
Page 1 of 31 

 

Spark Framework 

 

 

• Overview ........................................................................................................ 2 

• Spark Features .............................................................................................. 3 

• Spark Architecture ....................................................................................... 4 

• Spark Ecosystem ........................................................................................... 6 

• Spark Abstract Data Types.......................................................................... 7 

• Resilient Distributed Dataset (RDD)........................................................... 8 

• Spark Transformations and Actions .......................................................... 9 

• RDD Creation .............................................................................................. 11 

• Examples: Wordcount in Python .............................................................. 12 

• Spark DataFrames ...................................................................................... 14 

• Spark Dataset .............................................................................................. 20 

• Spark RDD, DataFrame, and Dataset ...................................................... 24 

• Spark Data Partition .................................................................................. 25 

• Spark Application Execution ..................................................................... 27 

• Directed Acyclic Graph (DAG) ................................................................. 28 

• Spark Special Variables ............................................................................. 29 

• Apache Spark Advantages ......................................................................... 30 

• Spark vs. Hadoop ........................................................................................ 31 

 

  



Page 2 of 31 

 

• Overview 

o Apache Spark is an Open-source analytical processing engine for large 

scale powerful distributed data processing and machine learning 

applications.  

o It is framework that supports SQL queries, streaming data, machine 

learning (ML) and graph processing. 

o Spark run 100 times faster in-memory, and 10 times faster on disk. 

o Spark was used to sort 100 TB of data 3 times faster than Hadoop 

MapReduce on one-tenth of the machines. 

o Apache Spark is a framework that is supported in Scala, Python 

(PySpark), R Programming, and Java.  

o Hadoop data processing is slow: Too many disk I/Os  

 

 

 

 

 

 

 

 

 

 

 

 

  

… 

HDFS 

Read 

Iteration 

HDFS 

Write 

H
D

F
S

 

R
ea

d
 

Iteratio
n

 

HDFS 

Write 



Page 3 of 31 

 

• Spark Features 

o In-memory computation: 

▪ Spark stores the data in the RAM of servers which allows quick 

access and in turn accelerates the speed of analytics. 

o Distributed processing using parallelize. 

▪ Can be used with many cluster managers (Spark, Yarn, Mesos 

etc.) 

o Flexibility: 

▪ Spark supports multiple languages and allows the developers to 

write applications in Java, Scala, R, or Python. 

o Fault-tolerant: 

▪ Ability to rebuild lost data automatically on failure 

o Immutable: 

▪ Having Immutable data is safer to share across processes.  

o Lazy evaluation: 

▪ Spark Transformations are lazy - they do not compute the results.  

▪ Spark computes these Transformations when an action requires a 

result for the driver program. 

o Cache & persistence 

o Inbuild-optimization when using DataFrames. 

 

 

  



Page 4 of 31 

 

• Spark Architecture 

o Apache Spark works in a master-slave architecture where the master is 

called Master Node and slaves called Worker Nodes.  

o It had four components: Spark Driver, Executors, cluster Manager, 

and Worker Nodes 

o Driver Node: 

o It consists of a Driver program. 

o The Spark application behaves as a Driver program and create a 

SparkContext that provides access to all Spark functionalities.  

o The Spark Context talks to your Cluster Manager. 

o Spark application run as independent sets of tasks. 

o The driver program and Spark Context takes care o the job 

execution within the cluster. 

o Cluster Manager: 

o It can be YARN, Mesos, or your computer if you run your Spark as 

standalone. 

o The Spark manager in case of Yarn is your Resource manager. 

o Cluster Manager Types: Deployment 

▪ Spark supports the following cluster managers: 

• Standalone – a simple cluster manager included with 

Spark that makes it easy to set up a cluster. 

• Apache Mesos – Mesons is a Cluster manager that can 

also run Hadoop MapReduce and Spark applications. 

• Hadoop YARN – the resource manager in Hadoop 2. 

This is mostly used, cluster manager. 

• Kubernetes – an open-source system for automating 

deployment, scaling, and management of containerized 

applications. 

 

o Worker Nodes: 

o The Spark application will be split into multiple tasks allocated on 

multiple Worker nodes.  



