
Page 1 of 27

Kafka Framework

• Overview .. 2

• Kafka Architecture ... 4

• Kafka Data Model .. 8

• How are messages processed by Kafka Producers? 11

• Consuming Offsets .. 16

• Producer/Consumer Python Example .. 22

• Kafka Stream API .. 23

• Kafka Application .. 27

Page 2 of 27

• Overview

o It was originally developed by LinkedIn.

o It is the most popular distributed streaming framework.

o It is written in Scala and Java.

o Kafka is a high-performance, real-time messaging open-source

framework.

o It is a distributed and partitioned messaging system.

o It is highly fault-tolerant

o It is horizontally Scalable

o It can read and send millions of messages per second to several

receivers.

o Stream Processing: It can process a continuous stream of

information in real-time.

o It is a message broker.

o It can process user activities such as clicks, navigation, and search

from different sites.

o How applications in an enterprise exchange data?

▪ Each application needs to connect with multiple applications

in the organization: multiple pipelines

Page 3 of 27

o Kafka solution:

▪ Kafka de-couples data pipelines

o Kafka Use Cases:

▪ LinkedIn

▪ Netflix: real-time monitoring and event processing

▪ Twitter: as part of their Storm real-time data pipelines

▪ Spotify: log delivery (from 4h down to 10s), Hadoop

▪ Loggly: log collection and processing

▪ Uber, Goldman Sachs, PayPal, Cisco, etc.

Page 4 of 27

• Kafka Architecture

o Apache Kafka main components:

▪ Producer API and Consumer API

▪ Streams API, and

▪ Connector API.

Page 5 of 27

o Producer API:

▪ Allows applications to publish to a Kafka topic.

o Consumer API:

▪ Allows applications to subscribe to one or more topics.

o Streams API:

▪ Allows applications to process an input stream from one or

more topics and produce an output stream to one or more

output topics.

o Connector API:

▪ It allows an application to use Kafka Connectors to move

data between Apache Kafka® and other external systems that

you want to extract data from or publish data to.

▪ For example, a connector can be used to capture every

change to a table.

▪ Example: MirrorMaker

• It is a multi-cluster data replication engine based on the

Kafka Connect framework.

• It can be used to migrate data between multiple clusters.

o Main Architecture:

Page 6 of 27

o Kafka Broker:

▪ A Kafka cluster is a system that consists of several Brokers

(servers), Topics, and Partitions for both.

▪ Can consists of a single broker.

▪ They distribute workloads equally among replicas and

Partitions.

▪ They are stateless: needs ZooKeeper to maintain cluster

status.

▪ Each broker can handle TB of messages.

o Zookeeper:

▪ It is a distributed configuration and synchronization service.

▪ It is a coordination interface between Kaka brokers,

producers, and consumers:

• It notifies consumers and producers of the arrival of a

broker or failure of existing ones.

• Routing requests to partition leaders.

• It stores metadata about Kafka cluster.

• It tracks the topics, number of partitions assigned to

those topics, and leaders/followers location of each

partition.

o KRaft (Kafka Raft):

▪ Apache Kafka Raft (KRaft) metadata management directly in

Kafka without the requirement of a third-party tool like

Apache ZooKeeper.

▪ This greatly simplifies Kafka’s architecture by consolidating

responsibility for metadata into Kafka itself, rather than

splitting it between two different systems: ZooKeeper and

Kafka.

▪ KRaft mode improves partition scalability and resiliency.

o Producers:

▪ They publish messages to a Kafka topic.

Page 7 of 27

▪ They need to specify the topic name and one broker to

connect to and Kafka takes care of routing the data to the

right brokers.

▪ They are client applications that publish messages into topics

▪ They decide which partition to send each message to: round-

robin in case of messages without keys, use hashing, or

custom scheme.

o Consumers:

▪ Consumers read data from brokers.

▪ They do not destroy message after reads.

▪ It is a client application

▪ Maintains ordering within partitions.

o Note:

Page 8 of 27

▪ Decoupling Producers and Consumers: slow producers do not

affect fast producers

▪ Dynamic architecture:

o Add producers with affecting consumers

o Failure or removal of consumers does not affect the

system

• Kafka Data Model

o Kafka data organization:

▪ Messages

▪ Topics

▪ Partitions

▪ Offset

o Messages:

▪ Message also called Records are the basic unit of data in

Kafka.

▪ A message is usually a line of text such as a database row, or

a like on a CSV file

▪ Messages are immutable.

▪ They can only append.

▪ A message structure:

▪ Key:

• Can be used to direct messages to specific

partitions.

• It can be null if you are included in a message.

EmpId Lname Fname

1001 Mary Allen ➔ Message 1

1002 Jon Paul ➔ Message 2

1003 Kate Miller ➔ Message 3

1004 Ali Mo ➔ Message 3

Page 9 of 27

▪ Value (Your message): For Kafka, it is just a sequence

of bytes.

▪ Timestamp

▪ Metadata such offset, offset, timestamp, compression

type, and etc.

Key Value

Compression Type (None, gzip,etc.)

