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Introduction & Motivation 

Non-boundary conforming methods are popular in recent years, 
especially for fluid-structure interaction problems (multiple bodies, 
large displacements/deformations) 

Immersed boundary approaches are usually tied to Cartesian grids 
that do not allow flexibility in grid refinement.   

In general are limited to low Reynolds numbers (special cases of 
high Re applications have also been reported) 

Some form of local refinement is required to extend this class of 
methods to practical applications 



Adaptive mesh refinement: topology 

Divide the domain in sub-blocks. Each sub-grid block 
has a structured Cartesian topology, and is part of a 
tree data structure that covers the entire 
computational domain.  

Local refinement of a  sub-grid block is performed by 
bisection in each coordinate direction.  

Number of nodes in each sub-block remains 
constant. 
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•  We use a projection method, where 
advective and diffusive terms are advanced 
explicitly  
•  We use the Paramesh toolkit (developed by 
MacNeice and Olson) for the implementation 
of the AMR process. The package creates and 
maintains the hierarchy of sub-grid blocks, with 
each block containing a fixed number of grid 
points.   
•  A single-block Cartesian grid solver is 
employed in each sub-grid block: 

•  standard staggered grid in each sub-
block  

•  second-order central finite-differences 

•  A hybrid direct/multigrid solver is used for 
the Poisson equation (developed in 
collaboration with the FLASH-Group) 

•  Guard cells are used to discretize equations 
at the interior coarse-fine interfaces 

standard staggered grid 

coarse-fine interface 

Adaptive mesh refinement: overview 



Guard-cells must be filled at block edges in 
order to complete the differencing stencil 

A sequence of 1D quadratic interpolations is 
used to fill the guard-cells 

coarse-fine interface 

Step 1: coarse guard-cell filling 

Step 2: coarse guard-cell filling 

Adaptive mesh refinement: guard cells 



Multigrid is a natural choice considering the 
hierarchy of sub-grid blocks covering the 
computational domain.  

The algorithm uses full multigrid cycles, in which 
all relaxation sweeps extend across the full 
computational domain.  

Adaptive mesh refinement: Poisson Solver 

•  A relaxation sweep is performed over the full domain composed of 
sub-grid blocks at three different refinement levels (2 blocks at level 2, 6 
blocks at level 3, and 8 blocks at level 4). 

•  When restricting to the next coarser refinement level, sub-grid blocks 
at the finest level undergo the restriction operation (the eight blocks at 
level 4 are restricted to two blocks at level 3, and the next relaxation 
sweep is performed) 
•  ……. 



The multigrid algorithms have an inherent scaling limitation:  
•  as the grid gets coarser, there is less computational load 
to distribute among processors.  

•  as the number of blocks at a level approaches the 
number of processors, we begin to see the overhead cost 
of low computation/communication ratio.  

•  further reduction in the number of blocks, processors start 
to become idle and load balance deteriorates (at the 
coarsest level, very few processors are busy). 

Adaptive mesh refinement: Poisson Solver 

In the hybrid scheme we have developed: 
•  we do not complete a V cycle, and instead coarsening of 
the grid is stopped at a predetermined level.  
•  the coarse level may be any level that is fully refined (i.e. 
containing blocks that completely cover the computational 
domain).  
•  The solution at this level is computed using one of the 
parallel direct solvers 



Adaptive mesh refinement: Poisson Solver 

Performance of Multigrid and Hybrid Poisson solvers on BG/P (A. Dubey) 



Interface velocity at coarse grid is corrected 

 to conserve mass: 

Adaptive mesh refinement: mass balance 



Validation: Taylor Green Vortex 

Adaptive mesh refinement: accuracy 

•  Compare numerical solution to analytical 
solution of 2D Navier-Stokes equations 

•  Domain:  
      [π/2, 5π/2]x [π/2, 5π/2] 

•  Homogeneous Dirichlet/Neumann velocity 
boundary conditions and Neumann pressure 
boundary condition 

u p 



Validation: Taylor Green Vortex 

Adaptive mesh refinement: accuracy 

Domain with 2  
refinement levels 

1st order interpolation 

Domain with 2  
refinement levels  

2nd order interpolation 

Uniform domain 

•  1st order interpolation does not 
maintain 2nd order accuracy of numerical 

scheme 



Vortex Ring impinging on a wall, Re ≈ 570 

Adaptive mesh refinement: validation 

Q contour for vortex impinging normal to a wall, Re ≈ 570 

•  Compare AMR solution to 
numerical solution using a Single 
Block, Cartesian solver. 