Page 5 of 31 

 

 

 

 

 

 

 

 

 

  



Page 6 of 31 

 

• Spark Ecosystem 

o It supports several APIs for data processing and analysis. 

o It includes the following components: 

▪ Spark SQL 

▪ Spark Streaming  

▪ MLLib (Machine Learning) 

▪ GraphX (Graph Computation) 

  

o Spark Core 

▪ Spark Core contains the basic functionality of Spark, including 

components for task scheduling, memory management, fault 

recovery, interacting with storage systems, and more.  

▪ Spark Core provides APIs that define and manipulate resilient 

distributed datasets (RDDs), which are Spark’s main programming 

abstraction. RDDs represent a collection of items distributed across 

many compute nodes that can be manipulated in parallel.  

 

 

o Spark SQL 



Page 7 of 31 

 

▪ Spark SQL allows querying data via SQL as well as the Apache 

Hive variant of SQL—called the Hive Query Language (HQL)— 

▪ It also supports other sources of data, including Hive tables, Parquet, 

and JSON.  

 

o Spark Streaming 

▪ Spark Streaming is a Spark component that enables processing of 

live streams of data such as logfiles 

▪ Spark Streaming provides an API for manipulating data streams that 

closely matches the Spark DD APIs. 

 

o MLlib 

▪ Spark comes with a library containing common machine learning 

(ML) functionality, called MLlib.  

▪ MLlib provides multiple types of machine learning algorithms, 

including classification, regression, clustering, and collaborative 

filtering.  

 

o GraphX 

▪ GraphX is a library for manipulating graphs (e.g., a social network’s 

friend graph) and performing graph-parallel computations.  

▪ GraphX extends the Spark RDD API, allowing us to create a 

directed graph with arbitrary properties attached to each vertex and 

edge.  

▪ GraphX also provides various operators for manipulating graphs 

(e.g., subgraph) and a library of common graph algorithms (e.g., 

PageRank and triangle counting). 

 

 

 

• Spark Abstract Data Types 



Page 8 of 31 

 

o Spark provides different abstract data structures: Resilient Distributed 

Dataset (RDD), DataFrame, and Dataset. 

▪ 2011: Spark was introduced with the concept of RDDs 

▪ 2013: DataFrames were introduced  

▪ 2015: Datasets were introduced 

 

• Resilient Distributed Dataset (RDD) 

o RDD is the main data abstraction provided by Spark. 

o They are like list in python. 

o RDD is a fault-tolerant collection of data elements split across Worker 

Nodes that can be operated on in parallel. 

o RDD are immutable: once they are created, they cannot be modified. 

o  Resilient: 

▪ Recover from node failures 

▪ An RDD keeps its lineage information ➔ It is created from its 

parent RDD. 

o Distributed: 

▪ Each RDD is composed of one or more partitions: 

more partitions ➔ more parallel 

 

  



Page 9 of 31 

 

• Spark Transformations and Actions 

o Two types of operations: 

▪ Transformations 

▪ Actions 

 

 

 

 

 

 

 

 

 

 

 

 

 

o Transformations:  

▪ They are low level APIs. 

▪ They produce new RDD from the existing RDDs 

▪ They take RDD as input and produces one or more RDD as 

output. 

▪ Immutable: they cannot be changed. 

▪ Lazy evaluation: 

▪ Transformations are not executed immediately. 

▪ They are executed only when an action is called.   

Transformations 

Actions 

Results 

RDD 



Page 10 of 31 

 

▪ RDD Lineage: 

▪ The sequence of RDDs forms a lineage 

▪ It is also known as RDD operator graph or RDD 

dependency graph. 

▪ It is a logical execution plan of a Spark program.   

▪ Support: 

▪ Languages: RDD are available for all languages: R, Python, 

Java, Scala.  

▪ File Format: textFile, CSV, JSON, Parquet file format/ 

▪ Fault-tolerance: 

 

 

 
 

 

▪ Actions:  

▪ Spark Actions trigger execution of Spark programs and 

return values from Spark. 

▪ They do not produce RDDs. 