Partition-Offset

Headers (Optional additional metadata)

Key Value

… …

Timestamp (system or user set)

o Topics:

▪ Messages are organized into logical grouping called topics.

▪ A topic is an ordered sequence of events, also called an event log.

▪ Producers publish messaged into topics.

Page 10 of 27

▪ Consumers read messages from topics

▪ Messages are added at one end of the topics

▪ Topics are split into partitions, which are replicated.

▪ When you create a topic, you specify the amount of partitions

it has.

o Partitions:

▪ Topics are split and distributed by partitions for speed and

size.

▪ Messages in a partition are ordered and each message gets

an in ID called offset

▪ Kafka breaks topics up into partitions. A message is stored

on a partition usually by message key if the key is present

and round-robin if the key is missing (default behavior).

▪ The record key, by default, determines which partition a

producer sends the record.

▪ Also, Kafka also uses partitions to facilitate parallel

consumers. Consumers read messages in parallel up to the

number of partitions.

▪ A topic with a single partition can only reside on a single

broker.

▪ Partitions of a topic can reside on a single broker.

▪ Partitions of a topic can be distributed over multi broker

cluster

Page 11 of 27

▪ Every partition is replicated over multiple servers.

▪ Every partition has one server acting as a leader and the rest

as followers.

▪ The leader handles all read/write requests for the partition.

The followers replicate the leader.

▪ If the leader server fails, one of the followers become a

leader.

▪ In-Sync Replicas (ISR):

o It is the number of replicated partitions that are in sync

with its leader

o The followers have the same messages (or in sync) as the

leader.

o It’s not mandatory to have ISR equal to the number of

replicas.

▪ If the leader server fails, one of the ISR become a leader.

• How are messages processed by Kafka Producers?

o A producer needs a confirmation from the broker that the message

has been received successfully and stored by the broker.

o It is set in the broker configuration for the producer.

o This is achieved by the parameter acks:

• Acks=0

Page 12 of 27

• Acks=1

• Acks=all (or acks=-1)

o Acks=0

• The producer does not wait for any acknowledgement from

the broker.

• There is no guarantee that the broker has received the

message.

• The producer will never re-send the message in case of

failure.

• This mode has high performance: lower latency and high

throughput at the expense of message delivery.

o Acks=1

• The producer gets an ack after the leader has received the

message.

• If the producer does not receive the ack, it will retry.

• Possible data loss: There is no guarantee that the message has

been replicated.

• After writing the message, the leader will respond without

awaiting a full acknowledgment from all followers.

• Performance better than ack =0.

Page 13 of 27

o Acks=all

• Acks =all is the same as acks=-1.

• In this case the producer gets an ack when all ISR replicas

have received the message.

• The leader acknowledges the message only when it receives

acks from all ISR replicas.

• No data loss as long as one of the ISR replicas is alive.

• Performance: higher latency but better safety.

o Min.insync.replicas:

▪ This parameter specifies the minimum number of replicas that

must acknowledge a write for a message to be successful.

▪ Example:

o retries:

• It defines the number of times a producer will attempt to send

a message before marking it as failed. The default value is 0.

• Another related parameter is retry.backoff.ms.

• It sets the duration between two retry.

Page 14 of 27

• retry.backoff.ms default’s value is 100 ms.

o Idempotent Producers:

▪ Producer idempotence is used to prevent publishing a message

twice due to an expected retires.

▪ Retires may occur due to network issues that prevent the Acks

(broker acknowledgment) from reaching the producer.

▪ An Idempotent producer is a Kafka producer that writes a

message to a topic EXCATLY once.

Page 15 of 27

▪ How to make a producer idempotent?

• Set the producer parameter:

enable.idempotence = true

• This will ensure that a message is written exactly once in the

designated topic.

• Conditions to set enable.idempotence:

▪ acks=all

▪ retries > 0

▪ max.in.flight.requests.per.connection <= 5

Note that max.in.flight.requests.per.connection is the

maximum number of unacknowledged requests the client will

send on a single connection before blocking.

Page 16 of 27

• Consuming Offsets

o Kafka does not keep track of what messages have been completely

processed by consumers.

o Offsets are unique within each partition

o There are two types of offsets:

▪ Producer offset:

▪ The current position of new messages

▪ Consumer offset:

▪ It is used to prevent re-processing of messages by a group

of consumers

▪ There are two types of offsets:

▪ Current offset

▪ Commit Offset

▪ Current offset (Position):

▪ It is the offset from which next new message will be

fetched (when it's available).

▪ It is stored in a special topic:

▪ committed Offset:

▪ To keep track of the last message processed by the

consumer so Kafka cluster won't send the committed

records for the same partition to another consumer of the

same consumer group.

▪ It is also used in case a second consumer is trying to read

from the same partition – it should reprocess the same

messages.

▪ Committed offset is important in case of a consumer

recovery or rebalancing.

