Kafka Framework

OVEIVIBW ...ttt ettt ettt st sbe e naeenbe e e 2
Kafka ArChiteCture. ..o, 4
Kafka Data MOGEL...........ccooiiiiie e, 8
How are messages processed by Kafka Producers?.............cccecu..... 11
ConsUMING OFFSELS ...cvviiiicicce s 16
Producer/Consumer Python EXample........ccccoevveeviieiieiiec e, 22
Kafka Stream APooiiie e 23
Kafka APPHCAtION.......ccoiiiie e 27

Page 1 of 27

e Qverview

O

O O O O O O O

@)

It was originally developed by LinkedIn.
It is the most popular distributed streaming framework.
It is written in Scala and Java.
Kafka is a high-performance, real-time messaging open-source
framework.
It is a distributed and partitioned messaging system.
It is highly fault-tolerant
It is horizontally Scalable
It can read and send millions of messages per second to several
receivers.
Stream Processing: It can process a continuous stream of
information in real-time.
It is a message broker.
It can process user activities such as clicks, navigation, and search
from different sites.
How applications in an enterprise exchange data?
= Each application needs to connect with multiple applications
in the organization: multiple pipelines

application 1 application 2 application n

Page 2 of 27

o Kafka solution:
= Kafka de-couples data pipelines

Web
Applications

10T

Socail Media
Feeds

Socail Media
Feeds

Logs

o Kafka Use Cases:
= LinkedIn

[

Kafka Cluster

Databases

= Netflix: real-time monitoring and event processing
= Twitter: as part of their Storm real-time data pipelines
= Spotify: log delivery (from 4h down to 10s), Hadoop

= Loggly: log collection and processing

= Uber, Goldman Sachs, PayPal, Cisco, etc.

Page 3 of 27

§€ kafka

APACHE KAFKA

More than 80% of all Fortune 100 companies trust, and use Kafka.

LpachekKatkais an open-source distributed event streaming platrorm used br

- .. . - L : .
Teande Af rrrmnaniae far hinhe-mnarfarmance Aato alinae otrearming analdice
thousands of co anies 1or NiIgn-perrcrmance datz o [::“qcs_ sirea g analytlcs

e Kafka Architecture

data integraticn, anda mission-Critica ap:l cations.

103710

MANUFACTURING

o Apache Kafka main components:
= Producer APl and Consumer API
= Streams API, and
= Connector API.

Y X
10610 810
INSURANCE TELECOM

kafka.apache.org

Kafka

Streams

Producers Producers Producers
Connectors
Connectors |+

Consumers Consumers Consumers

Page 4 of 27

o Producer API:
= Allows applications to publish to a Kafka topic.
o Consumer API:

= Allows applications to subscribe to one or more topics.

o Streams API:

= Allows applications to process an input stream from one or
more topics and produce an output stream to one or more

output topics.
o Connector API:

= |t allows an application to use Kafka Connectors to move
data between Apache Kafka® and other external systems that

you want to extract data from or publish data to.

= For example, a connector can be used to capture every

change to a table.

= Example: MirrorMaker

Producer 1

Zookeeper/KRaft

Producer 2

Producer 3

Broker

e It is a multi-cluster data replication engine based on the
Kafka Connect framework.
e It can be used to migrate data between multiple clusters.
o Main Architecture:

—

Consumer 1

Producer 4

Broker

Page 5 of 27

o Kafka Broker:
= A Kafka cluster is a system that consists of several Brokers
(servers), Topics, and Partitions for both.
= Can consists of a single broker.
= They distribute workloads equally among replicas and
Partitions.
= They are stateless: needs ZooKeeper to maintain cluster
status.
= Each broker can handle TB of messages.
o Zookeeper:
= |tis a distributed configuration and synchronization service.
= |tis a coordination interface between Kaka brokers,
producers, and consumers:

e It notifies consumers and producers of the arrival of a
broker or failure of existing ones.

e Routing requests to partition leaders.

e It stores metadata about Kafka cluster.

e It tracks the topics, number of partitions assigned to
those topics, and leaders/followers location of each
partition.

o KRaft (Kafka Raft):

= Apache Kafka Raft (KRaft) metadata management directly in
Kafka without the requirement of a third-party tool like
Apache ZooKeeper.