▪ Actions include count, collect, save, etc. (See table below) 

▪ triggers execution 

 

 

 

Action Description 



Page 11 of 31 

 

reduce(func)   aggregate the elements of the dataset using a function 

func (which takes two arguments and returns one), and 

should also be commutative and associative so that it 

can be computed correctly in parallel 

collect() return all the elements of the dataset as an array at the 

driver program – usually useful after a filter or other 

operation that returns a sufficiently small subset of the 

data 

count() return the number of elements in the dataset 

first() return the first element of the dataset – similar to take(1) 

take(n) return an array with the first n elements of the dataset – 

currently not executed in parallel, instead the driver 

program computes all the elements 

countByKey() only available on RDDs of type (K, V). Returns a `Map` 

of (K, Int) pairs with the count of each key 

foreach(func) run a function func on each element of the dataset – 

usually done for side effects such as updating an 

accumulator variable or interacting with external storage 

systems 

 

• RDD Creation 

o Three ways to create RDDs: 

▪ From data in memory 

▪ From a file or a set of files 

▪ From another RDD 

 

o From Memory: Parallelize Collection 

from pyspark.sql. import SparkSession 

spark = SparkSession.builder.getOrCreate() 

myrdd = spark.sparkContext.parallelize([“Jan”, “Feb”, “March”, “April”]) 

myrdd.collect() 

[“Jan”, “Feb”, “March”, “April”] 



Page 12 of 31 

 

mrdd.count() 

 

4 

 

o From a text file:   

from pyspark.sql. import SparkSession 

spark = SparkSession.builder.getOrCreate() 

myrdd = spark.sparkContext.textFile(“input.txt”) 

or 

myrdd = spark.sparkContext.textFile(“input.txt”, minPartitions=5) 

 

o From another RDD:   

from pyspark.sql. import SparkSession 

spark = SparkSession.builder.getOrCreate() 

myrdd = spark.sparkContext.parallelize([“Jan”, “Feb”, “April”, “Aug”]) 

myrdd2 = myrdd.filter(lambfa x.startwith(‘A’)) 

 

[”April”,”Aug”] 
 

• Examples: Wordcount in Python  

o Consider a word count example: It counts each word appearing in a 

document.  

 

# Apache.org 

# Create SparkSession and sparkContext 

from pyspark.sql import SparkSession 

spark = SparkSession.builder\ 

                    .master("local")\ 

                    .appName('Countprogram')\ 

                    .getOrCreate() 

sc=spark.sparkContext 

//Read an input file  

text_file = sc.textFile("wordfilein.txt") 



Page 13 of 31 

 

counts = text_file.flatMap(lambda line: line.split(" ")) \ //Transformation-split 

each line by space and creating a //single work per record 

             .map(lambda word: (word, 1)) \   //Transformation-add a column to 

each work 

             .reduceByKey(lambda a, b: a + b)  //Transformation 

counts.saveAsTextFile("wordfileout.txt")  //Action 

 

  



Page 14 of 31 

 

• Spark DataFrames 

o They are immutable high-level APIs 

o DataFrames handle structured and unstructured data.  

o Every DataFrame has a Schema. 

▪ Data is organized into named columns, like tables in RDMBS or a 

dataframes in R/Python 

o You can use SQL queries on DataFrame using spark SQL 

 

 

o Use SparkSession as an entry point to create and manipulate DataFrames. 

It is similar to SparkContext for RDDs.  

o Dataframes are supported by all languages: 

▪ APIs available in Scala, Java, Python, and R 

o DataFrame Creation: 

▪ Create a DataFrame from a list collection using the toDataFrame() 

method from the SparkSession. 

o Consider the following list: 

 

students = [{"StdId": 100, "Name": “Mary“, "Grade": ‘A’}, 

        {"StdId": 200, "Name": “Paul”, "Grade": ‘B’}, 

        {"StdId": 300, "Name": “John“, "Grade": ‘C’}] 

 

from pyspark.sql import SparkSession 

spark = SparkSession.builder.getOrCreate() 

 
Col 1 Col 2  … Col n 

    

    

    

    

DataFrame 

 

 

Spark 

SQL 

Json 

Avro 

Hive 



Page 15 of 31 

 

df = spark.createDataFrame(students) 

//Check the type 

pyspark.sql.datarame.DataFrame 

//Display DataFrame 

df.show() 

 

StdId Name Grade 

100 Mary A 

200 Paul B 

300 John C 

 

df.show(1) 

 

StdId Name Grade 

100 Mary A 

 

▪ Convert an RDD to a DataFrame using the toDF() method: 

o Given the following list: 

students = [(100, “Mary”, ‘A’), (200, “Paul”, ‘B’), (100, 

“John”, ‘C’)] 

stdRDD = spark.sparkContext.parallelize(students) 

print(stdRDD.collect())  

 

