

 1 | P a g e

Hadoop Framework

• Overview .. 2

• Big Data Processing Frameworks .. 2

o Cluster Computing .. 3

o Distributed File System: ... 4

• Hadoop Framework ... 6

• Hadoop Common Utilities: .. 7

• Hadoop Distributed File System (HDFS) .. 8

• Yarn (Yet Another Resource Negotiator) .. 10

• Map Reduce Programming Model: ... 17

• MapReduce Application Workflow: ... 23

• Hadoop-related Apache Projects: .. 24

 2 | P a g e

• Overview

o The need to process large volumes of data is not new.

o We bring processing to the data: Data is processed in parallel

and in a distributed fashion at the location in which it is stored.

o Big data processing is a set of frameworks storing and accessing

enormous amounts of information and extracting meaningful

insights.

o It is a set of processes that acquire, clean, and analyze big data.

o There are different types of processing big data:

▪ Parallel data processing

▪ Distributed data processing

▪ Hadoop

• Big Data Processing Frameworks

o To process big data, we would need parallel and distributed data

technologies:

▪ Speed up the processing of applications:

• Parallel computing

• Cluster computing

▪ A framework to handle very large dataset

• Distributed file system

o Parallel Computing:

▪ There are two types of architecture:

• Shared Memory vs Distributed Memory

 3 | P a g e

o Cluster Computing

▪ It is a process that connects multiple computers via a local

network or wide area network to solve large and complex

software applications.

▪ It is scalable.

▪ Reliability: The system is not affected if a computer goes

down.

▪ It is cheaper (commodity hardware) and flexible (add

more computers)

▪ Cluster Interconnection Topology:

• The most commonly used interconnection is the

Master/Slave topology.

 4 | P a g e

• It is a model where one computer (Master)

communicates with one or more computers called

Slaves.

▪ The master node manages all slaves and assigns them

tasks.

▪ The slave nodes do the actual computing and store data.

▪ Example of cluster computer: NIH Beowulf Cluster

o Distributed File System:

▪ Limitation of disk capacity

▪ Handling Large File System

▪ Distributed File System is similar to local File System

▪ Data is distributed on computers (nodes) via network.

▪ It enables programs to store and access remote files

exactly as they do local ones.

▪ Accessing Remote File:

 5 | P a g e

• Reads and writes remote files.

o Use RPC (Remote Procedure Call) to translate

file system calls.

 6 | P a g e

• Hadoop Framework

o It is a framework that uses cluster computing and a distributed

file system to process big data with reasonable cost and time.

o The Apache™ Hadoop® is a reliable, scalable, distributed

computing open-source framework.

o It uses a set of a master-slave cluster system using a simple

programming model.

o Hadoop Timeline:

▪ 2005: Doug Cutting and Michael J. Cafarella developed

Hadoop to support distribution for the Nutch search engine

project.

▪ Hadoop was funded by Yahoo.

▪ 2006: Yahoo gave the project to Apache Software

Foundation.

▪ In 2008, Hadoop wins terabyte sort benchmark (sorted 1

terabyte of data in 209 seconds, compared to previous

record of 297 seconds)

o It uses cluster computing with redundancy.

o It is designed to horizontally scale up from single servers to

thousands of machines, each offering local computation and

storage.

o Hadoop Architecture:

▪ Hadoop framework architecture uses a master-slave

topology.

▪ Hadoop Architecture Components:

• Hadoop Common:

o The common utilities that support the other

Hadoop modules.

• HDFS (Hadoop Distributed File System)

 7 | P a g e

o A distributed file system that provides high

throughput access to application data.

• Hadoop YARN (Yet Another Resource Negotiator):

o A framework for job scheduling and cluster

resource management.

• Hadoop MapReduce:

o It is one of the main components of

processing data in a Hadoop framework.

• Hadoop Common Utilities:

o It is a set of Java libraries and utilities that support all other

components in Hadoop cluster.

o They check Hardware failure in a Hadoop cluster and provide other

utilities such as (https://hadoop.apache.org/docs/r3.2.4/):

• Rack Awareness

• Service Level Authorization

• HTTP Authentication

• Hadoop KMS (It is a cryptographic key management

service)

• Etc.

 8 | P a g e

• Hadoop Distributed File System (HDFS)

o HDFS is Hadoop distributed file system.

o The data files are divided into multiple blocks.

o Data blocks are stored on the cluster slave nodes

o Data Storage in HDFS:

▪ Hadoop HDFFS splits the files into small pieces of data

called blocks

▪ Block size:

• Hadoop 1.x: size is 64 MB

• Hadoop 3.x size is 128 MB

o HDFS requires two main daemons:

▪ NameNode

▪ DataNode

o NameNode:

▪ It resides on the master node.

▪ It maintains and manages the DataNodes

▪ It manages the metadata: locations of data blocks, the size

of files, permissions, etc.

▪ It monitors heartbeat (A signal sent between a DataNode

and NameNode. If there is no signal, then there is

something wrong with the DataNode) and block report

from all the DataNodes.

o DataNode:

▪ It is a slave daemon that stores actual data.