= This greatly simplifies Kafka’s architecture by consolidating
responsibility for metadata into Kafka itself, rather than
splitting it between two different systems: ZooKeeper and
Kafka.

= KRaft mode improves partition scalability and resiliency.

o Producers:
= They publish messages to a Kafka topic.

Page 6 of 27

= They need to specify the topic name and one broker to
connect to and Kafka takes care of routing the data to the

right brokers.
= They are client applications that publish messages

into topics

= They decide which partition to send each message to: round-
robin in case of messages without keys, use hashing, or

custom scheme.

— 3| DA DA DA A DA BA BA DA Partition 0
0 1 2 3 4 5 6 7

Producer > B B E B B B E B Partition 1
0 1 2 3 4 5 6 7

3| DA DA DA DA DA BA A DA Partition 2
0 1 2 3 4 5] 7

o Consumers:
= Consumers read data from brokers.
» They do not destroy message after reads.
= |tis aclient application
= Maintains ordering within partitions.

Consumer 1

Consumer 2

Partition 0 | 4 B4l K B BE A A A >
0 1 2 3 4 5 6 7 >
—>
Partition 1 | B4 BX BA BA BA BL BE BA
o 1 2 3 4 5 6 7
Partition 2 BBBBBEBB
0o 1 2 3 4 5 6 7 ;E
o Note:

Page 7 of 27

= Decoupling Producers and Consumers: slow producers do not

affect fast producers
= Dynamic architecture:
o Add producers with affecting consumers
o Failure or removal of consumers does not affect the

system

o Kafka Data Model

o Kafka data organization:
= Messages
= Topics
= Partitions
= Offset

o Messages:
= Message also called Records are the basic unit of data in

Kafka.
= A message is usually a line of text such as a database row, or

a like on a CSV file

Empld | Lname | Fname
1001 | Mary |Allen -> Message 1
1002 |Jon Paul -> Message 2

= Messages are immutable.
= They can only append.
= A message structure:
= Key:
e Can be used to direct messages to specific

partitions.
e It can be null if you are included in a message.

Page 8 of 27

= Value (Your message): For Kafka, it is just a sequence
of bytes.

= Timestamp

= Metadata such offset, offset, timestamp, compression
type, and etc.

Key Value

Compression Type (None, gzip,etc.)
Partition-Offset
Headers (Optional additional metadata)

Key Value

Timestamp (system or user set)

Producer

l Write

New Messaoe are alwavs
DA DA DA DA DA LT :
0)) 2 p inserted at the end

—

Messages are read
from left to right

_—

Commit Log
o Topics:
= Messages are organized into logical grouping called topics.

= A topic is an ordered sequence of events, also called an event log.
= Producers publish messaged into topics.

Page 9 of 27

= Consumers read messages from topics

= Messages are added at one end of the topics

= Topics are split into partitions, which are replicated.

= When you create a topic, you specify the amount of partitions
it has.

o Partitions:
= Topics are split and distributed by partitions for speed and
size.
= Messages in a partition are ordered and each message gets
an in ID called offset

B4l DAl DA DAl DAl DA DAl DA
0 1 2 3 4 5 6 7

)

Current
offset

= Kafka breaks topics up into partitions. A message is stored
on a partition usually by message key if the key is present
and round-robin if the key is missing (default behavior).

= The record key, by default, determines which partition a
producer sends the record.

= Also, Kafka also uses partitions to facilitate parallel
consumers. Consumers read messages in parallel up to the
number of partitions.

= A topic with a single partition can only reside on a single
broker.

= Partitions of a topic can reside on a single broker.

= Partitions of a topic can be distributed over multi broker
cluster

Page 10 of 27

Partition 0

Partition 1

Partition 2

Old

Topic Structure

= Every partition is replicated over multiple servers.

= Every partition has one server acting as a leader and the rest
as followers.

= The leader handles all read/write requests for the partition.
The followers replicate the leader.

= |f the leader server fails, one of the followers become a

leader.