•  Velocity Dirichlet BCs in top and 
Bottom Boundaries, periodic on 
side walls. Pressure Neumann 
BCs. 



Vortex Ring impinging on a wall, Re ≈ 570 

Adaptive mesh refinement: validation 

vorticity isolines at a cross section, Re ≈ 570 

•  Compare AMR solution to 
numerical solution using a Single 
Block, Cartesian solver. 

•  Velocity Dirichlet BCs in top and 
Bottom Boundaries, periodic on 
side walls. Pressure Neumann 
BCs. 



A ‘direct-forcing’ embedded-boundary method is used to imposed 
boundary conditions on arbitrary boundaries* 

Embedded boundary method 

* Balaras Comp. & Fluids 2004, Balaras & Yang J. Comput. Phys. 2006, 
Vanella & Balaras , Submitted J. Comput. Phys. 2008 



Fluid Structure Interaction: overview 
• Fluid-Structure Interaction: Strong coupling Scheme (Yang, Preidikman & 
Balaras, J. Fluids & Structures, 2007. ) 



Examples: Falling plates 

•  Structure: First order coupled nonlinear ordinary differential 
equations 

For the case of slender rigid bodies in planar motion. 

Where q1=[x(t)  y(t)  θ(t)]’.  



Falling plates: parameters  
•   Fluid Structure interaction of Two falling plates  
Two  runs: 
•   The FSI algorithm with AMR 
every 5 time steps. 8x10 cell 
blocks and maximum of 7 levels of 
refinement, 59.000 points.  

•   Same FSI and IB strategies in a 
single Cartesian mesh and a direct 
Block Tridiagonal Poisson solver.  
1.250.000 points.  

Properties: 
Chord length c = 1, a thickness of 10% c,  
m = 0.5, Io = 0.0416667,  
3 DOF per Body, 
g = 0.12,  
ν  = 0.005. 
In both runs Δt = 1.22e-3, and 16000 timesteps. 

Grid size around bodies ≈ 0.008c 
in both cases.  



  Vorticity contours and Block boundaries for AMR calculation.  

Falling plates: results  



  Positions in the x-y plane of centers of mass of both bodies taking time as a parameter.  

Falling plates: results 



  Computational setup and Eulerian/Largangian grid arangement  

Sphere bouncing-off a wall 



Sphere bouncing-off a wall 



Sphere bouncing-off a wall 

Dry restitution coefficient zero.  Comparison with the experiment by Eames &  Dalziel Dust, 
J. Fluid Mech. 403, 2000. 



Sphere bouncing-off a wall 

Dry restitution coefficient one   



Hovering Fly 
Hovering Fly at Re = 300: 

•   Re = Utmax*Lr/ν = 300. 
•   Boundary Conditions: Dirichlet in z, periodic in x, y. 

•   Level 0: 32 x 32 x 32 grid cells. Blocks 163 cells. Coarse 
calculation maximum 3 levels of refinement (Δx =0.019). 

•   Integration for 4 flapping cycles.  Harmonic kinematics for 
beating angle and geometric angle of attack.  
•   IB Treatment of the wings as membranes.  

(a) 

(b) 

(c) 



Hovering Fly 



Summary & Conclusions 

•   Proposed approach combines the computational efficiency of embedded 
boundary Cartesian solvers with the resolution capabilities of the boundary 
conforming approaches 

•  The accuracy of the single-block solver is unaffected   

•   Dramatic reduction in grid points can be achieved compared to single-block 
solvers 

•  Grid discontinuities introduce significant challenges to eddy resolving 
techniques (i.e. large-eddy simulations) 