▪ It manages the read/write requests from clients.

o Rack Awareness Algorithm:

▪ It is an algorithm that replicates data blocks in multiple

racks in HDFS.

▪ It chooses closer data nodes while placing data blocks

based on rack information. This information is stored

when the Hadoop cluster is created.

▪ Placement of replica ensures high reliability and fault

tolerance of HDFS

 9 | P a g e

▪ Replication is done using the following Rack Awareness

policy:

• One copy on one rack i: The closed to the client

• Two copies on a different rack on different data

nodes. The closet rack to rack i to minimize the

bandwidth. If we duplicate each block on different

racks this would increase the latency of write

operations.

 10 | P a g e

• Yarn (Yet Another Resource Negotiator)

o It is a resource management layer in Hadoop framework.

o It is responsible for resource allocation and management, job

scheduling, etc.

o Flexibility:

▪ The ability to run non-MapReduce applications .

▪ It also provides API to develop any generic distribution

application such as Hive, Pig, etc.

o Yarn Framework Components:

▪ Yarn has two main components:

• Resource Manager:

o It is located on Master computer

• Node Manager:

o It is located on each slave machine.

o Resource Manager:

▪ Resource Manager includes two main daemons:

• Scheduler

• Applications Manager

 11 | P a g e

o Scheduler:

▪ It is responsible for allocating resources to running

applications.

• There are three types of schedulers available in

YARN:

o FIFO (first in, first out):

▪ It is the simplest scheduler and does not

need any configuration.

▪ It uses a queue to schedule applications.

o Fair:

▪ Fair Scheduler assigns equal amount of

resource to all running jobs.

o Capacity:

▪ It maintains a separate queue for small

jobs in order to start them as soon a

request initiates.

▪ Large applications will take more time to

complete.

▪ It is the default schedule in Hadoop, but it

can be changed by setting Yarn.

o Applications Manager

▪ It accepts application submissions, negotiating the first

container for executing the application specific

Application Master.

▪ It also provides the service for restarting the Application

Master container on failure.

o Node Manager:

▪ It is the slave daemon of YARN residing on a

commodity hardware - a non-expensive system.

 12 | P a g e

▪ Node Manager has to monitor the container’s resource

usage, along with reporting it to the Resource Manager.

▪ It keeps the data in the Resource Manager updated.

▪ It is responsible for launching and managing containers

on a slave. It monitors their resource usage such as

CPU, memory, etc.

▪ It can also end the container if requested by the

Resource Manager.

▪ It has two components:

• Containers:

o They are created by the node managers to

execute the application such as

MapReduce’s.

• Application Master:

o One per application

o It is a daemon that negotiates resources with

Resource Manager and coordinates the

execution of an application in the cluster.

o HDS Read/Write Operations:

▪ Write Operation:

• Write operation is a pipeline that has three steps:

o Write setup

o Writing a block

o Writing confirmation

 13 | P a g e

• Writing Setup:

 14 | P a g e

• Writing a block

 15 | P a g e

• Writing acknowledgement

 16 | P a g e

• Read Operation:

 17 | P a g e

• Map Reduce Programming Model:

o Terms are borrowed from functional programming languages (e.g.,

Lisp)

▪ Sum of squares: (map square ‘(1 2 3 4)) → Output: (1 4 9 16)

▪ (reduce + ‘(1 4 9 16)) (+ 16 (+ 9 (+ 4 1))) → Output: 30

o Example: Wordcount:

▪ Given a large dataset that cannot fit in main memory.

▪ List the count for each word in the dataset:

• This is one Unix command line if everything fits in

memory.

• For big data, If the total distinct words fit in

memory:

o Use a hash function to map each keyword and

keep count.

o If the data cannot fit in the memory and the

total distinct words fits in memory

o MapReduce is a parallel and distributed programming model

used to process big data.

o The entire MapReduce program can be fundamentally divided

into three parts:

▪ Mapper:

 18 | P a g e

• The code to perform the mapping function.

▪ Reducer:

• The code to perform the reducer logic.

▪ Driver Code

o Shuffle/Combine/Sort:

▪ Shuffle is a build in logic that transfers the map output

from Mapper to a Reducer in MapReduce.

▪ Data from the mapper are grouped by the key, split among

reducers, and sorted by the key.

▪ Every reducer obtains all values associated with the same

key.

o Driver Code:

▪ It is a Driver responsible for setting up a MapReduce Job

to run-in Hadoop.

▪ It lists the names of the Mapper and Reducer Classes, the

job name, input path, output path, etc.

▪ Example: gist.github.com

 19 | P a g e

 package example;

import org.apache.hadoop.fs.Path;

import org.apache.hadoop.io.IntWritable;

import org.apache.hadoop.io.Text;

import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;

import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;

import org.apache.hadoop.mapreduce.Job;

/ * MapReduce jobs are typically implemented by using a driver class,

 * which sets up the configuration and then submits the job to the

 * Hadoop cluster for execution. Typical tasks performed in the

 * driver class include configuring the input and output data formats,

 * configuring the map and reduce classes, and specifying the types

 * of intermediate data produced by the job.*/

public class Driver {

 public static void main(String[] args) throws Exception {

 /*

 * To make our program more flexible, we'll allow the input

 * and output directory paths to be specified on the command

 * line instead of hardcoding them. The first thing our driver

 * will do is verify that we were passed these arguments (and

 * ONLY these arguments).