[(100, “Mary”, ‘A’), (200, “Paul”, ‘B’), (100, “John”, ‘C’)] 

//Convert to DataFrame 

stdDF =stdRDD.toDF() 

stdDF.show() 

 

_1 _2 _3 

100 Mary A 

200 Paul B 

300 John C 



Page 16 of 31 

 

 

//Specify column names 

stdDF =stdRDD.toDF(schema=[‘StdId’, ‘Name’, ‘Grade’]) 

stdDF.show() 

 

StdId Name Grade 

100 Mary A 

200 Paul B 

300 John C 

//Another way to create DataFrame 

stdDF = spark.createDataFrame(stdRDD, schema=[‘StdId’, 

‘Name’, ‘Grade’]) 

stdDF.show() 

 

StdId Name Grade 

100 Mary A 

200 Paul B 

300 John C 

 

▪ Import a file into a SparkSession as a DataFrame directly. 

o Given a csv file: students.csv 

 

StdId ,Name,Grade 

100,Mary,A 

200,Paul,B 

300,John,C  

 

from pyspark.sql import SparkSession 

spark = SparkSession.builder.appName('df_csv_test').getOrCreate() 

students = spark.read.csv('students', header=True, inferSchema=True) 

students.show() 

 



Page 17 of 31 

 

StdId Name Grade 

100 Mary A 

200 Paul B 

300 John C 

 

o Reading a Json file: 

Using the same data as a Json file: 

[ 

{“stdID”: “100”, 

  “name”: “Mary”, 

  “Grade”: ‘A’ 

} 

{“stdID”: “200”, 

  “name”: “Paul”, 

  “Grade”: ‘B’ 

} 

{“stdID”: “100”, 

  “name”: “John”, 

  “Grade”: ‘C’ 

} 

   ] 

 

dfjson = spark.read.json(“students.json”) 

dfjson.printSchema() 

dfjson.show() 

o Try to create a DataFrame for the following Json file 

[{"name":"Mary", 

  "Courses":[{ 

  "Algorithms": ‘A’}, 

      { 

  "Data Structure": ‘B’} 

     ]} 



Page 18 of 31 

 

{"name":"Paul", 

  "Courses":[{ 

  "Algorithms": ‘B’}, 

      { 

  "Data Structure": ‘A’} 

     ]} 

{"name":"John", 

  "Courses":[{ 

  "Algorithms": ‘A’}, 

      { 

  "Data Structure": ‘C’} 

     ]} 

] 

 

o DataFrame Operations: 

▪ In the following, we are going to use the students.csv DataFrame we 

created earlier: 

from pyspark.sql import SparkSession 

spark = SparkSession.builder.appName('df_csv_test').getOrCreate() 

students = spark.read.csv('students', header=True, inferSchema=True) 

 

▪ Show 

students.show() 

 

StdId Name Grade 

100 Mary A 

200 Paul B 

300 John C 

 

▪ Collect: returns the DataFrame as a set of rows 

 Students.collect() 



Page 19 of 31 

 

[Row (stdID =”100”, name=”Mary”, “Grade=”A”), 

 Row (stdID =”200”, name=”Paul”, “Grade=”B”), 

 Row (stdID =”300”, name=”John”, “Grade=”C”) 

 ] 

 

▪ Take: similar to collect, but you can specify the number of rows you 

want to return 

Students.take(2) 

[Row (stdID =”100”, name=”Mary”, “Grade=”A”), 

 Row (stdID =”200”, name=”Paul”, “Grade=”B”), 

] 

 

▪ printSchema: returns the schema of the DataFrame 

 

▪ count: returns the number of rows is the DataFrame 

students.count() 

3 

 

▪ select: prints columns from the DataFrame 

students.select(“Name”).show(2) 

 

Name 

Mary 

Paul 

▪ filter: filters data from the DataFrame 

 

students.filter(students[“Grade” = ‘B’)].show() 

 

StdId Name Grade 

200 Paul B 

 

▪ like: matches certain criteria and return data from the DataFrame 



Page 20 of 31 

 

 

students.select(“Name”).filter(“Name like ‘M%’ “).show() 

Name 

Mary 

 

▪ Sort: sorts the DataFrame based on a certain column  

students.sort("Name”).show() 

StdId Name Grade 

300 John C 

100 Mary A 

200 Paul B 

 

• Spark Dataset 

o A Dataset is also a SparkSQL structure and represents an extension of the 

DataFrame APIs. 

o Spark dataset provides a type-safe, object-oriented programming 

interface. 

o They provide compile-time safety-check for errors before they run. 

o Dataset APIs offers domain specific operations like sum(), join(), 

groupBy(). 

o Dataset: Only JVM based languages: Java and Scala 

o Datasets can be converted to DataFrame and vice versa.  