* In-Sync Replicas (ISR):
o It is the number of replicated partitions that are in sync
with its leader
o The followers have the same messages (or in sync) as the

leader.

o It’s not mandatory to have ISR equal to the number of
replicas.

If the leader server fails, one of the ISR become a leader.

e How are messages processed by Kafka Producers?
o A producer needs a confirmation from the broker that the message
has been received successfully and stored by the broker.
o Itis set in the broker configuration for the producer.
o This is achieved by the parameter acks:

e Acks=0

Page 11 of 27

o Acks=1
o Acks=all (or acks=-1)
o Acks=0

e The producer does not wait for any acknowledgement from
the broker.

e There is no guarantee that the broker has received the
message.

e The producer will never re-send the message in case of
failure.

e This mode has high performance: lower latency and high
throughput at the expense of message delivery.

Send message to Write message

leader to partition

o Acks=1

e The producer gets an ack after the leader has received the
message.

e If the producer does not receive the ack, it will retry.

e Possible data loss: There is no guarantee that the message has
been replicated.

e After writing the message, the leader will respond without
awaiting a full acknowledgment from all followers.

e Performance better than ack =0.

@ Send message to @ Write message
leader to partition

Producer Broker
<€ -

Send ack if write
is successful

Page 12 of 27

o Acks=all

e Acks =all is the same as acks=-1.

¢ In this case the producer gets an ack when all ISR replicas
have received the message.

e The leader acknowledges the message only when it receives
acks from all ISR replicas.

e No data loss as long as one of the ISR replicas is alive.

e Performance: higher latency but better safety.

Write message
to partition

Write message

to partition

Producer

Send ack if write
@ successful at leader and
ISR replicas

@ Write to replica

Write message
to partition

o Min.insync.replicas:
= This parameter specifies the minimum number of replicas that
must acknowledge a write for a message to be successful.
= Example:

o retries:

¢ It defines the number of times a producer will attempt to send
a message before marking it as failed. The default value is 0.

e Another related parameter is retry.backoff.ms.
e It sets the duration between two retry.

Page 13 of 27

o retry.backoff.ms default’s value is 100 ms.
o ldempotent Producers:
= Producer idempotence is used to prevent publishing a message
twice due to an expected retires.
= Retires may occur due to network issues that prevent the Acks
(broker acknowledgment) from reaching the producer.

©
O,

Producer Broker y g E - E

Producer ‘ ! ! Broker

A Ack(BA) x , ,

Duplicate Messages

OO

Retry: E

@ Ack(DNAD

= An Idempotent producer is a Kafka producer that writes a
message to a topic EXCATLY once.

Page 14 of 27

® ®

B4 B4
Producer ID Producer ID
Seq. #=3 Seq. #=3 *
Prod Brok E
roducer
()(roRer 0 1 2 Producer ID
A Ack(BDAD Seq. #=3

®
®

Retry: E

G) Ack(BAD

= How to make a producer idempotent?

e Set the producer parameter:
enable.idempotence = true

o This will ensure that a message is written exactly once in the
designated topic.
e Conditions to set enable.idempotence:
= acks=all
= retries >0
= max.in.flight.requests.per.connection <=5

Note that max.in.flight.requests.per.connection is the

maximum number of unacknowledged requests the client will
send on a single connection before blocking.

Page 15 of 27

e Consuming Offsets
o Kafka does not keep track of what messages have been completely
processed by consumers.
o Offsets are unique within each partition
o There are two types of offsets:
= Producer offset:
= The current position of new messages
= Consumer offset:
= |tis used to prevent re-processing of messages by a group
of consumers
= There are two types of offsets:
= Current offset
= Commit Offset
= Current offset (Position):
= |t is the offset from which next new message will be
fetched (when it's available).
= |t is stored in a special topic:

= committed Offset:

= To keep track of the last message processed by the
consumer so Kafka cluster won't send the committed
records for the same partition to another consumer of the
same consumer group.

= [tis also used in case a second consumer is trying to read
from the same partition — it should reprocess the same
messages.

= Committed offset is important in case of a consumer
recovery or rebalancing.

Page 16 of 27

Why Offset Commit?

