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Introduction & Motivation -
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Non-boundary conforming methods are popular in recent years,
especially for fluid-structure interaction problems (multiple bodies,
large displacements/deformations)

Immersed boundary approaches are usually tied to Cartesian grids
that do not allow flexibility in grid refinement.

In general are limited to low Reynolds numbers (special cases of
high Re applications have also been reported)

Some form of local refinement is required to extend this class of
methods to practical applications



Adaptive mesh refinement: topology 6
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Level 1

Divide the domain in sub-blocks. Each sub-grid block
has a structured Cartesian topology, and is part of a
tree data structure that covers the entire Level2
computational domain.
Local refinement of a sub-grid block is performed by Level 3

bisection in each coordinate direction.

Number of nodes in each sub-block remains
constant.
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Level 4



Adaptive mesh refinement: overview @

« We use a projection method, where
advective and diffusive terms are advanced

explicitly (d)
* We use the Paramesh toolkit (developed by
MacNeice and Olson) for the implementation ) C) D)
of the AMR process. The package creates and /
maintains the hierarchy of sub-grid blocks, with N
each block containing a fixed number of grid ] B
points. )ég( D) @\ D)
A single-block Cartesian grid solver is
employed in each sub-grid block: iYL N EmE
&1+
« standard staggered grid in each sub- / GATUBI-REHAR
block
 second-order central finite-differences Lo °
* A hybrid direct/multigrid solver is used for 0 0 4> ot
the Poisson equation (developed in Lo ° * T
collaboration with the FLASH-Group) P | Tl
o LF > @ — O
» Guard cells are used to discretize equations standard staggered grid

at the interior coarse-fine interfaces

coarse-fine interface
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Adaptive mesh refinement: guard cells  “&:
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Step 1: coarse guard-cell filling

(a)|
(b
EHEE
’ ) ’ Step 2: coarse guard-cell filling
coarse-fine interface (d) | ;
QG Qe
Guard-cells must be filled at block edges in N s
order to complete the differencing stencil 1 o
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A sequence of 1D quadratic interpolations is
used to fill the guard-cells



Adaptive mesh refinement: Poisson Solver &
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Multigrid is a natural choice considering the

hierarchy of sub-grid blocks covering the & &

computational domain.

The algorithm uses full multigrid cycles, in which P N N

all relaxation sweeps extend across the full

computational domain. Sl He e
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* A relaxation sweep is performed over the full domain composed of
sub-grid blocks at three different refinement levels (2 blocks at level 2, 6
blocks at level 3, and 8 blocks at level 4).

* When restricting to the next coarser refinement level, sub-grid blocks
at the finest level undergo the restriction operation (the eight blocks at
level 4 are restricted to two blocks at level 3, and the next relaxation
sweep is performed)




Adaptive mesh refinement: Poisson Solver &
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The multigrid algorithms have an inherent scaling limitation:

» as the grid gets coarser, there is less computational load
to distribute among processors.

« as the number of blocks at a level approaches the
number of processors, we begin to see the overhead cost
of low computation/communication ratio.

« further reduction in the number of blocks, processors start
to become idle and load balance deteriorates (at the
coarsest level, very few processors are busy).

In the hybrid scheme we have developed:
» we do not complete a V cycle, and instead coarsening of
the grid is stopped at a predetermined level.
* the coarse level may be any level that is fully refined (i.e.
containing blocks that completely cover the computational
domain).
» The solution at this level is computed using one of the
parallel direct solvers



Adaptive mesh refinement: Poisson Solver
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~ Multigrid M Hybrid
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Time (sec)

14
12 I
128 512

Number of processors

4096

Performance of Multigrid and Hybrid Poisson solvers on BG/P (A. Dubey)

e\Q;,\LSI Ty

Q

56

o




Adaptive mesh refinement: mass balance
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Interface velocity at coarse grid is corrected

to conserve mass: *
F(u.)=F(uy)+F(uy,) -
F((Vdp).)=F((Vop), )+ F((V.0p),,) A

u'™' = u, — AtV Sp

F(u!*"y=F(u.) - AtF((V.8p).)
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= F(uy,) + F(uy,) - MF((V 0p) ;) )~ AtF (V 0p) 1, )= F (i) + F(u}3)



Adaptive mesh refinement: accuracy &
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Validation: Taylor Green Vortex

« Compare numerical solution to analytical

solution of 2D Navier-Stokes equations u=-e cosxsiny
. Domain: v =e sinxcosy
[t/2, 51t/2]x [r/2, 57/2] et
p=-——/(cos2x +cos2y)
 Homogeneous Dirichlet/Neumann velocity 4

boundary conditions and Neumann pressure
boundary condition




Adaptive mesh refinement: accuracy

Validation: Taylor Green Vortex

Domain with 2
refinement levels
1st order interpolation

;; /// 10
g 1 Ax2s .
%f l// ) /.
0’ ' ::2“ . ,//// 10
10’ 2 10 a7
Ax > P -
€
Uniform domain | £
10 1;_1 g .
Ax o
* 1st order interpolation does not >
maintain 2nd order accuracy of numerical o
scheme
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Domain with 2
refinement levels
2nd order interpolation