Page 17 of 27

▪ There are two types of commit offsets:

• Auto commit:

o When messages are read, the commit offset

is set to the offset of the last message read.

o The auto commit is handled by wo

variables:

▪ enable.auto.commit

▪ auto.commit.interval.ms

o The Auto-commit is enabled true by default:

enable.auto.commit =true

o The consumer's offset will be periodically

committed in the background.

Page 18 of 27

o For a consumer, the property

auto.commit.interval.ms, specifies the

frequency in milliseconds that the consumer

offsets are auto-committed to Kafka if

enable.auto.commit is set to true.

o The auto.commit.interval.ms defines the

interval of auto commit.

o Default is 5ms

Page 19 of 27

• Manual Offset:

o The enable.auto.commit = false

o Sync commit:

▪ Every time we read a message; the

consumer will not read the next

Page 20 of 27

message unless it hears back from the

topic offset.

▪ This makes the processing slower.

o Async commit

▪ When the read message is consumer,

the commit offset is set automatically.

▪ The consumer does not have to wait

for an acknowledgement.

o Kafka Consumer Auto Offset Reset:

o In case the committed offset is not available, we can

auto.offset.reset parameter.

o There are three modes:

▪ Read from the end of the partition: auto.offset.reset = latest

▪ Read from the start of the partition: auto.offset.reset = earliest:

▪ Throw and exception if no offset is found auto.offset.reset =

latest

Page 21 of 27

o Consumer offset Retention:

▪ Once a Kafka consumer starts consuming data from a topic, it

commits its last consumed message’s offset in the Kafka

broker’s internal topic called __consumer_offsets.

▪ This topic helps a consumer in identifying the offset from

which it should start reading the topic on its next poll.

▪ offset.retention.minutes parameter sets the retention of the

committed offset of a consumer.

▪ The consumer’s committed offset is reset once the retention

expires:

• The consumer can either decide to read all data from the

topic or the latest data from the topic based on the

consumer config auto.offset.reset

▪ If a consumer has not read new data in one day (Kafka < 2.0)

Page 22 of 27

▪ If a consumer has not read new data in 7 days (Kafka >=2.0)

▪ Use retention parameter:

• Offset.retention.minutes

• Producer/Consumer Python Example

o Producer: (analyticshut.com)

from kafka import KafkaProducer

bootstrap_servers = ['localhost:9092']

topicName = 'myTopic'

producer = KafkaProducer(bootstrap_servers = bootstrap_servers)

producer = KafkaProducer()

We can start sending messages to this topic using the following

code.

ack = producer.send(topicName, b'Hello World!!!!!!!!')

metadata = ack.get()

print(metadata.topic)

print(metadata.partition)

o Consumer Example:

from kafka import KafkaConsumer

import sys

bootstrap_servers = ['localhost:9092']

topicName = 'myTopic'

consumer = KafkaConsumer (topicName, group_id =

'group1',bootstrap_servers = bootstrap_servers,

auto_offset_reset = 'earliest')

Notes:

- auto_offset_reset = 'earliest' ➔ read messages from the

beginning of the topic.

Now we can start reading message from the topic.

Page 23 of 27

try:

we are reading the message, its key, offset, and partion.

 for message in consumer:

 print ("%s:%d:%d: key=%s value=%s" % (message.topic,

message.partition,message.offset, message.key,message.value))

except KeyboardInterrupt:

 sys.exit()

• Kafka Stream API

o Kafka Stream:

▪ It is like Kafka topic

▪ It is n unbound and continuous flow of data packets in real

time. Packets are generated in the form of key-value pairs.

o Kafka stream is an open-source client library used to build

applications and micro-services.

o Enables to consumer from Kafka topics, perform analytical or

transformation work on data, and send to other topics

o Examples:

▪ Sensor data

▪ Click streams

▪ Transactions

▪ Log entries

▪ Etc.

o It processes one message at a time and guarantees that each

message is processed once and only one.

o A Kafka stream reads from a Kaka topic and writes to a Kafka

stream.

o Kafka Stream Processing Topology:

▪ It is a logical representation of the Kafka stream application.

▪ It is a set of processor nodes where each node represents a

transformation step in the application.

Page 24 of 27

▪ Source Processor:

▪ A stream processor that does not have any up stream

processor

▪ Sink Processor:

▪ A stream processor that does not have any down stream

processor

o Example

Page 25 of 27

o Kafka Stream DSL (Domain Specific Language)

▪ It supports declarative, functional programming style with

stateless and stateful transformations.

▪ They are the Kafka stream operations

▪ Stateless Transformations:

• map, mapValues, filter

▪ Stateful Transformations:

• Aggregation (count, reduce), joins, windowing

▪ Build-in Abstractions:

• StreamBuilder, Kstream, KTable, GlobalKTable

o Kafka Stream Architecture:

▪ When we start a stream application, Kafka framework creates

a number of tasks equals to the number of partitions.

Page 26 of 27

o Rebalancing:

▪ Happens when you scale your application by creating a new

thread on a different machine.

▪ Kafka automatically moves one task from machine 2 to

machine 3.

▪ If you have three partitions, you can only create three tasks.

If you create a new thread, it will remain idle.

Page 27 of 27

• Kafka Application

o Word count example