Partition 0 ? g ? ? ? ? ? g |(— Consumer A

Current
offset

Consumer B

Partition 1 |EEEEEEEE
0 1 2 3 4 5

i)

Current

.

Assume B want
to read from
partition 2.
Where to start?

Offset
Partition 2 |E E E E E E E E > e Consumer C
0 1 2 3 4 5 6 7 '
Current
Offset

= There are two types of commit offsets:
e Auto commit:
o When messages are read, the commit offset
IS set to the offset of the last message read.
o The auto commit is handled by wo
variables:
= enable.auto.commit
= auto.commit.interval.ms
o The Auto-commit is enabled true by default:
enable.auto.commit =true
o The consumer's offset will be periodically
committed in the background.

Page 17 of 27

o For a consumer, the property
auto.commit.interval.ms, specifies the
frequency in milliseconds that the consumer
offsets are auto-committed to Kafka if
enable.auto.commit is set to true.

o The auto.commit.interval.ms defines the
interval of auto commit.

o Default is 5ms

Page 18 of 27

enable.auto.commit=true
auto.commit.interval.ms=5ms

DAl 4] DA]
0 1 2
DAl <] DAl DA DA AT DA DA Consumer
0 1 2 3 4 5 6 7
i | Process the 3 message in less than 5 ms
and send a new request
Current
offset
The consumer has not submitted a
commit and receives another request D;(] D:(] D';Q
DA DA DAl DA DAl DA DAl A Consumer
0 1 2 3 4 5 6 7
Kafka triggers Rebalance and resets the current offset
since we don't have a commit, and Kafka will give the
message to another consumer
DA DA DAl A DAl A DAl A < Consumer
0 1 2 3 4 5 6 7
Request

I

Current

offset ﬁ Manual Commit

e Manual Offset:
o The enable.auto.commit = false
o Sync commit;
= Every time we read a message; the
consumer will not read the next

Page 19 of 27

message unless it hears back from the
topic offset.

= This makes the processing slower.

o Async commit

= When the read message is consumer,
the commit offset is set automatically.

= The consumer does not have to wait
for an acknowledgement.

o Kafka Consumer Auto Offset Reset:
o In case the committed offset is not available, we can
auto.offset.reset parameter.

o There are three modes:
= Read from the end of the partition: auto.offset.reset = latest
= Read from the start of the partition: auto.offset.reset = earliest:
= Throw and exception if no offset is found auto.offset.reset =

latest

Consumer has not started yet: Two cases

| BAl E E E M E M E |
i i @ auto.offset.reset=earliest

Current
offset
B4 B DA DAl DA DAl DA DA
0 1 2 3 4 5 6 7
@ auto.offset.reset=latest i i
Current
offset

Page 20 of 27

Consumer running, failed, and resumes processing: Two cases

g

@ auto.offset.reset=earliest

Last Current
message offset Messages have been read
read offset by other consumers in

the consumer groups

@ auto.offset.reset=latest i i

Current
offset

o Consumer offset Retention:

= Once a Kafka consumer starts consuming data from a topic, it
commits its last consumed message’s offset in the Kafka
broker’s internal topic called consumer offsets.

= This topic helps a consumer in identifying the offset from
which it should start reading the topic on its next poll.

= offset.retention.minutes parameter sets the retention of the
committed offset of a consumer.

= The consumer’s committed offset is reset once the retention
expires:

e The consumer can either decide to read all data from the
topic or the latest data from the topic based on the
consumer config auto.offset.reset

= |faconsumer has not read new data in one day (Kafka < 2.0)

Page 21 of 27

= [faconsumer has not read new data in 7 days (Kafka >=2.0)
= Use retention parameter:

e Offset.retention.minutes

e Producer/Consumer Python Example
o Producer: (analyticshut.com)
from kafka import KafkaProducer
bootstrap_servers = ['localhost:9092']
topicName = 'myTopic'
producer = KafkaProducer(bootstrap_servers = bootstrap_servers)
producer = KafkaProducer()

We can start sending messages to this topic using the following
code.

metadata = ack.get()
print(metadata.topic)
print(metadata.partition)

o Consumer Example:
from kafka import KafkaConsumer
import sys
bootstrap_servers = ['localhost:9092']
topicName = 'myTopic'
consumer = KafkaConsumer (topicName, group_id =
‘groupl’,bootstrap_servers = bootstrap_servers,
auto_offset reset = 'earliest’)

Notes:

- auto_offset_reset = 'earliest' =» read messages from the
beginning of the topic.