Ax (coarsest grid)




Adaptive mesh refinement: validation .
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Vortex Ring impinging on a wall, Re = 570

Positions in the X=0 plane, for centers of X vorticity:

« Compare AMR solution to 1 T eemm o
numerical Solution using a Single 1)e] MTR——— ........................ ............. Ti:\:ﬂeglo\;trs:;\’orte)(_
Block, Cartesian solver. I — H—— - - Lt R engvoree |

° Velocity Dirichlet BCS in top and ._'07_ ...........
Bottom Boundaries, periodic on 100 R S N
side walls. Pressure Neumann 2
BC%ﬁ % OB | e

: == N SS——— ........................ ..................... .................... ...........
Ny N e T .
~— =] -
e g% ] : : : :
‘= 1 ; '..: Qi e ....................... ....................... . ........... .......... x|
0 0?2 0!4 056 ¢ 0?8 1
Semw Y/Do [Nondim]

Q contour for vortex impinging normal to a wall, Re = 570
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Adaptive mesh refinement: validation -

Vortex Ring impinging on a wall, Re = 570

Positions in the X=0 plane, for centers of X vorticity:

-  Compare AMR solution to 1 g Bloc fetvort
numerlcal Solutlon USIng a Slngle ] TR ........................ ............. . iir‘:g:eslo\?;r:::\lortex_
Block, Cartesian solver. I — —— - - b2 AR zndvons |

«  Velocity Dirichlet BCs in top and i - e R e . —
Bottom Boundaries, periodic on Sl i
side walls. Pressure Neumann =
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vorticity isolines at a cross section, Re = 570



Embedded boundary method

A ‘direct-forcing’ embedded-boundary method is used to imposed
boundary conditions on arbitrary boundaries*
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*Balaras Comp. & Fluids 2004, Balaras & Yang J. Comput. Phys. 2006,
Vanella & Balaras , Submitted J. Comput. Phys. 2008
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Fluid Structure Interaction: overview
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*Fluid-Structure Interaction: Strong coupling Scheme (Yang, Preidikman &

Balaras, J. Fluids & Structures, 2007. )
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Examples: Falling plates
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 Structure: First order coupled nonlinear ordinary differential

equations
M0 ) _[ 4.
0 [M(qp]||9.] [F(q;.9,.7)

For the case of slender rigid bodies in planar motion.

My 0Ls (4] | q,
m 0 0 _ /.(q,.9,)
0y 0 m 0|]d,[ |/.q)-m*g]
0 0 Icm_ ] M,(q,.q,)

Where qi=[x®) y(t) 0@)7".
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Falling plates: parameters

 Fluid Structure interaction of Two falling plates

TwoO runs:

* The FSI algorithm with AMR
every 5 time steps. 8x10 cell
blocks and maximum of 7 levels of
refinement, 59.000 points.

« Same FSI and IB strategies in a

single Cartesian mesh and a direct

Block Tridiagonal Poisson solver. 10
1.250.000 points.

Grid size around bodies = 0.008c
in both cases.

Properties:

Chord length ¢ = 1, a thickness of 10% c,

m = 0.5, lo = 0.0416667,

3 DOF per Body,

g=0.12,

v = 0.005.

In both runs At = 1.22e-3, and 16000 timesteps.

No siip
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Neo
slip

30° m, Io

X01=(-05,9)

m, Io 300

X02=(0.5,8)

Neo
stip




Falling plates: results
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Falling plates: results &
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Trajectories as a function of computational time:

— Body 1 Scalar
Body 2 Scalar |
* Body 1 AMR
* Body 2 AMR

Y/chord
i

0
X/chord

Positions in the x-y plane of centers of mass of both bodies taking time as a parameter.



Sphere bouncing-off a wall
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Computational setup and Eulerian/Largangian grid arangement



Sphere bouncing-off a wall
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o T= 0.52593E-01




Sphere bouncing-off a wall g%

Dry restitution coefficient zero. Comparison with the experiment by Eames & Dalziel Dust,
J. Fluid Mech. 403, 2000.



Sphere bouncing-off a wall 5

T= 0.250

Dry restitution coefficient one



\QERS'T},
Q

Hovering Fly S
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Hovering Fly at Re = 300:

 Re = Utmax*Lr/v = 300.
« Boundary Conditions: Dirichlet in z, periodic in x, y.
« Level 0: 32 x 32 x 32 grid cells. Blocks 163 cells. Coarse
calculation maximum 3 levels of refinement (Ax =0.019).
* Integration for 4 flapping cycles. Harmonic kinematics for
beating angle and geometric angle of attack.
« IB Treatment of the wings as membranes.
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Summary & Conclusions 8%
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* Proposed approach combines the computational efficiency of embedded
boundary Cartesian solvers with the resolution capabilities of the boundary
conforming approaches

* The accuracy of the single-block solver is unaffected

« Dramatic reduction in grid points can be achieved compared to single-block
solvers

* Grid discontinuities introduce significant challenges to eddy resolving
techniques (i.e. large-eddy simulations)



