17

▪ Different documents can have structures and schema that

differ from one another. (An RDBMS requires that each

row contain the same columns.)

o Example: Customer Table

The document-oriented database schema is:

 { Id: C01,

 Lname: “May”,

 Fname: “Kate”,

 Email: “mk@myemail.com”

 }

 { Id: C02,

 Lname: “John”,

 Fname: “Paul”,

 Email: “jp@myemail.com”

 }

 { Id: C03,

 Lname: “Omar”,

 Fname: “Anbar”,

 Email: “oa@myemail.com”

 }

o Database Example:

▪ MongoDB (used in FourSquare, Github, and more)

▪ CouchDB (used in Apple, BBC, Canonical, Cern, and

more)

custID Lname Fname Email

C01 May Kate mk@myemail.com

C02 John Paul jo@myemail.com

C03 Omar Anbar oa@myemail.com

mailto:mk@myemail.com
mailto:jo@myemail.com

P a g e 10 | 17

▪ Column Store Database

o Store Optimized for queries over large datasets, and store

columns of data together, instead of rows

o Columnar databases focus on the efficiency of read

operations: Data is organized in groups of columns (i.e.,

column families).

o Compression algorithms work best on columns.

o Column store database’s structure:

▪ It stores data in column families:

• They are like table in an RDBMS

• They contain rows and each row contains columns

associated with a row key.

o column family ➔ table

o column family row ➔ table row

o column family column ➔ table column:

▪ Each column has three fields:

• Column Key which the name of the

column

• Column value (cell)

• Timestamp: time and date the data

was inserted.

▪ Each column can be thought of as a set of fields in a

relational database.

▪ No need to store NULL values: rows may not have the

same columns.

▪ Columns can be added to any row at any time without

having to add it to other rows.

P a g e 11 | 17

o

o Drawback:

▪ Slow to add new data or update old data.

o Example:

In row-oriented database, the data is stored as follows:

custID Lname Fname Email

C01 May Kate mk@myemail.com

C02 John Paul

C03 Omar Anbar oa@myemail.com

C01 May Kate mk@myemail.com C02 John Paul

NULL C03 Omar Anbar oa@myemail.com

mailto:mk@myemail.com
mailto:mk@myemail.com

P a g e 12 | 17

In column-oriented database, the data is stored as follows:

o Database Examples:

▪ BigTable

▪ Cassandra

▪ HBase

▪ Graph Databases :

o Data is organized in the form of a graph to store entities and

their relationships.

o A node represents an entity, and an edge represents the

relationship between entities.

o Scalability may be problematic.

P a g e 13 | 17

proId Name price

P001 Phone $300

P002 Tv $2000

P003 Laptop $500

Trandid Ordered custid Prodid Qty

100 200 C01 P001 1

101 201 C02 P002 2

102 202 C01 P003 2

103 203 C01 P002 1

▪ Database examples:

o Neo4JS

o OrientDB

o ArangoDB

custID Lname Fname Email address City State zip

C01 May Kate mk@myemail.com 123 M

street

Fairfax VA 22033

C02 John Paul jo@myemail.com 123 K

street

Vienna VA 22181

C03 Omar Anbar oa@myemail.com 123 N

street

Vienna VA 22180

mailto:mk@myemail.com
mailto:jo@myemail.com

P a g e 14 | 17

• Large databases Scalability: CAP Theorem & Base Properties

o Large NoSQL databases come with certain limitations.

o Horizontal scalability may lead to the possibility of node failure.

o Downtime for large companies such as Google means lost revenue.

o For these companies to guarantee availability and scalability, they

must scarify “strict” Consistency.

o CAP Theorem

▪ NoSQL cannot provide consistency and high availability at the

same time.

▪ CAP theorem describes the limitations of distributed databases.

▪ CAP theorem or Eric Brewers theorem states that we can only

achieve at most two of the following:

o Consistency,

o Availability, and

o Partition Tolerance.

▪ Consistency:

o It guarantees that all nodes are up to date and see the same data.

P a g e 15 | 17

o A read will not be successful if not all servers are not updated

and

▪ Availability:

o The system continues to operate, even in case of failure.

o Every request receives a response about whether it was

successful or failed.

o It does not guarantee that a read request returns the most recent

write.

▪ Partition Tolerance:

o The database continues to work despite system failure.

▪ Is it possible to have Availability, Consistency, and Partition

Tolerance at the same time:

o MongoDB and HBase: C & P

o Cassandra: A & P

o Base Properties

▪ NoSQL relies upon a softer model known as the BASE model.

▪ If ACID properties belong to RDBMSs, BASE properties belong

to NoSQL databases.

▪ Basically, Available:

o The system works all the time (available in case of failure).

o Any request will receive an answer even in changing state

▪ Soft State:

o The state of the system will change over time without any

update.

▪ Eventually Consistent:

o Not immediately consistent, but with time data will be

consistent.

o There is no guarantee about when this will occur.

P a g e 16 | 17

• Strengths and weaknesses of NoSQL

o Pros:

▪ NoSQL databases are highly scalable.

▪ They can be scaled horizontally as opposed to vertically-an

advantage over SQL databases.

▪ The right solution for big data applications

▪ Less Code: Many NoSQL databases require only a few lines of

code.

▪ High performance: millions of transactions per second.

▪ Flexibility to change data types at any time.

▪ Availability and redundancy

▪ Ease of use via APIs

o Drawbacks:

P a g e 17 | 17

▪ NoSQL databases is that they don't support ACID (atomicity,

consistency, isolation, durability) transactions across multiple

documents

▪ No universal query language and no joins.

▪ Data inconsistency

▪ Lack of data integrity