DataFrame = Dataset[Row] 

 

DataFrame is a set of generic untyped row objects.  

Dataset provides typed APIs 

o Dataset creation: 

▪ Four ways to create a dataset: 

o Create a dataset from sequence of elements 

o Create a dataset from sequence of Case Classes 



Page 21 of 31 

 

o Create a dataset from an RDD 

o Create a dataset from DataFrame 

▪ Create a dataset from a sequence: 

scala> val evennum = Seq(0,2,4,6,8) 

evennum: Seq[Int] = List(0,2,4,6,8) 

scala> val evennumDs = evennum.toDS() 

evennumDs: org.apache.spark.sql.Dataset[int] = [value: int] 

  scala> evennumDs.show 

value 

0 

2 

4 

6 

8 

   

▪ Create a dataset from a sequence of Case Classes: 

scala> case class students (stdID: Int, name: String, Grade: Char) 

defined class students 

scala> val studentsSeq = Seq(students(100, “Mary”, ‘A’),  

             students(200, “Paul”, ‘B’), 

      students(300, “John”, ‘C’)) 

studentsSeq: Seq[students] = List(students(100,Mary,A), 

students(200,Paul,B), students(300,John,C)) 

 

scala> val studentsDs = studentsSeq.toDS() 

studentsDs: org.apache.spark.sql.Dataset[students] = [stdID:Int, name: 

String, Grade: Char] 



Page 22 of 31 

 

 

scala> studentsDs.show 

StdId Name Grade 

100 Mary A 

200 Paul B 

300 John C 

 

▪ Create a dataset from an RDD: 

scala> val studentsSeq = Seq(students(100, “Mary”, ‘A’),  

             students(200, “Paul”, ‘B’), 

      students(300, “John”, ‘C’)) 

studentsSeq: Seq[students] = List(students(100,Mary,A), 

students(200,Paul,B), students(300,John,C)) 

scala> val studentsRDD = spark.sparkContext.parallelize(studentsSeq) 

 

scala> val studentsDS = studentsRDD.toDS() 

scala> studentsDS.show 

_1 _2 _3 

100 Mary A 

200 Paul B 

300 John C 

 

▪ Create a dataset from a DataFrame: 

scala> case class students (stdID: Int, name: String, Grade: Char) 

defined class students 

scala> val studentsSeq = Seq(students(100, “Mary”, ‘A’),  

             students(200, “Paul”, ‘B’), 



Page 23 of 31 

 

      students(300, “John”, ‘C’)) 

scala> val studentsRdd = spark.sparkContext.parallelize(studentsSeq) 

 

scala> val studentsDd = studentsRdd.toDF() 

 

scala> val studentsDs = studentsDf.as[students] 

  

     scala> studentsDs.show  

stdId Name Grade 

100 Mary A 

200 Paul B 

300 John C 

  



Page 24 of 31 

 

• Spark RDD, DataFrame, and Dataset 

 

RDD DataFrame Dataset 

Spark 1.0 Spark1.3 Spark 1.6 

Low level APIs High level APIs High level APIs 

Lazy evaluation Lazy evaluation Lazy evaluation 

Type safe Not type safe Type sage 

Developer takes care 

of optimization 

Auto optimization 

using Catalyst 

Optimizer 

Auto optimizer 

Not good in 

performance 

Not good in 

performance 

Better performance 

Not memory efficient Not memory efficient More memory 

efficient 

 

 

  



Page 25 of 31 

 

• Spark Data Partition 

o Data in a Spark cluster is split into multiple partitions 

o Every node contains one or more partitions. 

o The number of partitions can be configured by the application. By default, 

it is set to the total number of cores on all the executor nodes. 

o Partitions do not span multiple machines. 

o Spark tries to set the number of partitions automatically based on your 

cluster.  

o Users can also manually set the number of partitions:  

sc.parallelize(data, 10)). 

o Tuples in the same partition are guaranteed to be on the same machine. 

o Spark assigns one task per partition. 

o Ideal number of partitions: 

▪ Spark recommends to have 4x of partitions to the number of cores in 

cluster available for application. 

o Types of partitioning: 

▪ Hash partitioning 

▪ Range partitioning 

o Hash Partitioning: 

▪ Splits our data in such way that elements with the same hash (can be 

key, keys, or a function) will be in the same partition. 