 */

 if (args.length != 2) {

 System.out.printf("Usage: Driver <input dir> <output dir>\n");

 System.exit(-1);

 }

 //Instantiate a Job object for our job's configuration.

 Job = new Job();

 /* Specify the paths to the input and output data based on the

 * command-line arguments.

 */

 FileInputFormat.setInputPaths(job, new Path(args[0]));

 FileOutputFormat.setOutputPath(job, new Path(args[1]));

 /* Specify the JAR (Java archive) file containing your driver, mapper,

 * and reducer. Hadoop will transfer this JAR file to nodes in your

 * cluster that run the map and reduce tasks. This method instructs

 * Hadoop to find the JAR file based on a specific class it contains.

 */

 job.setJarByClass(Driver.class);

}

 20 | P a g e

 /*

 * Explicitly setting a descripive name for the job will help us to

 * more easily identify our job in reports and log files, especially

 * on a busy cluster that runs lots of jobs from many users.

 */

 job.setJobName("Employee Salary Analysis Driver");

 /*

 * Tell Hadoop which mapper and reducer classes we'll use for

 * this job.

 */

 job.setMapperClass(EmployeeMapper.class);

 job.setReducerClass(EmployeeReducer.class);

 /*

 * Specify the job's output key and value classes.

 */

 job.setOutputKeyClass(Text.class);

 job.setOutputValueClass(IntWritable.class);

 /*

 * Start the MapReduce job and wait for it to finish.

 * If it finishes successfully, return 0. If not, return 1.

 */

 boolean success = job.waitForCompletion(true);

 System.exit(success ? 0 : 1);

 }

}

 21 | P a g e

o Map Computation:

▪ Parallelly Process individual records to generate

intermediate key/value pairs.

o Reduce Computation:

▪ Merge all intermediate values associated per key

o Example: MapReduce Word Count:

o Python Code: riptutorial.com

▪ Map Code:

import sys

for line in sys.stdin:

 # remove leading and trailing whitespace

 line = line.strip()

 # split the line into words

 words = line.split()

 # increase counters

 for word in words:

 print '%s\t%s' % (word, 1)

 22 | P a g e

▪ Reduce Code:

import sys

current_word = None

current_count = 0

word = None

for line in sys.stdin:

 # remove leading and trailing whitespaces

 line = line.strip()

 # parse the input we got from mapper.py

 word, count = line.split('\t', 1)

 # convert count (currently a string) to int

 try:

 count = int(count)

 except ValueError:

 # count was not a number, so silently

 # ignore/discard this line

 continue

 if current_word == word:

 current_count += count

 else:

 if current_word:

 print '%s\t%s' % (current_word,

current_count)

 current_count = count

 current_word = word

if current_word == word:

 print '%s\t%s' % (current_word, current_count)

o Other Example:

▪ Count of URL access frequency:

• Input: Log of accessed URLs from a web server

 23 | P a g e

• Output: For each URL, % of total accesses for that

URL

• MapReduce Application Workflow:

1. A client program submits the application.

2. Resource Manager allocates a specified container to start the

container to start

3. Application Master, on boot-up, registers with Resource

Manager

4. Application Master negotiates with Resource Manager for

appropriate resource containers.

5. On successful container allocations, Application Master

contacts Node Manager to launch the container.

6. Application code is executed within the container, and then

Application Master is responded with the execution status

7. During execution, the client communicates directly with

Application Master or Resource Manager to get status,

progress updates etc.

8. Once the application is complete, Application Master

unregisters with Resource Manager and shuts down, allowing

its own container process.

 24 | P a g e

• Hadoop-related Apache Projects:

o Ambari™: A web-based tool for provisioning, managing, and

monitoring Hadoop clusters. It also provides a dashboard for

viewing cluster health and ability to view MapReduce, Pig and

Hive applications visually.

o Avro™: A data serialization system.

o Cassandra™: A scalable multi-master database with no single

points of failure.

o Chukwa™: A data collection system for managing large

distributed systems.

o HBase™: A scalable, distributed database that supports

structured data storage for large tables.

o Hive™: A data warehouse infrastructure that provides data

summarization and ad hoc querying.

o Mahout™: A Scalable machine learning and data mining

library.

o Pig™: A high-level data-flow language and execution

framework for parallel computation.

o Spark™: A fast and general compute engine for Hadoop data.

Spark provides a simple and expressive programming model

that supports a wide range of applications, including ETL,

machine learning, stream processing, and graph computation.

o Tez™: A generalized data-flow programming framework, built

on Hadoop YARN, which provides a powerful and flexible

engine to execute an arbitrary DAG of tasks to process data for

both batch and interactive use-cases.

o ZooKeeper™: A high-performance coordination service for

distributed applications.