Now we can start reading message from the topic.

Page 22 of 27

try:
we are reading the message, its key, offset, and partion.
for message in consumer:

print ("%s:%d:%d: key=%s value=%s" % (message.topic,
message.partition,message.offset, message.key,message.value))

except KeyboardInterrupt:

sys.exit()

o Kafka Stream API
o Kafka Stream:
= |tis like Kafka topic
= |tis nunbound and continuous flow of data packets in real
time. Packets are generated in the form of key-value pairs.
o Kafka stream is an open-source client library used to build
applications and micro-services.
o Enables to consumer from Kafka topics, perform analytical or
transformation work on data, and send to other topics
o Examples:
= Sensor data
Click streams
Transactions
Log entries
= Etc.
o It processes one message at a time and guarantees that each
message is processed once and only one.
o A Kafka stream reads from a Kaka topic and writes to a Kafka
stream.
o Kafka Stream Processing Topology:
= |tisa logical representation of the Kafka stream application.
= |tis a set of processor nodes where each node represents a
transformation step in the application.

Page 23 of 27

= Source Processor:
= A stream processor that does not have any up stream
processor
= Sink Processor:
= A stream processor that does not have any down stream

p rocessor
Source Stream
Processor Processor

\

Stream

Stream
Processor

o Example

Page 24 of 27

o Kafka Stream DSL (Domain Specific Language)
= |t supports declarative, functional programming style with
stateless and stateful transformations.
= They are the Kafka stream operations
= Stateless Transformations:
e map, mapValues, filter
= Stateful Transformations:

e Aggregation (count, reduce), joins, windowing

= Build-in Abstractions:
e StreamBuilder, Kstream, KTable, GlobalKTable

o Kafka Stream Architecture:
= When we start a stream application, Kafka framework creates

a number of tasks equals to the number of partitions.

Kafka Topic 1

Machine 1-Thread 1
Application Instance

»
7] Consumerl

Task 1

state
Store

<

N

Producerl ——

Kafka Topic
Qutput

Partition 1

Partition 1
: Partition 2

Partition 3

Partition 2

Machine 2-Thread 2

Partition 3

Application Instance

\A 4
r| Consumer 2 '—l

Task 2

state
Store

Task 3
@
O

tate
Store

I

Producer 2

Page 25 of 27

o Rebalancing:
= Happens when you scale your application by creating a new
thread on a different machine.

» Kafka automatically moves one task from machine 2 to
machine 3.

= |f you have three partitions, you can only create three tasks.
If you create a new thread, it will remain idle.

Machine 1-Thread 1

Application Instance

Consumer 1

Task 1

Kafka Topic

Kafka Topic 1 Output

state
Store

Partition 1

Partition 1

Partition 2

— Partition 2
Producer 1
Partition 3 1 Partition 3
Machine 2-Thread 2 Machine 3 Thread 3
Application Instance Applicariv Instance
:I Consumer 2 | I Consumer 3 |
Task2 Task3

state tate
Store Store

Producer 2 Producer 3

Page 26 of 27

o Kafka Application
o Word count example

Key |kafk:1 open source framework kafa fast|

Key |kafk:1 open source framework kafa fastI

Key |kafk:1 open source framework kafa fast]

—@-
—@

Keyl kafka
L.

Key 2 open

Key 3 source

Key 3 |framework

Key 4 kafka
Key 5 fast
Keyl kafka kafka kaflka
Key 2 open open open
Key 3 source source source
Key 3 |framework framework | framework
Key 4 kafka kaka kafka
Key 5 fast fast fast
kafka kafka Lkafka kafka, kaflka
open open open open
source source source source
frameworl| framework framework framework
kafka kafka fast fast
fast fast
kafka kafka, kafka kafka 2
open open open 1
source source 4).——) source 1
framework framework framework 1
fast fast fast 1

Page 27 of 27