▪ We can configure the number of partitions:  

Hash(key) % numPartitions 

o Range Partitioning: 

▪ RDD are partitioned is based on a range of values of the partitioning 

key. The key must follow a particular ordering. 



Page 26 of 31 

 

 
   

  



Page 27 of 31 

 

• Spark Application Execution 

o For each application, Spark create on driver and a set of executers. 

o The driver is the master: responsible for analyzing, distributing, and 

scheduling and monitoring work across executors. 

o Executers are responsible of executing the code (tasks) 

 
 

 

 

 

 

o When an application is submitted to Spark, the Driver program is 

initialed by Spark Context. 

o An application consistes of several job: one per each each action. 

o Once a job is created, it is submitted to a Spark Directed Acyclic Graph 

(DAG) scheduler (see next) 

o Each job can have multiple stages and each stage may have multiple 

tasks. 

 



Page 28 of 31 

 

 

• Directed Acyclic Graph (DAG) 

o DAG a finite direct graph with no directed cycles.  

 

 

o DAG in Spark is a combination of vertices as well as edges. In DAG 

vertices represent the RDDs and the edges represent the operation to be 

applied on RDD.  



Page 29 of 31 

 

o When we call an action is encountered, Spark create a DAG and 

submits it to the DAG Scheduler. 

o The DAG scheduler splits the graph into multiple stages. 

o Stages: 

▪ A stage is created for each partition. 

▪ A stage is divided into individual tasks and every task executes 

the same set of instructions. 

▪  

o Tasks: 

▪ It is the smallest execution unit in Sparke executing a series of 

narrow transformations inside an executor.  

▪ Example: Reading a file, filtering and applying map() on data can 

be combined into a task.  

   

• Spark Special Variables 

o Spark supports two types of shared variables:  

▪ broadcast variables 

▪ accumulators  

 

o Broadcast variables: 

▪ Read-only  

▪ Should fit into memory on a single machine. 

▪ They are distributed to the cluster. 

▪ It can be used to cache a value in memory on all nodes. 

▪ Create a broadcast variable using Python: 

>> broadcastList = sc.broadcast([3.14, 9.8, 30]) 

>> broadcastList.value  //to print 

 

>> ////delete cached copies of the variable on all executors 

>> broadcastList.unpersist  

>> broadcastList.destroy 



Page 30 of 31 

 

 

o Accumulator: 

▪ They are used by worker nodes to write some data. 

▪ They can only “added” to, such as counters and sums. 

▪ Create an accumulator variable to store a count by each task using 

Python 

>> accumCount = sc.accumulator(0) 

>> sc.parallelize([0,2,4,6,8]).foreach(lambda x: accumCount.add(x)) 

>> accumCount.value   //print 

     20 

▪ Tasks can only add to an accumulator variable and cannot read its 

value.  

▪ Only the driver program can read the accumulator’s value. 

  

• Apache Spark Advantages 

o Spark is a general-purpose, in-memory, fault-tolerant, distributed 

processing engine. 

o Spark is 100x faster than traditional systems. 

o Spark can process data from Hadoop HDFS, AWS S3, Azure Blob 

Storage, and many file systems. 

o Support for both batch and real-time streaming data.   

o Spark includes machine learning and graph libraries. 

 

 

 

  



Page 31 of 31 

 

• Spark vs. Hadoop  

 

  

 Hadoop Spark 

Cost Less expensive: disk 

space is cheaper 

Cost can increase: 

requires more RAM as 

it is in-memory 

processing.  

Performance Slow: Disk operations Fast: in-memory 

operations. May be 

slower if YARN is 

used. 

Fault Tolerance High: data replication RDD: fault-tolerant 

collections of elements. 

Processing Batch Batch, stream, and 

graph processing 

Ease of Use No interactive mode Interactive mode with 

support for API for 

multiple languages 

Language Support Java, Python, R, and 

C++ 

Scala, Python, R, and 

Java 

Scalability High High 

Machine Learning   

Scheduler External like Zookeeper Own scheduler 

 


